
sensors

Article

Real-Time Fruit Recognition and Grasping Estimation
for Robotic Apple Harvesting

Hanwen Kang, Hongyu Zhou, Xing Wang and Chao Chen *

Laboratory of Motion Generation and Analysis, Faculty of Engineering, Monash University,
Clayton, VIC 3800, Australia; hanwen.kang@monash.edu (H.K.); hugh.zhou@monash.edu (H.Z.);
xing.wang2@monash.edu (X.W.)
* Correspondence: chao.chen@monash.edu

Received: 9 August 2020; Accepted: 30 September 2020; Published: 4 October 2020
����������
�������

Abstract: Robotic harvesting shows a promising aspect in future development of agricultural industry.
However, there are many challenges which are still presented in the development of a fully functional
robotic harvesting system. Vision is one of the most important keys among these challenges.
Traditional vision methods always suffer from defects in accuracy, robustness, and efficiency in
real implementation environments. In this work, a fully deep learning-based vision method for
autonomous apple harvesting is developed and evaluated. The developed method includes a
light-weight one-stage detection and segmentation network for fruit recognition and a PointNet to
process the point clouds and estimate a proper approach pose for each fruit before grasping. Fruit
recognition network takes raw inputs from RGB-D camera and performs fruit detection and instance
segmentation on RGB images. The PointNet grasping network combines depth information and
results from the fruit recognition as input and outputs the approach pose of each fruit for robotic
arm execution. The developed vision method is evaluated on RGB-D image data which are collected
from both laboratory and orchard environments. Robotic harvesting experiments in both indoor
and outdoor conditions are also included to validate the performance of the developed harvesting
system. Experimental results show that the developed vision method can perform highly efficient
and accurate to guide robotic harvesting. Overall, the developed robotic harvesting system achieves
0.8 on harvesting success rate and cycle time is 6.5 s.

Keywords: agricultural robot; deep learning; pointNet; autonomous harvesting; robotic harvesting;
grasping estimation

1. Introduction

Robotic harvesting plays a significant role in the future development of the agricultural
industry [1]. Vision is one of the key tasks among many challenges in the robotic harvesting [2].
There are environmental factors can affect the accuracy and robustness of the vision system, such
as illumination and appearance variances, noisy background, and occlusion between objects [3].
Meanwhile, success rate of robotic harvesting in an unstructured environments can also be affected
by the layout or distribution of the fruit within the workspace. To improve the success rate of
robotic harvesting in such conditions, vision system should be capable of detaching crops from
a proper pose [4,5]. Our previous work [6] developed a traditional grasping estimation method
to perform harvesting. However, the performance of the traditional vision algorithms are always
limited in complex and volatile environments. Inspired by the recent work of PointNet [7], this work
proposes a fully deep neural network-based vision algorithm to perform real-time fruit recognition and
grasping estimation for robotic apple harvesting. The proposed vision method includes two network
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models, a one-stage fruit recognition network and a PointNet-based grasping estimation network.
The following contributions are highlighted in the paper:

• Proposing a computational-efficient light-weight one-stage instance segmentation network,
Mobile-DasNet, to perform fruit detection and instance segmentation on sensory data.

• Proposing a modified PointNet-based network to perform fruit modelling and grasping estimation
using point clouds from an RGB-D camera.

• Applying and combining the aforementioned two features into the design and build of the
accurate robotic system towards autonomous fruit harvesting.

The rest of the paper is organised as follows. Section 2 reviews the related works on fruit
recognition and grasping estimation. Section 3 introduces the methods of the proposed vision
processing algorithm. The experimental setup and results are included in Section 4. In Section 5,
conclusion and future works are presented.

2. Literature Review

2.1. Fruit Recognition

Fruit recognition is an essential task in the autonomous agricultural applications [8]. There are
many methods which have been studied in decades, including the traditional method [9–11] and deep
learning-based methods. Traditional methods apply hand-crafted features to encode the appearances
of objects, and use machine-learning to perform detection or segmentation on such extracted
features [12]. The performance of the traditional method is limited when a changing environment is
presented [13]. By comparison, deep learning shows much better accuracy and robustness in such
conditions [14]. Deep learning-based methods can be divided into two classes, two-stage detection
and one-stage detection [15]. Two-stage detection divides the detection into region proposal and
classification [16,17], while one-stage methods combines these two-steps [18,19]. Both two-stage and
one-stage detection network have been widely studied in autonomous harvesting [20]. Bargoti
and Underwood [21] applied Faster-RCNN to perform multi-classes fruit detection in orchard
environments. Yu et al. [22] applied Mask-RCNN [23] to perform strawberry detection and instance
segmentation in the non-structural environment. Liu et al. [24] developed a modified Faster-RCNN for
kiwi fruit detection, which combined the information from RGB and NIR images and achieved accurate
performance. Tian et al. [25] applied an improved Dense-YOLO to monitor apple growth in different
stages. Koirala et al. [26] applied a light-weight YOLO-V2 model named as ’Mongo-YOLO’ to perform
fruit load estimation. Kang et al. [27] introduced a novel multi-function neural network DasNet-v1
based on YOLO for real-time detection and semantic segmentation for both apples and branches
in orchard environments. The detection and segmentation network with ResNet-101 backbone
outperformed the corresponding task, while the network model with lightweight backbone also
showed the best computation efficiency in the results.In the ensuing work [28], an enhanced deep
neural network DasNet-v2 was developed, which achieved detection and instance segmentation on
fruit and semantic segmentation on branches. The DasNet-v2 outperformed the previous neural
network on the precision of apple detection and accuracy of semantic segmentation of branches and
also applied instance segmentation on fruit as a new feature.

2.2. Grasping Estimation

Grasping estimation is one of the key challenges in the robotic grasp [29]. Grasping estimation
methods can be divided into two categories: traditional methods and deep learning-based methods [30].
Traditional methods extract features or key points to estimate the object pose [31]. For the unknown
objects, some assumptions have to be made, such as grasp the object along the principle axis [29].
The performance of the traditional methods is limited as noise or partial lose of point cloud can
affect the accuracy and robustness of the estimation [32]. Some early deep learning-based methods
recast the grasping estimation as an object detection task, which is to predict grasp pose from the
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2D images [33]. Recently, with the development of the deep learning architecture for 3D point cloud
processing [7,34], more studies focus on grasping estimation by using the 3D data, such as Grasp Pose
Detection (GPD) [35] and PointNet GPD [36]. In the agricultural cases, most of works [37–39] pick fruit
by translating towards the targets, which cannot secure the success rate of harvesting in unstructured
environments. Lehnert et al. [40] applied a super-ellipsoid model to fit the sweep pepper and estimated
the grasp pose by matching between the pre-defined shape and fruit. In their following work [41],
they applied a utility function to find multiple candidate grasp poses during the harvesting, which can
improve success rate but is not operational efficient. In this work, we combined latest development
in both deep learning detection and grasp estimation, to demonstrate an accurate and robust vision
method for fruit recognition and grasp estimation in a well-developed robotic harvesting system.

3. Methods and Materials

3.1. System Configuration

The developed robotic harvesting system includes a mobile moving vehicle base, an industrial
robotic manipulator (Universal Robot UR5), a customised soft end-effector (includes a Intel D-435
RGBD vision camera), and a central control computer (DELL-INSPIRATION with an NVIDIA
GTX-1070 GPU and Intel i7-6700 CPU), as shown in Figure 1. The control system is constructed based on
Robot Operation System (ROS) in kinetic version [42] on the Linux Ubuntu 16.04. The communication
between RGB-D camera, UR5 and computer is performed by RealSense communication package and
universal-robot-ROS MoveIt! [43] with TackIK inverse kinematic solver [44].

Figure 1. The developed robotic harvesting system that consists of mobile base, manipulator, vision
camera, end-effector.

The mobile base shown in Figure 1 is a customised moving vehicle, which mainly consists
of a central control unit, four wheels with motor driven, 24 V power supply, and vehicle frames.
The mobile base is designed to navigate to the desired location together with the whole robotic system.
The universal robot (UR5) is an industrial standard robotic manipulator with 6 degree-of-freedoms.
The manipulator helps perform the path planning together with the end-effector. Our end-effector
adopted the design principle of the soft robotic grippers that have been explored significantly for
robotic grasping application recently [45,46]. The proposed end-effector combines the compliant
mechanism and the safe contact as a result of the fin-ray design and low elastic modulus material
m4601, respectively. As for the vision subsystem, it mainly includes the RealSense RGB-D camera,
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which is used to capture the fruit images for further data processing. The processed data of fruit
position and orientation will be used for the control of the robotic harvesting system.

The complete working process of the proposed robotic harvesting system is detailed in Figure 2.

Figure 2. The working principle of the proposed apple harvesting robot.

Software Design

Our vision method includes two steps: fruit recognition and grasping estimation. In the first step,
vision algorithm performs detection and instance segmentation on input RGB images. The predicted
mask of each fruit is then combined with depth image to form the input point clouds of the PointNet.
In the second step, the PointNet will predict the shape, size and approaching pose of each fruit by
using the output from the first step. The methods of fruit detection and PointNet-based grasping
estimation are presented in Sections 3.2 and 3.3, respectively.

3.2. Fruit Recognition

3.2.1. Network Architecture

An improved light-weight one-stage instance segmentation network ’Mobile-DasNet’ is
developed in this research work, to perform fruit recognition, as shown in Figure 3. Compared
to the previous network, DasNet [28], which applies resnet-50 [47] as the backbone and a three
levels Feature Pyramid Network (FPN), the proposed Mobile-DasNet applies a light-weigth backbone
’MobileNet’ [48] and a two-levels FPN (receive feature maps from C4, and C5 levels) to improve its
computational efficiency. The proposed Mobile-DasNet achieves a weight size of 20.5 MB and the
average running speed of 63 FPS on an NVIDIA GTX-1070 GPU.

On each level of the FPN, an instance segmentation branch and an Atrous Spatial Pyramid Pooling
(ASPP) block [49] is used. ASPP uses dilation convolution with different rates (e.g., 1, 2, 4) to process
multiple-scale features. The instance segmentation branch includes two branches, mask segmentation
branch and detection branch. Detection branch predicts a bounding box, confidence score, and class
for a object within the grid. We use one preset anchor bounding box on each level of FPN, which are
50 × 50 and 120 × 120 on C4 and C5 levels, respectively. Binary mask segmentation branch follows
the architecture design developed in Single Pixel Reconstruction Network (SPRNet) [50], which can
predict a binary mask for objects from a single pixel within the feature maps. Mobile-DasNet also has a
semantic segmentation branch for semantic segmentation of branch, which is not applied in this work.
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Figure 3. Network architecture of the Mobile-DasNet, which applies a light-weight backbone and a
two-levels FPN to improve the computational efficiency.

3.2.2. Network Training

There are 1200 images collected from different conditions to increase the diversity of the training
data. For example, different time as day and night; different illumination as artificial lights, natural
light, shadows, front lighting, side lighting and back lighting; different backgrounds as from the farms
in Qingdao, China and Melbourne, Australia. These images are labelled by using LabelImage [51].
We use 600 images to train the network, 200 images as the validation set, and 400 images as the test set.
Multiple image augmentations are introduced in training, including scaling (0.8–1.2), flip (horizontal
only), rotation (±10◦), and randomly adjustment on saturation (0.8–1.2) and brightness (0.8–1.2). Focal
loss [52] and Adam-optimiser are used, and training resolution and batch size are 416 × 416 and
32, respectively. We first train network with learning rate 0.001 for 80 epochs and the train another
40 epochs with learning rate 0.0001.

3.3. Grasping Estimation

An apple is modelled as a sphere in this work. In the natural environments, apples can be blocked
from the view-angle of the RGB-D camera. Therefore, the visible part of the apple from the current
view-angle of the RGB-D camera indicates the proper approaching pose for robotic arm to grasp target.
We formulate the grasping estimation as an object pose estimation task, which is used in the Frustum
PointNets [53]. We select vector from the geometric centre of the apple to visible surface centre of this
apple from current view angle as approaching pose, as shown in Figure 4. Our method can take only
1-viewed point cloud as input and estimates the approaching pose, which significantly accelerate the
operation speed.
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Figure 4. The proposed grasping estimation select vector from the fruit centre to surface centre of the
visible part as grasp orientation.

3.3.1. Pose Representation

The pose of an object in 3D space has 6 Degrees of Freedom (DoF), includes three positions
(x, y, and z), and three rotations (θ, φ, and ψ, along Z-axis, Y-axis, and X-axis, respectively). We apply
Euler-ZYX angle to represent the orientation of the grasp pose, as shown in Figure 5. The value
of ψ is set to be zero as we assume that the fruit will not rotate along its stalk direction (X-axis).
This assumption is made because apples are presented in a spherical shape. The grasp pose (GP) of an
apple can be formulated as follow:

TGP =


cos θ cos φ − sin θ cos θ sin φ x
sin θ cos φ cos θ sin θ sin φ y
− sin φ 0 cos φ z

0 0 0 1

 (1)

Therefore, a parameter list [x, y, z, θ, φ] is used to represent the grasp pose of the fruit.

Figure 5. Euler-ZYX angle is applied to represent the orientation of the grasp pose.

3.3.2. Pose Annotation

Grasping estimation block uses point clouds as the input and predicts the 3D Oriented Bounding
Box (3D-OBB), oriented in grasp orientation, for each fruit. Each 3D-OBB includes six parameters,
which are x, y, z, r, θ, φ. The position (x, y, z) represents the offsets on X-, Y-, Z-axis from the centre of
point clouds to the centre of the apple, respectively. The parameter r represents the radius of the apple,
as the apples is modelled as sphere. The length, width, and height can be derivated by radius. θ and φ

represent the grasp pose of the fruit, as described in Section 3.3.1.
Since the values of the parameters x, y, z, and r may have large variances when dealing with

prediction in different situations, a scale parameters S is introduced. We apply S to represent the mean
scale (radius) of the apple, which equals 30 cm. The parameters x, y, z, and r are divided by S to obtain
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the united offset and radius (xu, yu, zu, ru). After remapping, the range of the xu, yu, zu is reduced to
[−∞, ∞], and the range of ru are in [0, ∞]. To keep the grasp pose in the range of motion of the robotic
arm, the θ and φ are limited in the range of [− 1

4 π, 1
4 π]. We divide the θ and φ by 1

4 π to map the range
of angle into the range of [−1,1]. The united θ and φ are denoted as θu and φu. In total, we have six
united parameters to predict the 3D-OBB for each fruit, which are [xu, yu, zu, ru, θu, φu]. Among these
parameters, [xu, yu, zu, θu, φu] represent the grasp pose of the fruit, ru controls the shape of 3D-OBB.

PointNet [7] is a deep neural network architecture which can perform classification, segmentation,
or other tasks on point clouds. PointNet uses raw point clouds of the object as input and does not
require any pre-processing. The architecture of the PointNet is shown in Figure 6. PointNet uses an n
× 3 (n is the number of points) unordered point clouds as input. Firstly, PointNet applies convolution
operations to extract a multiple dimensional feature vector on each point. Then, a symmetric function
is used to extract the features of the point clouds on each dimension of the feature vector.

f (x1, x2, ..., xn) = g(h(x1), h(x2), ..., h(xn)) (2)

where g is a symmetric function and f is the extracted features from the set. PointNet applies
max-pooling as the symmetric function. So that it can learn numbers of features from point set and
invariant to input permutation. The generated feature vectors are further processed by Multi-Layer
Perception (MLP) (fully connected layer in PointNet), to perform classification of the input point clouds.

Figure 6. Network architecture of the PointNet applied in grasping estimation.

3.3.3. PointNet Architecture

In this work, PointNet predicts six parameters [xu, yu, zu, ru, θu, φu]. The range of the parameters
xu, yu, and zu are in [-∞, ∞], hence we do not applies an activation function on these three parameters.
The range of the ru are from 0 to ∞, the exponential function is used as activation. The range of the θu,
φu are from −1 to 1, hence a tanh activation function is applied. The PointNet output before activation
are denoted as [xp, yp, zp, rp, θp, φp]. Therefore, we have xu

yu

zu

 =

 xp

yp

zp

 ,

 ru

θu

φu

 =

 exp(rp)

tanh(θp)

tanh(φp)

 (3)

The output of the PointNet can be mapped back to their original value by following the description
in Section 3.3.2.

3.3.4. Network Training

The data labelling is performed on our customised labelling tool. We collect 570 samples (320 in
lab, 250 in orchards). We use 300 samples as training set, 50 samples as validation set, and 220 samples
as test set. Scaling (0.8 to 1.2), translation (−15 cm to 15 cm), rotation (−10◦ to 10◦ on θ and φ), Gaussian
noise, and outliers are used in training. The squared error is used as the training loss. The learning
rate and decay rate are 0.0001, 0.6/epoch, respectively. We train the network for 100 epochs with batch
size equals 64.
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4. Experiment and Discussion

4.1. Experiment Setup

The developed vision algorithm was evaluated using both image data and the robotic harvesting
experiment in indoor and outdoor environments. We used an Intel RGB-D camera on the robotic arm to
detect and locate the spatial location of apples (in instance masks in 2D images or 3D point clouds). As
the RGB-D camera has been fixed on the robotic arm, we can map the detected objects from the RGB-D
camera coordinate to the robotic arm coordinate. In this way, we obtain the position of the target in
agriculture robot coordinate. The distance between robotic arm and apples was measured by using the
RGB-D camera. The Grasping module only estimates the centre and grasping pose from the obtained
3D point clouds, to accurately guide the robotic harvesting. In the first experiment, we tested the
developed method on 110 images respectively in the laboratory environment and orchard environment.
In the robotic harvesting experiment, we applied the developed harvesting system to perform the
apple harvesting on a real apple trees in both lab and outdoor environments. We applied IoU to
evaluate the accuracy of 3D localisation and shape estimation of the fruit. 3D Axis Aligned Bounding
Boxes (3D-AABB) was used to simplify the IoU calculation of 3D bounding box [54], which was
denoted as IoU3D in this paper. We set 0.75 (thresIoU) as the threshold value for IoU3D to determine
the accuracy of fruit shape prediction. In terms of the evaluation of grasping estimation, we applied
Mean Squared Error (MSE) between the predicted value and ground truth value of approaching pose,
as it can intuitively show the accuracy of predicted results.

4.2. Image Data Experiments

In this experiment, we compared the developed deep learning-based method with other two
traditional methods, which were sphere Random Sample Consensus (sphere-RANSAC) [55] and
sphere Hough Transform (sphere-HT) [56]. Both RANSAC and HT algorithms took point clouds as
input and generated the prediction of the fruit shape. This comparison was conducted on RGB-D
images collected from both laboratory and orchard environments. In the experiment, we also included
condition of dense clutter, to evaluate the performance of algorithm when fruit are close to each other.

4.2.1. Experiments in Laboratory Environment

The experimental results of different methods in several conditions are shown in Table 1.
Experimental results showed that PointNet-based method significantly increases the localisation
accuracy (0.94 in normal condition) of the 3D bounding box, which was much higher the accuracy
of the RANSAC and HT algorithms (0.82 and 0.81 in normal conditions, respectively). To evaluate
the robustness of different methods when dealing with noisy and outlier conditions, we artificially
added Gaussian noise (mean equals 0, variance equals 2cm) and outlier (1% to 5% in the total number
of point clouds) into the point clouds, which are shown in Figure 7. Three methods achieved similar
performance on robustness when dealing with outliers condition. Both RANSAC and HT applied
vote framework to estimate the primitives of the shape, which was robust to the outlier. However,
PointNet-based methods showed much better robustness when dealing with noisy data, which only
showed a 3% drop on results from the normal condition, while both RANSAC and HT showed
significant decrease of accuracy compared to the PointNet. In the dense clutter case, PointNet showed
better accuracy compared to other two methods. Experimental results suggested that PointNet-based
method improves accuracy and robustness of grasping estimation compared to the traditional methods.
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Table 1. Accuracy of the fruit shape estimation by using PointNet, RANSAC, and HT in different tests.

Normal Noise Outlier Dense Clutter Noise+Outlier+Dense Clutter

PointNet 0.94 0.92 0.93 0.91 0.89
RANSAC 0.82 0.71 0.81 0.74 0.61

HT 0.81 0.67 0.79 0.73 0.63

Figure 7. Pointset under different conditions, green sphere is the ground truth of the fruit shape.

In the evaluation of approaching pose prediction, PointNet-based method also showed accurate
performance in the experimental results, as shown in Table 2. The MSE between predicted grasp pose
and ground truth grasp pose was 4.2◦. Experimental results showed that PointNet grasping estimation
can accurately and robustly determine the grasp orientation of the objects in noisy, outlier presented,
and dense clutter conditions.

Table 2. Mean error of grasp orientation estimation by using PointNet in different tests.

Normal Noise Outlier Dense Clutter Noise+Outlier+Dense Clutter

PointNet 4.2◦ 5.4◦ 4.6◦ 6.8◦ 7.5◦

4.2.2. Experiments in Orchards Environment

In this experiment, we performed the fruit recognition and PointNet grasping estimation on
the collected RGB-D images from apple orchards. F1 score and IoU were used as the evaluation
metric on fruit detection and segmentation, respectively. Tables 3 and 4 showed the performance of
the DasNet/Mobile-DasNet and PointNet grasping estimation. It can be seen this Mobile-DasNet
achieves much faster running speed compared with DasNet [28], with a value of 63 FPS compared to
25 FPS. Experimental results showed that both DasNet and Mobile-DasNet can perform well on fruit
recognition in orchard environment (as shown in Figure 8).

Table 3. Performance of fruit recognition in orchard environments.

F1 Score mAP50 Recall Accuracy IoUmask Running Speed

DasNet 0.884 0.905 0.88 0.91 0.873 25 FPS

Mobile-DasNet 0.851 0.863 0.826 0.9 0.82 63 FPS

Table 4. Evaluation on grasping estimation by using PointNet in different tests in the orchard scenario.

PointNet RANSAC HT

Accuracy 0.88 0.76 0.78
Grasp Orientation 6.6◦ - -
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Figure 8. Fruit recognition and grasping estimation experiments in orchard scenario.

Table 4 showed the performance comparison between PointNet grasping estimation, RANSAC,
and HT. In the orchard environments, grasping estimation was more challenging compared to the
indoor environments. In this condition, the performance of the RANSAC and HT showed the
significant decrease from the indoor experiment while PointNet grasping estimation showed better
robustness. The IoU3D achieved by PointNet grasping estimation, RANSAC, and HT in orchard
scenario were 0.88, 0.76, and 0.78, respectively. In terms of the grasp orientation estimation, PointNet
grasping estimations showed robust performance in dealing with flawed sensory data. The mean error
of orientation estimation by using PointNet grasping estimation was 6.6◦, which was still within the
accepted range of orientation error. The experimental results of grasping estimation by using PointNet
grasping estimation in orchard scenario are shown in Figure 8.

4.3. Experiments of Robotic Harvesting

The developed robotic harvesting system was validated in both indoor laboratory and outdoor
environments, which was shown in Figure 9. We randomly arranged number, distribution, and
location of apples on the apple tree to evaluate the success rate of the robotic harvesting. The robotic
grasping included four steps: sensing, verification, grasping, and collection, as shown in Figure 10.
We tested and compared two different harvesting strategies, which were the naive harvesting method
and Pose prediction enabled harvesting method, as shown in Table 5. Naive harvesting method only
translated to detach fruit while not considering the grasping pose of each fruit.

Figure 9. Experiment setup in (a,b) indoor laboratory and (c) outdoor environments.
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Figure 10. The process for robotic harvesting experiment in outdoor environment.

Table 5. Experimental results on robotic grasp by using PointNet grasping estimation in
Laboratory scenario.

Harvesting Method Pose Prediction Success Rate Harvesting Success Rate Re-Attempt Times

Indoor Naive - 0.73 1.5

Indoor Pose prediction enabled 0.88 0.85 1.2

Outdoor Naive - 0.72 1.6

Outdoor Pose prediction enabled 0.83 0.8 1.3

From the experimental results in Table 5, the accuracy of grasping pose estimation was lower
than the performance achieved on the RGB-D image data, in both indoor and outdoor conditions.
We found that this performance reduction was due to the fluctuation of end-effector during the
robotic arm moving, which may generate flawed sensory data. Therefore, we added 0.5 s delay after
each motion of robotic arm to ensure the quality of input sensory data. There were several reasons
leading to unsuccessful grasping, which included loose grasp and dense clutter. In the first conditions,
our customised three-fingers end-effector may lose contact with target fruit with one or two fingers
(contacting with nearby branches instead or receiving not accurate grasping pose), which can cause
the target to slip off from the gripper and lead to the failure, while under dense clutter conditions,
the gripper can easily touch adjacent fruit and cause these neighbour fruit to drop. Pose prediction
enabled harvesting significantly increased the success rate of robotic harvesting and reduced the
re-attempt times in both indoor and outdoor environments, compared to the naive harvesting method.
The cycle time of each attempts for naive harvesting method and Pose prediction enabled harvesting
method was 4 s and 6.5 s, respectively. Overall, our developed vision method showed a promising
performance in improving the accuracy and robustness of robotic harvesting system, which was
validated in both indoor and outdoor environments.

4.4. Discussion

In the image data experiments, the comparison between the proposed deep learning-based
algorithm, PointNet, and the traditional algorithms such as RANSAC and HT, indicated that the
proposed PointNet demonstrated much superior robustness when processing the data with noise.
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This difference is because the noise will influence the accuracy of vote framework to a large extent.
Our method also showed the best accuracy when identifying the fruit shape estimation in dense clutter
condition among all three methods. Besides, the experiment results indicated that PointNet predicted
the approaching pose while grasping accurately and robustly in the complex conditions with noise,
outlier and dense clutter. The experiment validated that both DasNet and Mobile-DasNet can perform
well on fruit recognition and instance segmentation in orchard environments. The proposed one-stage
detector for fruit recognition shows its accuracy and computational efficiency. This light-weight
Mobile-DasNet achieved 0.851, 0.826, 0.9 on F1 score, recall and accuracy on fruit detection and an
accuracy of 0.82 on instance segmentation. With this one-stage detector, the detection and segmentation
tasks of the fruit are accelerated, which shortens the average cycle time for fruit harvesting. As for the
possible improvement of the proposed methods, the function of proposed PointNet and Mobile-DasNet
can be potentially combined into one stage. With the fruit detection, segmentation together with
fruit modelling, grasping estimation achieved in one stage, the real time performance of the robotic
harvesting system is expected to be improved. The major reason leading to the failed estimation of
grasping pose was the defect of sensory data, as shown in Figure 11, which came from the test data
set. While for the apple highlighted in blue boundary box in Figure 11a, as the generation of its point
cloud failed in the first place, as shown in Figure 11b, the grasping estimation did not proceed and
was treated as a failure grasping estimation. In this case, there was not an ideal value in the grasping
estimation as there was not ground truth. In this condition, PointNet grasping estimation will always
tend to predict a sphere with small value of radius, which can be easily filtered as outliers during
the implementation.

Figure 11. Failure grasping estimation in orchard scenario.

As for the robotic harvesting, our proposed harvesting method outperformed the naive harvesting
method not only in the higher harvesting success rate, but also in the reduced re-attempt times,
while the former method was enabled by pose estimation and the latter can only translate to the
detected fruit. There were several reasons leading to unsuccessful grasping, which included loose
grasp and dense clutter. In the first conditions, our customised three-fingers end-effector may lose
contact with target fruit with one or two fingers (contacting with nearby branches instead or receiving
not accurate grasping pose), which can cause the target to slip off from the gripper and lead to failure.
Under dense clutter conditions, the gripper can easily touch adjacent fruit and cause these neighbour
fruit to drop. Pose prediction enabled harvesting significantly increased the success rate of robotic
harvesting and reduced the re-attempt times in both indoor and outdoor environments, compared to
the naive harvesting method.

5. Conclusions and Future Work

In this work, a fully deep learning neural network-based fruit recognition and grasping
estimation method was proposed and experimentally validated. The proposed method included
a multi-functional network that can perform fruit detection and instance segmentation at one-stage,
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and a PointNet neural network to process the point cloud of the fruit and grasping estimation to
determine the proper grasp pose for each fruit. This grasping pose is important when performing
autonomous fruit harvesting. The proposed multi-function fruit recognition network and PointNet
grasping estimation network were trained and validated on RGB-D images taken from both laboratory
and orchard environments. Experimental results showed that the proposed method could accurately
perform visual perception and grasping estimation. The proposed Mobile-DasNet achieved 0.851,
0.826, 0.9 on F1 score, recall and accuracy on fruit detection and an accuracy of 0.82 on instance
segmentation. As for the grasping estimation. The IoU3D achieved by PointNet grasping estimation,
RANSAC, and HT algorithms in orchard scenario were 0.88, 0.76, and 0.78, respectively. It can be
seen that the PointNet outperformed the other two traditional algorithms. Our developed robotic
harvesting system was also tested in the indoor and outdoor environments, which showed promising
performance in both accuracy, robustness, and operational speed. Overall, the developed robotic
harvesting system achieves 0.8 on harvesting success rate and cycle time is 6.5 s. In the future, we will
further optimise the vision algorithm in terms of accuracy, robustness, and speed. Moreover, the soft
robotic finger based end-effector can be further optimised to improve its success rate and efficiency of
grasping under different conditions.
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