
fnins-15-636127 March 31, 2021 Time: 16:32 # 1

ORIGINAL RESEARCH
published: 08 April 2021

doi: 10.3389/fnins.2021.636127

Edited by:
Yoeri van de Burgt,

Eindhoven University of Technology,
Netherlands

Reviewed by:
Paschalis Gkoupidenis,

Max Planck Institute for Polymer
Research, Germany

Daniele Ielmini,
Politecnico di Milano, Italy

Charles Mackin,
IBM Research Almaden,

United States

*Correspondence:
Yiyang Li

yiyangli@umich.edu
Christopher H. Bennett

cbennet@sandia.gov
A. Alec Talin

aatalin@sandia.gov

†Present address:
Yiyang Li,

Materials Science and Engineering,
University of Michigan, Ann Arbor, MI,

United States

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 30 November 2020
Accepted: 04 March 2021

Published: 08 April 2021

Citation:
Li Y, Xiao TP, Bennett CH, Isele E,
Melianas A, Tao H, Marinella MJ,

Salleo A, Fuller EJ and Talin AA (2021)
In situ Parallel Training of Analog

Neural Network Using
Electrochemical Random-Access

Memory. Front. Neurosci. 15:636127.
doi: 10.3389/fnins.2021.636127

In situ Parallel Training of Analog
Neural Network Using
Electrochemical Random-Access
Memory
Yiyang Li1*†, T. Patrick Xiao2, Christopher H. Bennett2* , Erik Isele1, Armantas Melianas3,
Hanbo Tao1, Matthew J. Marinella2, Alberto Salleo3, Elliot J. Fuller1 and A. Alec Talin1*

1 Sandia National Laboratories, Livermore, CA, United States, 2 Sandia National Laboratories, Albuquerque, NM,
United States, 3 Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States

In-memory computing based on non-volatile resistive memory can significantly improve
the energy efficiency of artificial neural networks. However, accurate in situ training
has been challenging due to the nonlinear and stochastic switching of the resistive
memory elements. One promising analog memory is the electrochemical random-
access memory (ECRAM), also known as the redox transistor. Its low write currents
and linear switching properties across hundreds of analog states enable accurate and
massively parallel updates of a full crossbar array, which yield rapid and energy-efficient
training. While simulations predict that ECRAM based neural networks achieve high
training accuracy at significantly higher energy efficiency than digital implementations,
these predictions have not been experimentally achieved. In this work, we train a 3 × 3
array of ECRAM devices that learns to discriminate several elementary logic gates (AND,
OR, NAND). We record the evolution of the network’s synaptic weights during parallel
in situ (on-line) training, with outer product updates. Due to linear and reproducible
device switching characteristics, our crossbar simulations not only accurately simulate
the epochs to convergence, but also quantitatively capture the evolution of weights
in individual devices. The implementation of the first in situ parallel training together
with strong agreement with simulation results provides a significant advance toward
developing ECRAM into larger crossbar arrays for artificial neural network accelerators,
which could enable orders of magnitude improvements in energy efficiency of deep
neural networks.

Keywords: analog memory, organic electrochemical transistor, in-memory computing, ECRAM, on-line training,
outer product update

INTRODUCTION

Machine learning and artificial neural networks have promising applications in diverse fields
(Lecun et al., 2015). Such algorithms are very energy intensive to implement in conventional digital
computers. The energy intensity arises from the need to shuttle large quantities of information
from memory to processor to conduct large matrix multiplications and to update matrix weights
(Marinella et al., 2017; Sze et al., 2017). Crossbar arrays of analog non-volatile memory elements
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eliminate this “memory wall” and promise to reduce the energy
consumption of inference and training by conducting matrix
computations locally at the memory elements (Nawrocki et al.,
2016; Burr et al., 2017; Ielmini and Wong, 2018; Xia and
Yang, 2019). Hardware inference accelerators for analog matrix
vector multiplication, also known as dot-product engines, have
been demonstrated using non-volatile memory like inorganic
memristors (Yao et al., 2017; Hu et al., 2018; Li et al., 2018b;
Yao P. et al., 2020; Yeon et al., 2020), organic memristors
(Emelyanov et al., 2016; Lin et al., 2016; Park and Lee, 2017),
phase-change memory (Ambrogio et al., 2018; Nandakumar
et al., 2020; Sebastian et al., 2020), and floating gate memory (Guo
et al., 2017; Lee and Lee, 2020), and may be commercialized in
the coming years.

While there exist several potential hardware solutions for
analog inference, in situ training accelerators based on analog
memory have been extremely challenging to implement. Most
analog non-volatile memory devices suffer from nonlinear and
unpredictable conductance updates as well as high device-to-
device variation, which reduces training accuracy (Agarwal et al.,
2016). Training accelerators should also have the ability to update
all weights in parallel through outer product updates to minimize
latency and energy consumption (Agarwal et al., 2016; Gokmen
and Vlasov, 2016). While this is achievable in very small crossbar
arrays (Alibart et al., 2013), high write currents in the µA or mA
preclude this ability in larger arrays due to voltage drops across
the write lines. Instead, in situ training utilize sequential device-
by-device weight updates (Prezioso et al., 2015; Bayat et al.,
2018; Li et al., 2018a; Cai et al., 2019), resulting in extra latency
and energy consumption for larger array sizes between 103 and
106 devices.

Three-terminal electrochemical random-access memory
(ECRAM), also known as redox transistors, can address the
accuracy, energy, and latency deficiencies of two-terminal
memristors (Fuller et al., 2017, 2019b; van de Burgt et al., 2017;
Sharbati et al., 2018; Tang et al., 2018; Kim et al., 2019; Li et al.,
2019, 2020a,b; Melianas et al., 2020; Tuchman et al., 2020;
Yao X. et al., 2020). ECRAM achieves exceptionally reproducible,
linear, and symmetric weight updates by encoding information
in resistance values that reflect changes in the average bulk
concentration of dopants like protons in transistor-like channels.
ECRAM can also achieve massively parallel weight updates:
because most ECRAMs operate at room temperature and do
not need joule heating for switching. The switching energy
and switching current is expected to be below 1 fJ and 1 nA,
respectively, for scaled devices (Fuller et al., 2017; van de Burgt
et al., 2017; Sharbati et al., 2018; Li et al., 2020a). As a result,
voltage drops along write lines are negligible, so all devices in the
crossbar sense the same write voltage even when many devices
are updated simultaneously. This enables massively parallel
weight updates even when scaled to larger crossbar arrays. The
ability to update all weights in parallel via an outer product is
crucial for realizing analog training accelerators that substantially
exceed the performance of digital ones (Fuller et al., 2019a).

While parallel weight updates have been shown using ECRAM
(Fuller et al., 2019a; Kim et al., 2019), in situ training utilizing
this outer product update has not been demonstrated due

to overlapping fabrication and systems engineering challenges.
Instead, numerical simulations (Agarwal et al., 2016; Jacobs-
Gedrim et al., 2017; Bennett et al., 2019a; Kim et al., 2019)
based on the switching properties of just one or few devices
have been used to predict the accuracy of training large crossbar
arrays (Fuller et al., 2017, 2019a; van de Burgt et al., 2017;
Li et al., 2019, 2020a). Without experimental validation, it is
unclear if such numerical simulations will accurately capture
experimental training protocols, especially in the presence of
non-ideal device behavior, variations between devices, loss of
state, or sneak current pathways that are difficult to account for
in array simulations using individual device measurements.

In this work, we experimentally train a small crossbar array of
ECRAM cells in parallel with high efficiency alongside accuracies
close to software-derived values at floating point precision. This
is not only an advancement for ECRAM, but also provides
the first experimental realization of scalable and parallel in situ
(on-line) training utilizing outer product updates of stochastic
gradient descent conducted through in-memory computing.
Moreover, we also show near-perfect agreement between crossbar
array simulations and experimental training results: we not only
replicate the number of epochs to convergence, but also the exact
evolution of conductance weight updates. This result validates
these training models and provide strong evidence that ECRAM
cells can accurately execute deep neural network algorithms as
predicted from crossbar simulations. The highly accurate training
and excellent agreement with simulation result from the linear
and deterministic switching of ECRAM devices. We also consider
the importance of these characteristics for both spiking and deep
neural networks. By both demonstrating parallel in situ training
and validating numerical simulations, we show the potential
of using three-terminal ECRAMs as a platform to design in-
memory hardware accelerators for efficient in situ training of
artificial neural networks.

RESULTS AND DISCUSSION

Device Fabrication and Circuit Design
We fabricate nine organic ECRAM cells using PEDOT:PSS as the
mixed ionic-electronic conduction weight storage element and
PVDF-HFP combined with EIM:TFSI as the ion gel electrolyte
(Melianas et al., 2020). Weight updates are conducted when
electrons and charge-compensating ions are moved between the
gate and channel electrodes; based on past work on organic
ECRAM (van de Burgt et al., 2017; Fuller et al., 2019a), we
anticipate that the dominant charge-compensating ion is the
proton, although it has not yet been proven for this device
(Melianas et al., 2020). The weights are read using the electronic
conductance of the channel. An electrochemical synapse contains
an ECRAM cell paired with a fixed bias resistor, a series resistor,
and two CMOS switches (MAX327CPE) as selectors (Figure 1A).
The conductance of the ECRAM cell stores the synaptic weights.
Because (deep) neural network uses both positive and negative
weights, while electronic conductances can only be positive, we
enable negative weights by subtracting the current between the
ECRAM and the bias resistor (Figure 1B; Agarwal et al., 2016).
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FIGURE 1 | Organic ECRAM cells as electrochemical synapses. (A) Each synapse in the crossbar array contains one ECRAM, a discrete bias resistor used to obtain
negative weights, a series resistor to control the gate current, and two CMOS switches as selectors. The ECRAM cells store synaptic weights by electrochemical
doping/de-doping of the channel, which alters its electronic conductivity. When both switches are ON, the write current programs the redox transistor to the desired
state. When either or both switches are OFF, the ECRAM cells retain their state. Two switches are used to accommodate the outer product update. (B) Subtractor
circuit used to calculate the difference in the conductance between the ECRAM channel and the bias resistor; the same circuit is used when the currents from
multiple devices are summed in an array. 10 k� resistors were used for Rseries in (A) and all resistors in (B). (C) Potentiation and depression of nine synapses, using

pulses of identical magnitude. The resulting current (positive or negative) is used to calculate
(
Gi −Gbias

i

)
, where Gi is the electronic conductance of ECRAM i and

Gbias
i is the conductance of the bias resistor, as written in (E). The non-dimensional weight is computed during post-processing by Wi =

(
Gi −Gbias

i

)
/(0.05mS).

(D) Device-to-device variation of the nine synapses, showing the weight update for different starting weight values. Each device completed 50 full cycles, where each
cycle equals 440 weight updates, equally divided amongst potentiation and depression. For clarity, a random 10% subset of the ∼20,000 weight updates for each
device are shown. (E) The conductance values of the fixed discrete bias resistors.

Other non-volatile memory cells typically use the difference
between two memory elements to store a single synaptic weight
(Burr et al., 2017). We use a discrete through-hole resistor (Yageo)
with a fixed resistance like 392 or 402 Ohms as bias resistors; the
conductance values of the fixed bias resistors (Gbias) parallel to
the ECRAM channel are written in Figure 1E.

Because large, rapid changes in the ion concentration
in conducting polymers could result in rapid swelling and
mechanical delamination, we utilize a series resistor to control
the amount of current flowing into the ECRAM’s gate (Keene
et al., 2018a; Fuller et al., 2019a). This series resistor is not needed
in inorganic ECRAM cells because higher ionic resistance of
the inorganic solid electrolyte is sufficient to limit the current
(Fuller et al., 2017; Li et al., 2020a). The two CMOS switches
are used to select the device to be programmed: weight updates
are conducted only if both CMOS switches are ON; as we show
later, one of these switches selects the rows and the other selects

the columns that undergo weight updates, enabling parallel outer
product updates of all devices in just one or two steps. This
selection scheme differs from our past work utilizing a two-
terminal diffusive memristor selector (Fuller et al., 2019a). While
two CMOS switches will likely require larger chip area, it also
results in more accurate and reliable switching by not using
the more stochastic diffusive memristor. It also eliminates the
extra “read-selector” CMOS switch previously used (Fuller et al.,
2019a). In terms of functionality, the CMOS switches can be
replaced with a single transistor switch, so the final synapse
design is two transistor switches, one ECRAM, an offset bias
resistor (or memristor) and one series resistor.

The sign of VW, common to all devices, controls the direction
of the weight update, either potentiation (increase conductance)
or depression (decrease conductance). A subtractor circuit is used
to subtract the current between the channel and the bias resistor
based on a proposed architecture in ref. (Agarwal et al., 2016;
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Figure 1B). The resulting Ii − Ibiasi current is measured using
an operational transconductance amplifier, from which we can
calculate Gi − Gbias

i by dividing this current from the input VR.
The linearity and reproducibility of the weight updates for the

nine organic ECRAM cells are given in Figures 1C,D. The Gi −
Gbias
i values are plotted in Figure 1C, where i indicates the index

of the ECRAM cell. Using 0.25 ms write pulses, we obtain over
200 analog states for each device within the conductance range –
the number of analog states in these devices can be changed by
modifying the write time (Melianas et al., 2020). The equilibrium
conductance Gi while the gate and channel are shorted is about
2.5 mS with some device-to-device variation. The conductance
values of the bias resistors are listed within Figure 1. Although
more desirable low-conductance devices in the nano-Siemens
range were previously realized (Fuller et al., 2019a), this study
used the higher conductance devices with greater fabrication
reproducibility for proof-of-concept demonstration.

To obtain the non-dimensional synaptic weight Wi, we divide
Gi − Gbias

i by 0.05 mS, and plot the values on the right axis
of Figure 1C. In Figure 1D, we show the change in weight
upon each applied write pulse, demonstrating low cycle-to-cycle

and device-to-device variation across the nine ECRAM devices.
An interesting feature is the higher slope, or nonlinearity, of
1W vs. W upon potentiation over depression. One contributing
factor is the ECRAM cells in the low-conductance state lose
state faster due to oxidation with the ambient environment
than cells in high-conductance states (Keene et al., 2018b;
Melianas et al., 2020). Other electrochemical and electronic
mechanisms also contribute to this nonlinearity and are subjects
for future investigations.

We conduct parallel in-situ training of a simple perceptron
network with two binary inputs (X1 and X2) and a bias input X3,
which is always equal to 1. We use three outputs corresponding
to the three logic gates that are trained in this experiment
(Figure 2A); these represent three of the four linearly separable
elementary logic gates containing two binary inputs, one bias
input, and one output. For each logic gate, the training set
consists of four examples corresponding to all possible values of
X1 and X2; the training set is consecutively and iteratively used
to train the ECRAM array until the network correctly identifies
the entire training set for all logic gates. These logic gates were
chosen due to the low number of devices available, which is
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a common challenge for emerging device technologies where
fabrication processes have not been fully established.

Figures 2B,C shows the circuit and the flow diagram
for both forward and backward propagation step based on
stochastic gradient descent. The nine electrochemical synapses
are electrically arranged into a 3 × 3 crossbar using a printed
circuit board. To conduct forward propagation, or inference, the
crossbar uses multiply-and-accumulate operations to perform
the matrix operation Z = WTX, where W is the matrix of synaptic
weights and X is the vector of input value. We apply a small
read voltage (VR) ∼50 mV to represent a logical “high” at the
input and measure the accumulated current at the bottom of each
column, which is held at virtual ground using an operational
amplifier. The vector-matrix product Z is proportional to the
difference between the accumulated current of the ECRAM
column and the accumulated current through the bias resistor
column. It is computed by using a subtractor circuit (Figure 1B)
in each column. Once this vector-matrix product is obtained, we
compute the sigmoid activation function (A = σ (Z)) in software
and compare the result to 0.5 to obtain the binary prediction.
The error δ equals the solution Y minus the activation A: if the
absolute value of δ for a column is less than 0.5, the network has
correctly classified that column; if |δ| > 0.5, then the network
has incorrectly classified the column.

Next, we describe how to train the network in parallel.
The change in weight for the array is given by the outer
product update 1W = α(X

⊗ ∂L
∂Z ) where

⊗
denotes the

outer product, ∂L
∂Z is the derivative of the cost function

L = Ylog(A)+(1− Y)log(1− A) with respect to the vector-
matrix product Z, and α is the learning rate. We choose cross-
entropy as the cost function such that ∂L

∂Z = Y-A = δ. In addition
to the continuous-valued weight update, we also incorporated a
discrete-value cross-entropy update scheme whereby we rounded
δ to take the value of −1, 0, or 1 during weight updates.
We demonstrate these two weight update schemes to show the
broader generalizability of our approach.

To conduct the parallel outer product update, we
simultaneously apply three sets of voltages to the circuit
(Figure 2B). First, we apply a write voltage VW = 1V or −1V to
all the synapses. Second, we apply a pulse to the “row” digital
terminals D1−3 that equals 10 ms when Xi = 1 and 0 ms when
Xi = 0; we note that these pulse widths can also be analog
rather than binary. Third, we apply a variable-width pulse to the
“column” digital terminals D4−6 that is proportional to α · δ for
continuous-valued updates and α · round (δ) for discrete-value
updates; α · δ = 1 correspond to 10 ms. Since weight updates
entail that both switches are ON, the weight of a synapse does not
change when Xi = 0 during that training step. In other words, this
pulse timing conducts an outer product multiplication between
the input X on the “row” terminals and α · δ or α · round (δ) on
the “column” terminals (Figure 2C).

This parallel weight update scheme is scalable to larger arrays:
the outer product update enables all weights in an array to
be updated by controlling the D terminals at the edges of
the array, regardless of array sizes. Because the VW terminal
is shared among all devices, two sequential sets of pulses are
needed to update all weights, one to increase conductance weights

(VW = −1V) and one to decrease weights (VW = 1V); we note
that, if the inputs Xi can be negative, then four update cycles
would be needed. The CMOS switches are used for selectivity
and to prevent crosstalk: when the switches are OFF, the gates
are electrically isolated from each other. The devices are also
ionically isolated from each other during fabrication. In our
training experiments, all values of W were collected for post-
mortem processing and analysis, but this information was not
used during training in order to demonstrate its parallelism.

The table in Figure 2C shows one example step of this parallel
weight update using the continuous-valued cross-entropy cost
function. This scheme enables accurate analog weight updates
for all devices in parallel, where the changes in the device’s
conductance nearly perfectly match the desired values; this will
be quantified in detail later.

Experimental in situ Parallel Training
The four training examples, each using three logic operations
(Figure 2A), are consecutively and iteratively fed into the
network, until the network attains 100% accuracy as determined
by when absolute errors |δ| decrease below 0.5 for all cases in
the training set. Figure 3 shows the results of the training. After
randomly seeding values for the initial condition, we show the
evolution of synaptic weights in Figure 3A, where we utilize the
continuous-value weight updates given by the cross-entropy cost
function, after each training epoch. The updates to the weights
decrease over time, signifying convergence. While the threshold
for accuracy occurs when |δ| < 0.5, continued training epochs
further decrease the error, which provide a margin against noise
and other non-idealities.

Figure 3B plots the fraction of twelve operations (four training
examples multiplied by the three logic gates in Figure 2A) that
were accurately classified, the average absolute value of the error
(|δ|) across all twelve operations, and the maximum |δ| across
the twelve operations. Figure 3B incorporates the results of six
different random initial seeds: the dark lines equal the average
values for all six seeds, while the lighter shaded areas equal the full
range for the different seeds. When the maximum |δ| is less than
0.5, then all input cases representing the logical function have
been correctly learned by the corresponding ECRAM devices.
Our results show a gradual reduction in error, and an average of
eight training epochs to reach the full classification accuracy.

Discrete-value weight updates result in somewhat different
convergence behavior. Rather than slowly converging like the
continuous case, the weights stop updating once all computed
values of |δ| are below 0.5, and the problem is correctly classified
(Figure 3C); changes in weight after this point reflect non-
idealities, such as slight drift or rebound after weight weigh
updates. This rebound may occasionally cause a temporary
drop in classification accuracy when the weights are near the
threshold of accuracy; this is quickly corrected during the
next weight update.

While discrete-value weight updates achieve rapid
convergence, the convergence rate is also more sensitive to
the initial conditions. This results in a higher variability of the
error and accuracy, as shown by the larger spread of the lighter
shaded regions in Figure 3D. Because discrete-value weight
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accuracy and absolute error to train six different initial seed values; the shaded areas represent the range of values taken by the six seeds. It takes about ten training
epochs to fully classify the problem. Our learning rule states that an absolute error |δ| less than 0.5 is a correct classification. The average absolute error takes the
mean absolute error |δ| of the 12 operations defined in Figure 2A in each training epoch; the max error is the maximum error of the 12 classification operations.
Convergence is defined as when the classification accuracy is 100%, or when the maximum error is less than 0.5. (C) Experimental training when using
discrete-value weight updates: positive, negative, or 0. (D) Convergence, accuracy, and error for discrete-value updates, with the same colors defined in (B). The
colors in (A,C) are the same as the ones defined in Figure 1C.

updates have sharp ending thresholds, certain operations reside
at the threshold of accuracy where δi ∼ 0.5, providing less
margin against possible drift, noise, and memory loss than the
continuous-valued updates (Figure 3A).

One important difference is that the discrete-valued updates
converge somewhat faster than continuous-valued updates. The
reason is because discrete-value updates only update weights
during incorrect classification, whereas continuous-value updates
also update weights during correct classification, which may
result in updates in the “wrong” direction.

As an example, suppose we solve for the OR gate when
W4 = W5 = W6 = 0.4; a value of Z > 0 ultimately corresponds
to logical 1 and Z < 0 to logical 0. This correctly classifies
the first three training examples in Figure 2A but incorrectly
classifies the fourth (X1 = X2 = 0). During discrete-value
updates, only the incorrectly classified fourth training example
will trigger weight updates. Full convergence is reached as soon
as W6 < 0, which can happen in just a single training epoch.
In contrast, during continuous-value updates, W4, W5, and W6
will increase during the first three training examples because
0 < |δ| < 0.5. These increases in W6 will counterbalance the
decrease during the fourth training example, resulting in slower
convergence. This process also increases the magnitude of W4
and W5, explaining why the weights are generally larger in the
continuous-valued rather than discrete-valued updates. Another
reason for the higher weight ranges of Figure 3A is because the
weights continue to change even after convergence. Despite these
differences, our training scheme can correctly classify the logic
gates to full accuracy after several training epochs, for all six seed
values initiated.

Crossbar Simulations Quantitatively
Reproduce Experimental Data
Next, we conduct crossbar simulations using the same initial
conditions to compare against experimental results. Two types

of simulations are conducted. The “simulated” result accounts
for nonlinearity, cycle-to-cycle variation, and device-to-device
variation within the array by interpolating the switching data in
Figures 1C,D to predict the results of each weight update for all
nine devices. The “ideal numerical” result presents the values at
the floating point precision of a simulated neural network.

Figure 4A shows the simulated weight evolution compared
with the experiment using continuous-value weight updates
based on the cross-entropy cost function. The agreement is near
perfect, with a coefficient of determination R2 = 0.997. This
agreement results from the low cycle-to-cycle variability
and the highly deterministic and predictable switching
behavior, such that the switching behavior during training
is essentially identical to the switching behavior during ramping
in Figures 1C,D. This enables quantitative agreement between
the experimental and simulated conductance weight on each
device. Figure 4B compares the experimental results to the
ideal numerical weight evolution, which yields R2 = 0.937.
Some deviations exist due to the slightly nonlinear switching
behavior of the individual devices at high and low weights
(Figures 1C,D) at the extremes of the potentiation and
depression range; a recent formulation using p(gT2-TT)
organic materials with a larger dynamic range could overcome
this problem (Melianas et al., 2020). This nonlinearity is
present in the experiment (Figure 3) and the simulation
based on device data (Figure 4A), but not present in the
“ideal” simulation at floating point precision (Figure 4B),
making it more difficult to experimentally move the weights
further away from 0.

Figures 4C,D uses the discrete-value weight updates based on
the same cross-entropy cost function. While the overall trend
of the simulated weight evolution (Figure 4C) is similar to that
of experiment (Figure 3C), some deviations are present such
that R2 = 0.876. The origin of this deviation arises from slight
deviations in the weights at the threshold of accuracy may result
in an extra relatively large discrete weight update. In the ideal
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FIGURE 4 | Simulated training behavior compared to the experimental behavior. (A) (left) Simulated weight evolution using the switching properties measured in
Figures 1C,D. The results are essentially identical to the experimental results in Figure 3A. (right) A plot of the experimental vs. simulated weights show an
R2 = 0.997, demonstrating that the simulations can fully replicate in-situ experimental training procedures. The weights across all epochs are plotted. (B) Ideal
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lower weights as a result of nonlinear and asymmetric switching behavior at the extremes of dynamic range in experimental ECRAM devices. (C,D) Comparison of
simulated, ideal, and experimental results using the discrete-value rather than continuous-value weight updates. These show more deviations than (A,B) because
slight variations in weights may result in an extra, relatively large weight update in the experimental results. All colors have the same meaning as in Figure 1C.
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FIGURE 5 | Accuracy of the analog matrix operations. The X axes computes the expected values for the vector matrix multiply and outer product update using
software during post-processing. The Y axes plots the obtained value for Z and 1W experimentally measured from the crossbar. (A) Vector-matrix multiply shows
near-perfect agreement. (B,C) Outer product updates are conducted very accurately in accordance with defined cost functions and learning rules, with R2 over
97%, showing excellent goodness of fit. This result explains the strong convergence between the numerical and experimental results in Figure 4. The values for α

were fit from the experimental vs. simulated outer product updates.

numerical case in Figure 4D, R2 = 0.896, about equal to that
in Figure 4C. Unlike the case for the continuous-value updates,
there is less effect of nonlinearity because the weight range is
much narrower (+/−1.5 vs. +/−4.0), placing the devices in a
conductance range where they operate more linear and ideal.

The results presented in Figures 3, 4 summarize the successful
demonstration of in situ training using an ECRAM array:

hardware parallel array training accompanied by a close match
between device-level experiments and crossbar simulations.

Analysis of Experimental Training
Accuracy
The excellent agreement between simulated and experimental
training is a result of the excellent accuracy of the array
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to conduct the vector-matrix multiply and the outer product
update. Figure 5A plots the accuracy of vector matrix multiply
by comparing the Z obtained in analog manner directly by
measuring the currents in each column of the crossbar and
the Z obtained by measuring the weight of each device, then
adding them in software using floating-point precision during
post-processing. Our results show extremely high accuracy with
an R2 value of 0.9996, suggesting that the network can conduct
inference with essentially perfect accuracy.

Figures 5B,C shows the accuracy of the parallel outer
product updates for the continuous and discrete-value updates
by plotting the expected 1W computed from the error δ,
against the actual weight change computed by measuring the
synaptic weight before and after the weight update. R2 here
ranges from 0.97 for continuous-value updates and 0.99 for
discrete-value updates. This ensures that any desired weight
update can be realized with very high accuracy. The high
accuracy of outer product updates demonstrated here is a
vast improvement over past works (Fuller et al., 2019a; Kim
et al., 2019) in both individual device switching behavior as
well as device-to-device variation, and is essential for reaching
convergence. As we show in simulation later, this quality
strongly facilitates achieving rapid convergence in more complex
problems involving hidden layers.

Analysis of Nonlinearity and Variability
We quantitatively compare the performances of ECRAM devices
with the metrics identified by Sun and Yu (2019). The key metrics
for training are the degree of nonlinearity, which defines to
what extent the weight (conductance) change 1W changes with
the weight W, the cycle-to-cycle variation, determined by the
reproducibility of the switching processes within a device, and
the device-to-device variation, which sets the variation in the
nonlinearity between devices.

We applied the analytical methodology proposed by Sun
and Yu (2019) to classify three additional classes of nonvolatile
memory: the ECRAM cells used in this work, the SONOS
floating-gate memory conducted in Agarwal et al. (2019), and
the TaOx resistive random access memory (RRAM) cells from
Bennett et al. (2019a). Table 1 summarizes these results.

According to Table 1, the nonlinearity of ECRAM is
comparable to that of the best published TaOx/HfOx RRAM
and SiGe epiRAM devices; the other devices show higher
nonlinearity. ECRAMs excels in its low cycle-to-cycle variation
because the electrochemical insertion and extraction of ions is
much more deterministic and predictable than the stochastic
formation of memristive filaments (Ielmini and Wong, 2018; Li
et al., 2020a). As seen in Figure 1D, the 1W values for ECRAM
cells occur in a very narrow region.

Despite the excellent metrics of ECRAM with regards to
nonlinearity and device-to-device variation, two additional
factors need to be considered when interpreting these results.
First, the ECRAM gate and channels are 750 µm × 2,000 µm
each. Smaller devices, including ones scaled to sub-micron
dimensions, were shown in past works (Tang et al., 2018;
Melianas et al., 2020), but it has yet to be tested how downscaled
devices perform relative to the metrics shown in Table 1. Second,
ECRAM cells in this work have a high electronic conductance,
which results in high read energies. Other organic (Fuller et al.,
2019a) and inorganic (Tang et al., 2018; Li et al., 2020a,b) ECRAM
cells with a channel conductance of ∼10 M� have been shown;
however, the device-to-device variation between devices have not
been studied in detail.

Array-Level Simulations of Training
Having validated the agreement between simulated and
experimental results on a small array in Figure 4, we use
simulation to systematically compare the classification accuracy
of ECRAM and TaOx memristors at solving the three simple logic
gates with a cross-entropy cost function and continuous-valued
weight updates. Our numerical simulations are a significant
advance over previous work by elucidating the effect of device-
to-device variation, instead of only utilizing the properties of
a single device. For the logic gates, we simulate a small 3 × 3
crossbar, identical to experiment, with 100 different initial
conductance values as the “seed” conditions, and plot what
percentage of the “seeds” yields full accuracy on all three logic
gates. Because these logic gates are easier to classify than most
machine learning problems, we use this more stringent definition
of “percent full accuracy.”

TABLE 1 | Quantitative comparison of non-volatile devices for training based on the analysis protocol developed by Sun and Yu (2019).

Device Nonlinearity
(positive/negative

updates)

Cycle-to-cycle
variation

Device-to-device
variation in
nonlinearity

Notes

TaOx/HfOx RRAM +0.04, −0.63 3.7% Not available Data from Wu et al. (2018); Analysis by Sun and Yu (2019)

SiGe epiRAM +0.5/−0.5 2% Not available Data from Choi et al. (2018); Analysis by Sun and Yu (2019)

HZO FeFET +1.75/+1.46 0.5% Not available Data from Gonugondla et al. (2018); Analysis by Sun and Yu (2019)

ECRAM (this work) +0.7/−0.12 0.023% 0.183/0.026 Based on 9 devices from Figure 1

SONOS (VG = 2.6V) +1.59/−2.22 0.23% Not available Data from Agarwal et al. (2019)

TaOx ReRAM +668/−51.7 11.20% 216/23.0 Data from 9 most linear devices from Bennett et al. (2019a)

The analysis from the first three rows were conducted by Sun and Yu (2019). Both the data and analysis for ECRAM are contained in this work. The data for the last two
columns were previously published, but the analysis was conducted for the first time here. The two variation columns are computed at 1 standard deviation. We note
that the cycle-to-cycle variation is normalized by the full conductance range. Thus, a 1% value here suggests that the average variation (1 standard deviation) equals the
difference in conductance between adjacent analog states for a 100-state memory cell.
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FIGURE 6 | Simulated accuracy of (A) logic gates, (B) handwritten digits classification, and (C) articles of clothing classification. (A) used a single-layer 3 × 3
perceptron network like experiment; the full accuracy fraction denotes the fraction of seed values that are able to achieve 100% accuracy for all twelve permutations
of for the three logic gates designed by Figure 2A. Two multi-layer perceptron networks, each with a single hidden layer, were simulated in (B) and (C). The
accuracy denotes the fraction of the data that was correctly classified. The handwritten digits classification (B) used a 65 × 36 and a 37 × 10 crossbar, while the
articles of clothing classification (C) used a 785 × 400 and a 401 × 10 crossbar. The single ECRAM and single TaOx memristor cases use the switching properties
from a single device and assumes all devices are identical in the array. The multiple ECRAM and multiple TaOx cases account for device-to-device variation using
interpolation between multiple device probabilistic maps (look-up-tables), as described in Agarwal et al. (2016) and Bennett et al. (2019a). Centered simulations
correct for differences in the equilibrium conductance of the device, so they are all oriented around a single conductance value (as was done experimentally with bias
devices) while the non-centered simulation does not perform this correction. All simulations show significant improvement of ECRAM over TaOx, as well as the
importance of accounting for device-to-device variations. The shaded regions represent two standard deviations of the simulation, each conducted over 100 random
“seed” initial weights.

Figure 6A shows the results of several simulations to show
the effects of non-ideal behavior within a single device as well
as the variation between devices. The first “ideal” simulation is
the software implementation of the algorithm at floating point
precision: in this simulation, all logic gates converge to 100%
accuracy. The second simulation takes the switching behavior
of a single ECRAM cell, which we denote as a lookup table
(e.g., device W1 in Figure 1), and replicates that behavior for
all devices. This “single ECRAM” accounts only for the effects
of asymmetric nonlinearity and cycle to cycle variability, and
the simulated crossbar essentially achieves the numerical limit
at floating-point precision. Most past numerical simulations of
crossbar accuracy in ECRAM generally present these two results.

The third simulation, denoted as “multiple ECRAM,
centered,” accounts for some device-to-device variability by using
all nine lookup tables. This simulation accounts for variation in
switching behavior, such as certain devices being more sensitive
or more nonlinear than others. However, this simulation also
“centers” the range of all devices around a fixed value, as was
done in Figure 1C. This can be realized in one of two ways: one
approach is to reduce device-to-device variability by improved
ECRAM fabrication process so that all ECRAM cells would
have the same equilibrium conductance; a second method is
to pair each ECRAM with a calibrated offset resistor, as was
done in this work (Figures 1, 2B). We propose that the second
method can be realized on-chip by using a paired non-volatile
memory element like a memristor, that is initially programmed
to approximately equal the equilibrium conductance of the
ECRAM cell and not changed afterward. This memory element
also serves to enable negative weights much like the bias resistor
used in this work (Figure 1A). Our results show a slightly slower
convergence in this case, but the accuracy nonetheless converges

consistently. This simulation is similar to the conducted
experiment (Figures 3A,B) and paired simulations (Figure 4A):
the 8 epochs needed for half the simulated seeds to convergence
is very similar to the ∼9 epochs needed on average for the six
experimental seeds to converge in Figure 3B. All simulations in
this section assume continuous-valued weight updates.

The fourth simulation, denoted as “multiple ECRAM, non-
centered,” removes the “centering” process and accounts for the
variable range of the different ECRAM cells. As shown by the
values of the bias resistors in Figure 1, the devices’ equilibrium
conductance ranges from 2.1 to 2.6 mS. This simulation shows
that only ∼90% of the initial seeding conditions will converge
to full accuracy. Unlike experiments and the third simulation,
this fourth simulation does not fully converge because it chooses
a common center-point for all devices; in other words, it is
equivalent to using the same bias resistor, like 2.4 mS, for
all synapses. Due to the different physical conductance ranges
of various devices, the switching properties for some devices
around the global centerpoint are different from that of the other
devices around the same value. This results in non-uniform and
nonlinear weight update behavior. The reduction in accuracy
here shows the crucial importance of having devices with the
same center conductance, or finding a method to correct for this
such as by using bias resistors.

We also conduct two simulations using TaOx memristors
based on the switching properties published previously (Bennett
et al., 2019a). As shown in Table 1, this dataset contains both
nonlinearity and device-to-device variation data. This result
shows that ∼ 80% of the initial conditions fully converge when
replicating the properties of a single device (“single TaOx”)
and ∼50% fully converge when accounting for device-to-device
variation (“many TaOx”). This simulation shows that ECRAM
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has significant advantages in terms of training accuracy even
in the case of simple logic gate functions. It further shows that
attaining full accuracy for the 100 simulated seeds in logic gates,
as done experimentally with ECRAM, is a nontrivial task that
requires excellent individual device switching properties.

We simulate the accuracy of the same devices for image
classification of handwritten digits, using a downsampled version
of the MNIST database known as the UCI Optical Character
Recognition (OCR) task (Alpaydin and Kaynak, 1998), and
articles of clothing, from the more recently developed Fashion-
MNIST database (Xiao et al., 2017) in Figures 6B,C. Each
task contains ten categories or classes. Because these images
are harder to classify than the logic gate inputs, we plot the
average fraction of correctly identified solutions for the 100
simulated seeds, as opposed to the fraction of simulated seeds
that achieve 100% accuracy. The chosen two-layer network
topology consists of a 65 × 36 crossbar followed by a 37 × 10
crossbar – the outputs from the first crossbar, plus a bias
input, are used as inputs for the second crossbar. A 95%
accuracy is achieved on the handwritten digits task in the
numeric limit. All ECRAM simulations yield above 91% accuracy,
while the TaOx simulations yield significantly lower accuracies.
The fashion-MNIST network yields just 83% accuracy at the
numerical limit, due to the greater complexity and nonlinearity
of the classification problem, with progressively lower accuracies
for ECRAM and TaOx. This simulation also utilized a two
layer network, but this time consisting of a 785 × 400 and
a 401 × 10 crossbar. Once again, the outputs form the
first crossbar plus a bias input are used as inputs for the
second crossbar.

All simulations show that ECRAM outperforms TaOx under
any configuration. However, TaOx simulations appear more
inaccurate in handwritten digits than in articles of clothing
because the handwritten digits require higher learning rates,
such that the nonlinear behavior of the filamentary memristors
more significantly decrease the accuracy (see methods for
exact numbers). In contrast, articles of clothing utilize lower
learning rates, and a lower theoretical accuracy using fully
connected networks. The lower learning rates are more resilient
to device nonlinearity, such that the single-device TaOx accuracy
nears that of ECRAM. This work further work shows the
importance of multiple metrics in characterizing the accuracy of
different devices.

Our results further show that device-to-device variation plays
a significant role in the accuracy of in-situ training networks. In
memristors, device-to-device variation is an intrinsic property
relating to the discrete, stochastic nature of atomic point
defects within the conductive filament (Yu et al., 2013; Ielmini
and Wong, 2018). For ECRAM, our observed device-to-device
variation likely result from an unoptimized fabrication process.
Specifically, the ECRAMs in this work were fabricated using
solution-processing followed by lift-off (Khodagholy et al., 2011),
which enables rapid prototyping but is not well suited for reduced
device-to-device variability. This device-to-device variability will
likely be more significant for devices with lower conductances,
such as the nano-Siemen devices shown in past work (Fuller
et al., 2019a), which would likely result in lower weight tuning

and training accuracy. The lift-off method can be replaced by
more advanced lithography techniques to improve device yield
and areal density.

Our simulations again highlight two different types of device-
to-device variation within ECRAM, one primarily behavioral and
relating to differences in slightly distinct switching properties
among each device’s probabilistic switching map (from “single
ECRAM” to “many ECRAM, centered”), and the other relating
to range-derived differences in the equilibrium conductance
(from “many ECRAM, centered” to “many ECRAM, non-
centered”). While both should improve with better fabrication
and processing, we anticipate the latter equilibrium conductance
is simpler to tackle because the conductance is determined by
PEDOT:PSS film uniformity across the wafer die. In contrast,
the switching variability depends on the uniformity in the
entire multilayer PEDOT:PSS/electrolyte stack and the associated
charge transfer kinetics within this stack, which may be more
difficult to control. If ECRAM provides the elusive memory
element for parallel in situ learning, our approach paves the way
toward massively parallel training of artificial neural networks at
unprecedented levels of energy efficiency.

ECRAM for Deep and Spiking Neuronal
Learning Methods
We further consider how the in situ learning approaches we
present in this work could be extended to spiking neural
networks (SNNs). Unlike multilayer perceptron networks (e.g.,
deep neural networks and convolutional neural networks) that
transmit information at each propagation cycle, neurons in
SNNs are only activated when their activation reaches the
threshold potential. By encoding information more sparsely in
the temporal domain and restricting the analog requirements
for information transmission, SNNs are widely considered
more likely to achieve the energy efficiency and error tolerance
of biological computing system (Wang et al., 2020). Spike
time-dependent plasticity (STDP) like functionality have been
demonstrated in organic and inorganic ECRAM (van de Burgt
et al., 2017; Sharbati et al., 2018; Li et al., 2020b). While STDP
or STPD-like rules do not directly implement stochastic gradient
descent backpropagation, they effectively sample an input and
may approximate a statistical method known as expectation
maximization (Nessler et al., 2013).

Numerical approaches to derive loss functions based on spike
learning have been proposed (Shrestha et al., 2019), although it is
not clear how well these approaches scale with multiple spiking
hidden layers. However, the complexity of implementing these
rules is typically simpler in nanosynapses, since STDP does not
require synaptic linearity, and may even be able to exploit some
degree of synaptic non-linearity (Querlioz et al., 2013). Yet STDP-
style learning systems still require minimum synaptic analog
resolution, as well as symmetry between programming/update
modes. Shallow or sampling networks can effectively implement
STDP learning with 4–5 bit resolution (Pfeil et al., 2012; Woods
et al., 2015). In addition, the requirements may be relaxed
even further when using a technique known as the Linear
Solutions of Higher Dimensional Interlayers to improve the
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linear separability of a machine learning (Tapson et al., 2013),
which was recently demonstrated for emerging device crossbar
based systems (Bennett et al., 2019b).

Although the stringency requirements for implementing
SNN learning may be lower than for stochastic gradient
descent, this study’s focus on reliable analog switching, including
realistic considerations of device-to-device and cycle-to-cycle
variation, will be an asset to future works on this topic.
For instance, our analysis that synaptic conductance range
centering is critical to implementing effective parallel updates
may be equally advantageous to realizing SNN layer-by-layer
learning that is parallelizable. A lower bound estimate of
cycle-to-cycle noise tolerable on STDP learning has not been
established in the literature, but may be better interrogated
given our approach. Conversely, from the perspective of device
optimization for efficient SNN implementation, the analog depth,
low cycle-to-cycle noise, and good mode symmetry of ECRAM
devices suggest these devices will be strong candidates for
hardware SNNs. In contrast, while phase-change memory has
recently been used to physically realize STDP learning they
have substantial asymmetry between SET and RESET modes
(Ambrogio et al., 2016). This creates additional circuit overhead
for accessing synapses on dense crossbars and damps the
maximal efficiency possible with local learning rules. STDP,
short term potentiation, and paired pulse facilitation has already
been demonstrated in organic ECRAM devices similar to those
presented here (van de Burgt et al., 2017). Importantly, ion
transport kinetics and material composition play decisive roles
in determining the temporal response and, therefore, are likely to
similarly affect efficiency and accuracy of the spiking timing based
learning algorithms. Our work therefore strongly encourages
further investigation of three-terminal ECRAM devices for
modern SNN learning.

CONCLUSION

In summary, we experimentally achieve parallel in situ training
using organic ECRAM synapses with high accuracy, a necessary
step toward realizing efficient and accurate hardware training
accelerators. Moreover, we show unprecedented reproducibility
between the simulated and experimental training results, not
just in the number of epochs to convergence but the exact
evolution of the weight of each synapse. By experimentally
demonstrating training using outer product updates that are
consistent with numerical simulations, our work implies the
potential of ECRAM cells to ultimately contribute to high
accuracy in neural network training accelerators, and affirms
the ability of our software methodology to contribute to leading
toward this important goal.

MATERIALS AND METHODS

Fabrication of ECRAM Cells
The ECRAM devices were patterned as reported previously
(Fuller et al., 2019a; Melianas et al., 2020). Briefly,

Ti(8 nm)/Au(50 nm) electrodes were patterned on Si wafers
with 1 µm thick SiO2 using e-beam evaporation. The wafers
were then coated with 1.5 µm parylene C as the insulating
layer which was crosslinked with the adhesion promoter 3-
(trimethoxysilyl)propyl methacrylate. After coating the first
parylene C layer, a dilute soap solution (3% Micro-90 in H2O)
was spincoated on top, followed by coating another 1.5 µm
layer of parylene C. The wafers were then coated with 75 nm Ti
and were subsequently patterned and dry-etched to define the
channel, gate, and electrode pad areas. In this work, each wafer
die had 8 devices. Before PEDOT:PSS deposition, the wafer dies
were cleaned using 5 min sonication in isopropanol followed by
5 min UV-Ozone treatment. PEDOT:PSS was spincoated on the
wafer dies in ambient at 1000 rpm for 2 min and baked at 120◦C
for 20 min. The top parylene C layer was then peeled off, leaving
PEDOT:PSS only in the photolithographically defined channel,
gate, and contact pad regions. Before electrolyte deposition, the
wafer die was rinsed in H2O to remove residual Micro-90. The
ion gel electrolyte (Melianas et al., 2020) was then drop-cast on
top of each device using a micropipette.

Finally, the chips were wire-bonded onto a PLCC-68 chip
carrier and breakout board to address the many circuit
leads of the board.

Circuit Design
The circuit was implemented on a four-layer printed circuit board
(PCB) fabricated by Gorilla Circuits (San Jose, CA, United States).
Molex connectors were used to connect the PCB to the wire-
bonded ECRAM chips. All other active (e.g., CMOS switches,
op-amps) and passive (e.g., discrete resistors, capacitors) circuit
components are also placed and wired using the printed circuit
board. In addition to the circuit and components shown in
Figure 2B, the PCB also includes a current subtraction circuit
(Figure 1B) and an operational transconductance amplifier for
each output column in order to convert the multiply-and-
accumulate output current into a voltage that can be logged by
a data acquisition instrument (NI-DAQ).

The three analog inputs X1−3 were connected to three analog
outputs from a NI-DAQ, PCIe-6363; the read voltage is typically
∼50 mV. The write voltage (VW = +/−1V), common to all cells,
were also connected to a fourth analog output from the NI-
DAQ. The output voltage from the operational transconductance
amplifier were connected to the analog inputs of a NI-DAQ. The
NI-DAQ was controlled using a custom-built LabVIEW software.

Crossbar Array Control
A custom-built Python package served as the user interface with
the LabVIEW software used to control the DAQ. Each time step
is 0.1 s. To conduct inference, a 50-mV read voltage was applied
to each row i where Xi = 1, and 0-mV applied when Xi = 0 for
10 ms. The currents read at the bottom represents the results
of the multiply-and-accumulate function. Digital outputs D1−6
were held at low (0V) to keep the switches OFF and prevent
leakage current. To conduct array training, the voltage VW was
held at either +1 for depression or −1 for potentiation. The
outer production selection is conducted through the pulse widths
of the digital switches. D1−3 has a pulse width of 10 ms when
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X1−3 = 1, and 0 ms when X1−3 = 0. The pulse width of D4−6
is proportional to α · δ for continuous-value updates and α ·

round (δ) for discrete-value updates. A training epoch is defined
as iterating this process through all four training examples.

Finally, to measure the conductance of individual array
elements, 10-ms read voltage pulses were separately applied to
each row of the crossbar. Because this voltage is applied to only
one of X1, X2, or X3 at a time, the read currents at the bottom
equals Ii − Ibiasi , where Ii is the current through ECRAM cell i
while Ibiasi is the current through the paired bias resistor. We note
that this step is a diagnostic measure, and the results were only
recorded for post-processing and data analysis, and not using
during in situ training.

Crossbar Simulations
Crossbar simulations were conducted on an expanded version
of the open-source Sandia CrossSim simulation package, which
is written in Python and allows for physics-realistic simulation
of neural network accelerators. For the in situ learning case,
which is the focus of this work, CrossSim instantiates neural
cores with a variety of parameter corresponding to both device
properties (conductance evolution behavior) as well as general
neural network properties, such as network topology, choice
of task, and learning rates. In order to effectively match the
simulations with experiment, a custom set of look-up-tables
(LUT) have been constructed by using experimentally derived
sets of repeated ramped pulses. The LUT for ECRAM are
given in Figure 1D, while the LUT for TaOx were taken from
past work (Bennett et al., 2019a). This probabilistic matrix
of look-up-tables is represented here as 1Gi(Gi), signifying
that the change in conductance is a function of the present
conductance. Then, when conducting backpropagation, globally
requested updates applied to the logical cores via an outer-
product-update (OPU) are individualized to simulated devices
in the crossbar. The change in simulated weight is proportional
to the product of 1Gi(Gi) and the results of the OPU
[X
⊗

δ or X
⊗

round (δ )].
The simulations in Figures 4A,C were conducted by

initializing, or seeding, the simulations at the same weights as
the experiment, and using the LUT for each device. The ideal
numerical simulations in Figures 4B,D were conducted assuming
perfectly linear and symmetric devices: all 1Gi are identical for
all device and all G.

The simulations in Figure 6 used 100 random initial seed
values. Figure 6A plot the fraction of seed values that will achieve
100% classification accuracy of the twelve permutations of the
logic gates trained in experiment (Figure 2A). Figures 6B,C
plots average classification accuracy of the data set across all
seeds. The learning rate for handwritten digits were 0.01 for
numeric, 0.006 for single lookup table, and 0.012 for multiple
lookup tables. The learning rate for articles of clothing were
0.001 for numeric, 0.0001 for single lookup table, and 0.00015 for
multiple lookup tables.

The “ideal numerical” simulations in Figure 6 assumes that
1Gi is equal for all devices and conductance states. The single-
ECRAM and single-TaOx uses the same LUT from one device to

simulate all device properties in the array. The multiple-ECRAM
for logic gates uses the same nine LUT from the experiment
(Figure 1D). The other multiple-ECRAM and all multiple TaOx
simulations picked random LUT from the dataset, with each
simulated synapse drawing a random LUT. More details on
CrossSim’s methodology and details of parameterized neural core
operations can be found at: https://cross-sim.sandia.gov/_assets/
documents/crosssim_manual.pdf.
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