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The space of genotypes is a 
network of networks: implications 
for evolutionary and extinction 
dynamics
Pablo Yubero1, Susanna Manrubia1,2 & Jacobo Aguirre1,2

The forcing that environmental variation exerts on populations causes continuous changes with only 
two possible evolutionary outcomes: adaptation or extinction. Here we address this topic by studying 
the transient dynamics of populations on complex fitness landscapes. There are three important 
features of realistic landscapes of relevance in the evolutionary process: fitness landscapes are rough 
but correlated, their fitness values depend on the current environment, and many (often most) 
genotypes do not yield viable phenotypes. We capture these properties by defining time-varying, holey, 
NK fitness landscapes. We show that the structure of the space of genotypes so generated is that of 
a network of networks: in a sufficiently holey landscape, populations are temporarily stuck in local 
networks of genotypes. Sudden jumps to neighbouring networks through narrow adaptive pathways 
(connector links) are possible, though strong enough local trapping may also cause decays in population 
growth and eventual extinction. A combination of analytical and numerical techniques to characterize 
complex networks and population dynamics on such networks permits to derive several quantitative 
relationships between the topology of the space of genotypes and the fate of evolving populations.

The time and mode of response of natural systems to varying environments is a highly challenging subject. 
Despite the significant progress made in the last decades, many open relevant questions remain. Whole eco-
systems are sometimes found to respond smoothly to weak environmental changes, while in other cases critical 
transitions between states, occasionally causing the extinction of a large number of species, are observed1–3. The 
phenomenology of those transitions was first characterized in theoretical models, and subsequently observed in 
natural systems. Prominent examples are the desertification of the Sahara4, the loss of transparency in shallow 
lakes5 or the dynamics of woodlands in Tanzania6. Also, a class of tipping points, where recovery becomes not 
viable or economically exorbitant has been characterized in ecosystems7. These examples notwithstanding, a 
thorough study of such situations is notoriously difficult, as they typically involve different time scales, several 
biological organization levels, a variety of non-linear interactions8 and a networked structure which commonly 
entails a whole new phenomenology.

The study of the evolution and adaptation of heterogeneous populations (take as examples viruses or bacteria) 
in varying environments has recently profited from the use of tools associated to the analysis of dynamical pro-
cesses on complex networks9,10. While the initial emphasis of the application of network theory to natural systems 
focused on the properties of single networks, recently the interest has turned to understanding how real networks 
interact with other networks11, giving rise to the concept of network of networks or, in a more general context, of 
multilayer networks12,13. For instance, relevant phenomena such as synchronization14,15, cooperation16–18, robust-
ness19,20, transport21 or epidemic spreading22–24 behave differently when their dynamics occur on a single network 
or on a network of networks. Furthermore, the dynamics on such architectures often admit a description in terms 
of competitive scenarios where each network of the ensemble can be depicted as an independent agent struggling 
with the rest for a certain resource, such as food, wealth, customers or innovation. In this context, it was recently 
proved that the outcome of such confrontations and the time needed by the winner to prevail drastically depend 
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not only on the internal structure of the competing networks, but also on the connector links, that is, on the struc-
ture of the pathways that connect networks18,25.

It was long ago suggested that a space of sequences can be mapped into a graph representation where geno-
types are the nodes of the graph and links represent their mutual accessibility through mutations26, a structure 
with important implications in population dynamics27–29. Though several models have studied neutral net-
works (the ensemble of all genotypes yielding the same phenotype) in genotype-phenotype maps and described 
punctuated dynamics of adaptation at the phenotypic level27,30,31, we here take a more generic viewpoint where 
phenotypes need not be explicitly defined and, instead, a fitness value is associated to each genotype. When a 
fitness-landscape-like structure is linked to time-varying environments, it has been shown that sudden transitions 
at the genomic scale are likely a generic property of populations and, in analogy to ecosystems, early warning 
signals that forecast the proximity of such tipping points can be defined32. However, the explanation of why these 
critical genotype transitions occur is incomplete, likely due, as it has previously happened in other systems, to 
the complexity of the dynamics and interactions unfolding in the space of genotypes, and to an as yet only partial 
understanding of the overall topology of the latter.

In this work, and as sketched in Fig. 1, we face two open questions: Can a generic space of genotypes with 
suitably defined fitness values be described as a network of networks, that is, as a set of networks interconnected 
through a limited number of connector links? And if this is the case, which are the implications of this structure 
for population dynamics? In order to address these questions, we first introduce a procedure to construct generic 
networks mimicking the space of genotypes with an associated fitness landscape. We will use the NK model33, 
which yields landscapes of tunable ruggedness with properties typical of natural landscapes such as epistatic 
interactions or correlations, multiple peaks, and local optima34. A time-varying landscape is generated by suitably 
interpolating between two NK landscapes. Finally, a variable number of (correlated) genotypes is eliminated so 
as to recreate the existence of genotypes which do not map onto viable phenotypes. The evolution of populations 
on such landscapes is studied in various scenarios, in particular for finite and infinite populations affected by dif-
ferent rates of environmental change. We show by a combination of numerical and analytical results that generic 
genotype spaces do have a structure of a network of networks. A comparison of the results here obtained with the 
phenomenology derived from competing networks25,35 supports that the space of genotypes behaves as a set of 
communities connected through a limited number of pathways that are crucial for the fate of populations.

Figure 1.  Can the space of genotypes be viewed as a network of networks in competition for population? (a) 
Sketch, low-dimensional representation of a genotype network in which nodes are different genotypes and two 
nodes are linked if they are mutually accessible through mutations. Nodes in grey have low fitness and are 
considered non-viable (left), and thus, just attending to connectivity, this part of the network can be analysed as 
three interconnected networks (right). (b,c) Genotype space of sequences of length N 8=  and an alphabet of 
A 2=  letters with fitness given by the NK model33. Node sizes are proportional to the sequence fitness in (b) 
and to its population at the mutation-selection equilibrium in (c). Two communities are identified through 
Newman’s algorithm36. Red and blue colours define the community to which each node belongs to. While in the 
fitness network (b) there is no evidence of the network-of-networks nature of the space of genotypes, the 
community structure becomes visible when the populations are plotted (c).
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Methods
The space of genotypes and the NK model.  Construction of a holey NK fitness landscape.  The space of 
genotypes is formed by all possible sequences of length N, with each monomer taken from an alphabet of A let-
ters; the resulting network is thus composed of AN  nodes. This regular network can be represented by its adja-
cency matrix G, with G G 1ij ji= =  only if nodes i and j are at a Hamming distance of 1, that is, if sequences i and 
j differ in only one letter; and =G 0ij  otherwise. Each sequence in the network has exactly N A( 1)−  neighbours, 
since each of its monomers can mutate to A 1−  letters (see section S1 of the Supplementary Information).

Kauffman’s NK model33 is a non-trivial map of genotypes onto fitness, with properties that have been exhaus-
tively analysed in the literature37–39. The model has two parameters: N  is the length of the sequences (i.e. the 
number of monomers–nucleotides, aminoacids, etc–per sequence), and = ... −K N0, , 1 is the number of mon-
omers that influence the fitness of any one given (it is analogous to the level of epistasis and determines the degree 
of correlation among sequences). If K 0=  the resulting landscape is a smooth Fujiyama landscape, with similar 
genomes having similar fitness values, while when K N 1= −  the resulting fitness landscape is uncorrelated, i.e. 
it is a random landscape with the corresponding many local maxima40.

The fitness value of the i-th sequence is given by

=
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where each monomer j in a sequence i is assigned a value sij that depends on its K  neighbouring monomers. These 
values sij are taken from a tensor of dimension × +N AK 1 whose elements are random numbers in the range [0, 1]. 
A numerical example with detailed computations of fitness values in the NK model is available in section S2 of the 
Supplementary Information.

It is known that many genotypes are lethal, that is, they do not map to any viable phenotype. Actually, simple 
models yield examples in a continuum that ranges from the fraction of non-viable genotypes tending to zero 
with the sequence length, as in RNA, to that same fraction approaching one as genotype size increases41. Other 
models yield intermediate values42. The existence of voids of lethal genotypes in genotype space can be effectively 
captured by introducing the effective fitness of a sequence

=







− >

≤
f

f f f f

f f

if ,

0 if , (2)
i

i l i l

i l

 



where fl is called the lethality coefficient. Sequences with =f 0i  represent those genotypes that do not code for 
viable phenotypes. Moreover, in the NK model sequences of zero effective fitness will tend to form clusters just 
like in realistic cases43 for any < −K N 1. Throughout this work, the fitness of a sequence is given by Eq. (2).

The fraction of genotypes with fitness equal to zero grows monotonically with fl, while the number of accessi-
ble genotypes with zero fitness (those neighbouring a viable genotype) have a maximum at intermediate values of 
fl (see section S3 of the Supplementary Information).

Time-varying fitness landscape.  Changes in the environment are frequently driven, showing a value that on 
average increases or decreases with time3,44. We implement this situation by generating an initial f ( )0



τ  and a final 
τf ( )f



 fitness landscape as described, where τ represents the state of the environment, and interpolating linearly 
between them. The corresponding state of fitness for each genome at environment τ , or equivalently the fitness 
landscape 



τf ( ) at time τ is thus defined as
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 is a parameter that weights the relative contribution of each landscape.

Model of the evolutionary dynamics of a population.  Infinite population.  Similar to32, we consider a 
population of sequences distributed in the previously defined genotype space. Each sequence produces r offspring 
per generation and has a mutation probability μ per genome and replication cycle. The parental population is 
substituted by its offspring. The transition matrix that represents this evolution with time is

r r
N A

M F FG(1 )
( 1)

,
(4)

μ μ
= − +

−

where G is the adjacency matrix that encodes the regular topology of the space of genomes, and the diagonal 
matrix F contains the fitness values of each node, δ=F fij i ij, where = …i j A, 1, , N . Note that the effective repro-
duction rate of genome i is rfi due to the fitness factor.

Each element n t( )i  of the population vector n t( ) contains the fraction of population corresponding to the i-th 
sequence at time t. The evolutionary process is therefore described by the dynamical equation

+ = .n t n tM( 1) ( ) (5) 

M is a primitive matrix29,45,46, a property that implies that it has a unique largest eigenvalue 1λ  with an associ-
ated eigenvector u1 whose components can be chosen so as to have positive entries. Regarding the evolutionary 
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dynamics of the system, these features imply that (i) n t( ) tends to u1
  as t grows, independently of the initial condi-

tion n(0)  (therefore the population distribution tends to a stable mutation-selection equilibrium at t → ∞ given 
by u1
 ); (ii) the growth rate of the population at equilibrium (and thus the effective replication rate of all sequences 

in the population) is 1λ ; (iii) the time to reach equilibrium verifies, up to first order, λ λ∝ −t ln( / )eq 1 2
1 where λ2 is 

the second largest eigenvalue of M29. We prevent populations from growing indefinitely by normalizing its total 
size at each iteration || || =n t( ) 1, so that in practice we monitor the dynamics of the relative abundance of each 
sequence.

Finally, note that there are two time scales defined in the model: t parametrizes the evolution of a population 
in a fixed fitness landscape, and τ is associated to environmental variation. In our simulations for infinite popula-
tions we take the limit → ∞t , so that we allow the population to reach equilibrium before the environment 
changes in a finite amount from τ to τ + 1.

Finite population.  The evolution with time t of a finite population is modelled as follows. The number of off-
spring of population at node i at time t is given by rf t n t( ) ( )i i  rounded to the nearest integer. Each new individual 
has a probability μ of mutating to one of its N A( 1)−  neighbour sequences (both viable and non-viable), and a 
probability μ−1  of remaining in the same sequence/node as the parental population. A final random 
Wright-Fisher sampling is applied to maintain the final population within the maximum population limit Nmax. 
Again, the parental population is replaced at each generation.

Since in the case of finite populations we are interested in characterizing the response of the population to 
environmental variation, and in particular in the likelihood of adaptation versus extinction, we allow for the 
population to replicate a finite number t G 1= ≥  of generations before the next environmental change is applied. 
G depends on each population, so the subjective perception of change is population- or species-dependent. The 
comparison of these finite time stochastic evolution of populations with the asymptotic, deterministic states 
obtained with infinite populations permits to quantitatively assess the effects of rapid environmental change and 
of fluctuations in the population size.

The initial distribution of the population at τ = 0 is taken as the mutation-selection equilibrium in the initial 
environment.

Analytic solution of evolutionary dynamics in a network of networks.  Node centrality stands for 
the node importance in complex networks theory and can be quantified through different measures. In this work 
we will use eigenvector centrality, which is given by the entries of the leading eigenvector u1

  of the transition 
matrix M47. Note that u( ) 0i1 >  for all nodes, and therefore the node centrality is always a positive quantity.

By definition, a network of networks is formed by two or more networks connected through a limited number 
of connector links. We name connector nodes those nodes of A and B connected through connector links, and P 
is the matrix specifying the latter, that is = =P P 1ij ji  for links between connector nodes and =P 0ij  otherwise. 
The first eigenvalue 1λ  and eigenvector u1 of the total network formed by networks A and B interconnected, can be 
expressed as a function of quantities that are only dependent on the properties of isolated networks A and B. 
Without loss of generality we take A B

1 1λ λ> . Developing in powers of the weight ε of the connector links, the 
leading terms are

u u u u uP ( ) ,
(6)
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where u A
1 , A

1λ  and u B
1 , B

1λ  are the first eigenvector and first eigenvalue of networks A and B isolated. A full math-
ematical derivation of those and related quantities can be found in25,35.

The centrality of network A (B) is the sum of the centralities of all nodes in network A (B) when u 11


|| || = . The 
above equations show that when A is connected to B, centrality becomes redistributed proportionally to the term 
u uPA B

1 1
  . This term is a relevant quantity that we call the strength of connections S( )c  which can be easily calculated 
noting that

   ∑=u u u uP ( ) ( ) ,
(8)

A B

cl

A
i

B
j1 1 1 1

where cl{ } is the set of connector links and the sum runs over the products of the eigenvector centralities of con-
nector nodes of A and B, measured when the networks are disconnected.

Finally, it was proved in25 that whenever two networks are connected through nodes with little centrality (the 
so-called peripheral nodes), implying  u uP 0A B

1 1 ~ , almost all centrality remains in the network with the largest λ1, 
and even smooth changes in the properties of the networks can yield sharp and drastic centrality redistributions 
from one network to the other (i.e. genotypic shifts in the context of populations evolving in the space of geno-
types, where centrality represents the population at the mutation-selection equilibrium). Furthermore, the time 
to equilibrium of these dynamical processes significantly increases close to the critical transition. On the contrary, 
networks connected through connector nodes with large centrality (or central nodes) yield large values of u uPA B

1 1
   

and spread the centrality over both networks A and B. In this case, smooth changes in the properties of the 
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networks give rise to smooth centrality (or population) redistributions between both networks, and equilibrium 
is reached fast even in the transition.

Community detection algorithm.  It seems intuitively plausible that a network-of-networks structure can 
be pinpointed through community detection algorithms36,48,49. Most of these algorithms are based on the maxi-
mization of the modularity parameter = ∑Q B s s

m i j ij i j
1
4 , . The modularity matrix B has elements = −B Gij ij

k k
m2
i j , 

where Gij are the entries of the adjacency matrix of the network, ki is the number of nodes to which the i-th node 
is linked (its degree), m is the total number of links and =s 1i  or =−s 1i  depending on the community to which 
node i belongs to. It is straightforward to demonstrate that Q increases with the number of links within commu-
nities, and decreases with the number of links between communities (connector links in our case). Indeed, Q is a 
measure of the goodness of a partition48.

The maximization of Q is an NP-hard problem, so approximate methods are commonly used50,51. Here we have 
chosen a method based on the spectral decomposition of the modularity matrix B36, originally implemented for 
non-weighted undirected networks. The method rewrites the modularity parameter as  Q s sB

m
T1

4
= = 

v s( )i
A

i i1
2N
β∑ ⋅=

  , such that Q can be computed as a function of B’s eigenvalues βi and its eigenvectors vi
 . A first 

approximation to the maximum value of Q is to take the partition vector s to be parallel to the eigenvector v1 with 
largest eigenvalue. However, the entries of s  can only take the values 1± , therefore s 1k =  if >v 0k1  and s 1k = −  if 
v 0k1 <  where v k1  is the k-th entry of the leading eigenvector v1

  of B.
Most methods for community detection only focus on the topology of the network, and lack the important 

biological information related to population dynamics, a quantity affected by topology and by the fitness land-
scape associated to the network52. For this reason, it is convenient to base the partitioning on the topology and on 
the set of fitness values fi. For simplicity, we replace the adjacency matrix in the definition of Q by the symmetric 
weight matrix W, of elements

= .W G f f (9)ij ij i j

In addition, node degrees ki and the total number of links m are replaced by their typical generalization to 
weighted matrices Wk kj∑  and W /2m n mn,∑  respectively53. The modularity matrix B of a weighted network becomes 

= −
∑ ∑

∑
B Wij ij

W W
W

( )( )k ik l lj

m n mn,
.

Note that other definitions of the weight matrix W that also take into account both the topology and the fitness 
landscape could have been used. In particular, the extension to weighted and directed networks of the method for 
the spectral decomposition of the modularity matrix53,54 gives rise to numerical results almost indistinguishable 
from those obtained with Eq. (9) (see section S4 of the Supplementary Information).

Definition of relevant quantities.  Beyond the above-defined strength of connections =
 S u uPc
A B

1 1 , which 
is a measure of the underlying network-of-networks structure, we will characterize environmental changes and 
their effects on populations through three additional quantities.

Total environmental variability f( )
f0

∆ τ τ→
 quantifies the difference between the initial 
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Values of f 0
f0

∆ τ τ→ 

 mean that the two vectors 


τf ( )0  and 


f ( )fτ  are very similar, so a population evolving 
from one to another is expected to evolve rather smoothly. The opposite occurs with 

f 1
f0

∆ τ τ→
.

In a similar vein we define the τ− population variability u( )
0

∆ τ τ→  as the difference between the initial popula-
tion vector τu( )0

  and its value u( )τ  at environment τ,

τ τ
τ τ

∆ = −
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|| || || ||
.τ τu u u

u u
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Maximum genotypic response u( )1∆ τ τ→ +  is the largest difference between two values of ∆ τ τ→u
0

 in consecutive 
landscapes,

∆ = ∆ − ∆ ∆ ∈ .τ τ τ τ τ τ τ τ→ + → + → → +( )u u u u: max , [0, 1] (12)1 1 10 0

This quantity measures whether the population changes smoothly ∆ τ τ→ + u 01  or abruptly u 11∆ τ τ→ + 
 

(i.e. it suffers a genotypic shift) under an environmental change of size τ∆ = 1.
Average minimum fraction of population ρ〈 〉( )m  is the normalized average over realizations of the minimum 

population size N t( , )min τ , at any generation t and any environment τ , attained by a finite population under the 
process of environmental change from f ( )0τ



 to 


f ( )fτ ,

N N t: ( , ) , [0, 1] , (13)m max min m
1ρ τ ρ〈 〉 = 〈 〉 〈 〉 ∈−
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where Nmax is the maximum population size in the simulations. This quantity measures how environmental 
changes affect the replicative ability of populations; ρ〈 〉m  coincides with the probability of extinction or survival 
when it takes the limit values 0 or 1, respectively, and for intermediate values is a measure of the relevance of 
stochastic effects.

Results
In all simulations the environment linearly changes through 100 different fitness landscapes from the initial 


τ =f ( 0)0  to the final 


τ =f ( 100)f . For computational tractability we will deal here with a space of genotypes of 
length =N 8, =K 4 and an alphabet of A 2=  letters, therefore with genotype spaces of 256 nodes. In a previous 
publication32, we have shown that genotypic shifts are a generic dynamical property for sequences of any length 
and any alphabet size evolving on variable fitness landscapes.

The space of genotypes is a network of networks.  Our first goal is to assess whether the space of gen-
otypes can be understood as a network of networks. To face this task, we first analyse a representative example of a 
population evolving in the space of genotypes with a monotonically varying fitness landscape. Second, we extend 
the study to a large number of numerical cases to characterize and generalize the results obtained.

A representative example.  Figure 2 analyses the evolution of a typical infinite population. As described in 
Methods, the environment changes from τ  to τ + 1 once the population has reached the mutation-selection 
equilibrium ( → ∞t ). The results are obtained for a lethality coefficient = .f 0 50l  (left column) and = .f 0 30l  
(right column). These two values cause a significantly heterogeneous and holey landscape or a quite homogene-
ous network, respectively (specific values of fl producing either effect depend on the size of the genotype space). 

Figure 2.  Evolution of an infinite population under environmental changes. Lethality coefficients are f 0 50l = .  
(a,c,e) and = .f 0 30l  (b,d,f). (a,b) 2 largest eigenvalues λ1 and 2λ  of the transition matrix and maximum 
eigenvalues of isolated communities A and B. (c,d) Fraction of population within communities A and B. (e,f) 
Strength of connections, Sc. (g,h) Visualization of communities A and B and all connector links for τ = 55 (just 
before the critical value cτ  marked with arrows in (a,b)). The size of each node is proportional to its eigenvector 
centrality u( )A i1

  (respectively B), which is also represented in the −x axis.
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For each value of τ the whole genotype network is divided in two communities A and B following36 (see Methods). 
Neither community A nor B differed much after successive landscape changes from τ to 1τ + . In fact, over 90% 
of the nodes did not change community in successive steps, supporting the applicability of the community detec-
tion algorithm to the case of varying fitness landscapes. In this particular case, we have chosen μ = 1 without loss 
of generality (it has been shown that the magnitude of genotypic shifts increases as the mutation rate decreases, 
such that high mutation rates are a conservative choice32) to emphasize the role played by the second term of Eq. 
(4), which contains all information on the interaction between topology and fitness in the transition matrix M. In 
fact, mutation rates of the order of one change per genome and replication cycle are frequent55, so this situation is 
coherent with the dynamics of fast-mutating organisms.

In Fig. 2(a,b) we show how the asymptotic growth rate changes in the whole genotype network 1λ , in commu-
nity A λ( )A

1  and in community B ( )B
1λ  separately. As it is typical in this kind of systems, a transition takes place 

when the spectral gap λ λ−( )1 2  is minimum29, a condition that defines the critical value cτ . Note that for the 
larger lethality coefficient = .f 0 5l , A

1λ  replicates the behaviour of λ1 before the critical transition, and then it is 
B

1λ  which in turn mimics 1λ . On the contrary, for = .f 0 3l  the asymptotic growth rate of the population in each 
community does not coincide with that of the whole network, meaning that the latter is relevant for all values of 
τ.

Figures 2(c,d) show the corresponding evolution of the population: for large values of fl a sudden emptying of 
A at the critical transition time cτ  shows the existence of a drastic genotypic shift. This means that before the tran-
sition only community A is important, and the rest of nodes do not affect the evolutionary dynamics of the pop-
ulation. The same happens with B after the critical transition. For low values of fl, however, the transition of the 
population from community A to community B is smooth.

The results shown in Fig. 2(a–d) support that the dependence of the population distribution and the growth 
rate on fl mimic precisely that of two networks when they are connected through a small number of connector 
links. That is, the behaviour of the system is precisely that of a network of networks, as described by our Eqs (6–7). 
The strength of connections appears as the main tuner of this behaviour. Figures 2(e,f) depict the evolution of Sc 
for both a large and a low value of fl and illustrate their different behaviours. For large fl, where the genotypic shift 
is sharp as shown in (c), the strength of connections is very low and in fact deeply falls prior to the transition, 
while in the second scenario the strength of connections stays practically constant and large, with minor changes 
all along the process. Finally, in Fig. 2(g,h) we visualize both communities and the connector links just before the 
transition. In the first case, only a few connector links exist and in fact they mostly connect nodes of low centrality 
(calculated when communities were isolated, as in Eq. 8), while in the second case many links between large cen-
trality nodes remain.

Maximum genotypic response decreases algebraically with the strength of connections.  In order to generalize the 
results obtained in the previous section to a broader range of cases, here we explore the relationship between the 
maximum genotypic response u 1∆ τ τ→ +  and the strength of connections Sc measured at the critical transition 
time τc for different values of the lethality coefficient fl and different pairs of initial and final landscapes. The 
results are plotted in Fig. 3.

When fl increases, abrupt transitions become common. This is due to an increase in the amount of non-viable 
genotypes and the concomitant increase in network heterogeneity. Different communities are less connected and 
through more peripheral nodes. Note, however, that in Fig. 3 smooth shifts might still occur for high values of fl. 
The reason is that the randomly chosen initial and final landscapes might be too similar ��∆ τ τf( 0)

f0
 so as to 

permit drastic transitions. The black line depicts the relationship between the maximum genotypic response and 
the strength of connections. They are related through the algebraic function

Figure 3.  Relation between the maximum genotypic response ∆ τ τ→ +u 1 and the strength of connections Sc 
measured at cτ τ=  for different values of the lethality coefficient fl. The rest of model parameters are as in Fig. 2. 
We have performed 4500 runs with random initial and final landscapes. The algebraic expression that best fits to 
the data is plotted in black.
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u aS , (14)c1∆ ∼τ τ
α

→ +
−

where = .a 0 00367 and 0 969α = . , with a correlation ρ = − .0 821. To obtain such expression we have taken into 
account that the joint distribution of two variables that independently follow Gaussian distributions can be 
approximated by a bivariate normal distribution, where the slope of the major ellipse axis of the scatter plot a is 
obtained from the eigenvectors of the covariance matrix associated to the distribution, and ρ| | ≤ 1 quantifies the 
degree of correlation between the two variables: the larger ρ| |, the narrower the ellipse56. We recall that our nor-
malized definition of the maximum genotypic response entails u 11∆ ≤τ τ→ + .

The likelihood of extinction of finite populations increases with the lethality coefficient and 
with the total environmental variability.  With the aim of analysing the implications of a 
network-of-networks structure on the extinction of populations, we will use in this section a model for finite 
populations with dynamics as described in Methods. We recall that now the environment changes from fitness 
landscape τ to 1τ +  after =t G generations of the population which are not sufficient to reach mutation-selection 
equilibrium, thus mimicking a situation of fast environmental change. In a single stochastic realization extinction 
occurs when the population decreases down to 0. While extinction is almost certain when the average minimum 
fraction of population 

 0mρ〈 〉 , in the limit of infinite populations extinction occurs when the asymptotic growth 
rate 11λ <  for some [0, 100]τ ∈ .

Figure 4 summarizes how the survival of a finite population depends on several relevant parameters. We have 
fixed =G 1 to study the situation of highest rate of environmental change, where populations will have it difficult 
to adapt. In Fig. 4(a) the growth rate of two stochastic realizations of the same process, one that eventually sur-
vives and another one that goes extinct, are plotted and compared to the corresponding asymptotic growth rate of 
an infinite population. Note that λ > 11  for all τ, meaning that an infinite population would always survive for this 
set of parameters. It is remarkable how the network-of-networks nature of the space of genotypes affects the fate 
of populations. A finite population gets stuck to the original community A beyond the critical transition (the 
growth rate now follows λ2, which in fact is the largest eigenvalue of the community A), and can be pushed 
towards extinction even when there is a different, mutationally accessible community with larger growth rate that 
would permit its survival. Now adaptation is a stochastic process, and only if an individual mutates so as to trav-
erse a connector link and to find the new community, will the population be able to move to it and avoid extinc-
tion (and the growth rate of the population will shift to 1λ  again, which now is the maximum eigenvalue of 
community B).

The dependence of the average minimum fraction of population mρ〈 〉 and the maximum genotypic response 
u 1∆ τ τ→ +  on the lethality coefficient fl, the total environmental variability ∆ τ τ→f

f0
 and the mutation rate μ are 

plotted in Fig. 4(b–e) for over 104 different pairs of initial and final fitness landscapes. As a reference, the 
survival-extinction boundary for the infinite-population model is plotted in (b) and (d). Those results again 
emphasize the implications of the network-of-networks structure. First, and extending the results in Fig. 3, the 
more lethal mutants a population faces, the less strong are the connections joining the two communities. 
Figures 4(b,c) show that increases in fl make transitions from one community to another more abrupt, severely 
diminishing the chances to survive. Second, if we fix fl and increase ∆ τ τ→f

f0
, as shown in (d-e), the different com-

munities will also become more separated in the space of genotypes and as a consequence the survival probability 
of the population diminishes. Furthermore, ρ〈 〉m  reaches a maximum value for intermediate μ (Fig. 4(f)). This is 
also consistent with our network-of-networks perspective. For very low values of μ, the population is gathered 
around the large fitness genomes of its original community A, the Sc is low and u 1∆ τ τ→ +  is high. While its average 
fitness is very large, the population is unable to produce enough genotypic diversity so as to reach and adapt to 
neighbouring communities. If μ grows to an intermediate value, the population spreads over a larger region of the 
genotype space, eventually populating the connector nodes and increasing the strength of connections. In that 
situation, the survival probability is maximum because, with those border regions of low fitness sufficiently pop-
ulated, the adaptation to a different community B with larger fitness in case of environmental changes is strongly 
enhanced. Furthermore, the large value of Sc will make that transition smoother, and shorter the time to equilib-
rium. Finally, note that increasing the mutation rate μ beyond a critical value both in (b) and (d) hinders the 
population from maintaining its fitter individuals and pushes the whole population to extinction through muta-
genic meltdown57.

Discussion
In this work we show that heterogeneous populations evolving on a space of genotypes endowed with a 
time-varying fitness landscapes can be formally described in the framework of complex network theory, and in 
particular in terms of competing networks of networks. The equations that describe the competition for resources 
of evolving populations in the context of networks of networks –our Eqs (6,7)– can be fully applied to this more 
general biological environment.

In particular, any fitness landscape incorporating correlated roughness, holeyness due to the unavoidable 
existence of non-viable genotypes, and time variation causes sudden genotypic shifts in species composition and 
occasionally the total extinction of whole populations. The three conditions above are sufficient, but they are 
probably not all necessary. For example, we cannot discard that in spaces of very high dimensionality (corre-
sponding to long genotypic sequences) local trapping could arise in absence of holeyness. Shifts and extinction 
could also occur during the evolution of finite populations on sufficiently large and heterogeneous neutral net-
works (the ensemble of all genotypes yielding the same phenotype, i.e. in a fixed fitness landscape). Since full 
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Figure 4.  Dependence of the survival of a finite population on the lethality coefficient fl, mutation rate μ and 
total environmental variability ∆ τ τ→f

f0
. Results have been obtained for a reproduction rate =r 10, N 10max

2= , 
=G 1, and f 0 5l = .  when fixed. In section S5 of Supplementary Information different values of Nmax and G are 

explored. (a) Growth rate of two stochastic realizations of the same process with different fates. Eigenvalues λ1 
and λ2 of the infinite population model are plotted for comparison. Here μ = .0 55. (b–e) The dependence of the 
average minimum fraction of population ρ〈 〉m  and the population maximum response ∆ τ τ→ +u 1 (values 
indicated in colour) on the lethality coefficient fl and the mutation rate μ are plotted in (b,c) respectively, while 
their dependence on the total environmental variability ∆ τ τ→f

f0
 and the mutation rate μ are plotted in (d,e). 

Black thick lines in (b) and (d) signal the survival-extinction boundary in the infinite-population model, 11λ = . 
(f) Mean of the average minimum fraction of population mρ〈 〉 over all environments obtained from the data 
plotted in (d). For (b–e) 12500 simulations were performed (50 values of 250μ ×  values of fl or ∆ τ τ→f

f0
).
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genotype spaces for sequences of even moderate length are out of computational reach, network heterogeneity –
that is, the existence of a degree distribution different from that of a regular network– appears here mostly linked 
to the lethality coefficient fl. This parameter, deeply related to the existence of non-functional genotypes and 
lethal mutations, tunes the number of connector links and the centrality of the connector nodes. When the num-
ber of connector links is low and they connect peripheral nodes, the maximum eigenvalue of the leading commu-
nity coincides with that of the whole network25,35, and the population either remains in the initial or in the final 
community, with a drastic transition from the former to the latter occurring at a critical value τc, while facing a 
high extinction probability. On the contrary, when there are many connector links and they connect central 
nodes, the maximum eigenvalue of the complete network is substantially larger than that of any of its smaller 
communities, the population is spread over the whole network of genotypes for every environment, the transition 
between communities is smooth, and the chances are that the population will survive to the environmental 
change.

Shortened adaptation times caused by faster or more severe environmental changes jeopardize the survivabil-
ity of populations. High resilience, trapping in suboptimal states and hysteresis under environmental changes 
have been described in infinite populations32. These phenomena are behind the extinction of finite populations, 
as we have here quantified through different observables. It is important to emphasize that the time to 
mutation-selection equilibrium, which characterizes the response of populations close to the transition, increases 
as the distance τ τ| − |c  to the transition decreases. As a consequence, when transitions are sudden this time can be 
so large that equilibrium cannot be attained whatsoever, even if environmental changes are apparently slow. In 
natural populations, this means that extinction can occur as the critical threshold is approached, even if the envi-
ronment is not changing faster than it did at earlier times32, and even if the rate of change diminishes but does not 
halt. An open question of potential relevance for the complex networks community is the nature of this transition 
in a network-of-networks context19,58–61, chiefly if it is continuous or discontinuous in the limit of infinite geno-
type spaces. In case it is a truly critical transition, it would be important to know about the existence of universal 
exponents, independent of details of the fitness landscape, characterizing for example the time to equilibrium or 
the maximum genotypic response.

In the former context, the mutation rate μ acquires an important role, since the survival probability is maxi-
mized at intermediate μ−values. If the mutation rate is too low, an increase in its value makes the transition 
smoother (and the time to equilibrium concomitantly shorter), but if μ becomes too large the population might 
be affected by mutational meltdown62. The existence of an optimum value of the mutation rate that maximizes 
survivability has been often discussed, both in the context of natural systems and in model evolutionary systems, 
where it becomes a parameter subject to selection63. An example are adapting RNA populations, where low values 
of μ hinder the capability to efficiently navigate the genotype space, while large values impede the fixation of the 
solutions eventually reached64, and where optimal values of μ depend on the rate of environmental variation65.

Introducing lethal mutations through fl as here done induces important correlations between lethal geno-
types, in agreement with observations and with the existence of analogous correlations between viable genotypes. 
Indeed, while a large fraction of genotypes might be non-viable, the fraction of lethal mutations affecting a viable 
genotype can be much lower (section S3 in Supplementary Information). As a consequence, even in situations 
where the fraction of viable genotypes vanishes with sequence length (when f 0l →  but the dimensionality of the 
genotype space grows), navigability and a gradual increase in mutational robustness might be preserved41.

Several extensions of the scenario here studied support that the phenomenology described does not vary with 
specifics of the model. The obtained results can be straightforwardly generalized to networks of networks that 
represent competition among many more than two regions of genotype space25 or to include non-linear, partially 
coupled variations of the fitness of each genotype as time elapses. That situation is the expected one if biological 
function is depicted as the result of a number of exogenous and endogenous variables that elicit different 
responses in each genome. Survivability, as measured through the different parameters here introduced, is studied 
under larger times for adaptation and larger populations in section S5 of the Supplementary Information. As 
expected, when the maximum population and the interval between environmental changes grow, the results tend 
to the infinite population limit. A number of extensions that also support the robustness of our qualitative results 
have been studied previously. They include longer sequences, lower epistasis (higher values of K), 4-letter alpha-
bets and lower mutation rates32.

Genotype-to-phenotype models have been used to quantify concepts such as navigability of the space of geno-
types –for populations evolving on neutral networks– or shape –space covering– a measure of how intermingled 
different neutral networks are. The latter quantifies the average number of changes a genotype has to experience 
to reach any of the so-called common phenotypes, and therefore the innovative potential of populations on geno-
type spaces. Neutral networks with different definitions of fitness have been considered, and important dynamical 
effects such as certain forms of trapping within phenotypes66 and punctuations that alternate with stasis periods 
have been described: Some models considered an isolated neutral network (thus working in practice with a peak 
landscape28,67), finite populations68 and also static fitness landscapes for adapting populations27. In one case, the 
fitness landscape of a pathogenic population varied with the availability of susceptible hosts31. The description in 
terms of network of networks presented in this work is general enough so that it should be applicable to all those 
scenarios, hopefully providing a common framework where different results can be quantitatively compared.

Data availability statement.  All data generated or analysed during this study are included in this pub-
lished article (and its Supplementary Information files).
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