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Bacterial associations 
in the healthy human gut 
microbiome across populations
Mark Loftus1,3, Sayf Al‑Deen Hassouneh1,3 & Shibu Yooseph2*

In a microbial community, associations between constituent members play an important role in 
determining the overall structure and function of the community. The human gut microbiome is 
believed to play an integral role in host health and disease. To understand the nature of bacterial 
associations at the species level in healthy human gut microbiomes, we analyzed previously published 
collections of whole-genome shotgun sequence data, totaling over 1.6 Tbp, generated from 606 fecal 
samples obtained from four different healthy human populations. Using a Random Forest Classifier, 
we identified 202 signature bacterial species that were prevalent in these populations and whose 
relative abundances could be used to accurately distinguish between the populations. Bacterial 
association networks were constructed with these signature species using an approach based on the 
graphical lasso. Network analysis revealed conserved bacterial associations across populations and a 
dominance of positive associations over negative associations, with this dominance being driven by 
associations between species that are closely related either taxonomically or functionally. Bacterial 
species that form network modules, and species that constitute hubs and bottlenecks, were also 
identified. Functional analysis using protein families suggests that much of the taxonomic variation 
across human populations does not foment substantial functional or structural differences.

The community of microbial cells in the human gut is estimated to be comparable in magnitude to the number 
of human cells1. This community, deemed the human gut microbiome, is mainly composed of bacteria, archaea, 
fungi, and viruses, with bacteria being the largest constituent. These bacterial cells exist in a complex consortium 
of ecological and metabolic interactions that ultimately influence the taxonomic and functional profile of the 
microbial community, as well host health. The gut microbiome of healthy individuals is believed to be mainly 
symbiotic and is known to play important roles in host metabolism, immunological modulation and develop-
ment, cell signaling, pathogen colonization resistance, and mucosal regeneration and homeostasis2–4.

The continued stability of this community and its functions, i.e. homeostasis5,6, is important and its disrup-
tion, broadly described as ‘dysbiosis’ 7, has been associated with numerous diseases including, but not limited to: 
diabetes8, cardiovascular disease9,10, obesity11, inflammatory bowel disease12,13, and various cancers14. However, 
it remains unclear whether disease onset is the consequence or cause of the microbiome community disruption. 
Furthermore, what constitutes a healthy gut microbiome is still under investigation due to the overwhelming 
amount of bacterial species found in the gut, and the large variation in their carriage rates across human popula-
tions and individuals15,16. These issues are of great importance as one of the ultimate goals of microbiome research 
is to modulate the community from a ‘dysbiotic’ state into a healthy ‘homeostatic’ one.

Early research towards this goal chose to limit their focus to taxonomic differences between healthy and dis-
ease microbiomes17–19. While these comparisons are valuable, since the bacterial community taxonomic profile 
generally represents the potential metabolic and transcriptional profiles that are present within the ecosystem; 
simply profiling the community fails to acknowledge the underlying bacterial associations and the impact they 
exert on both the microbial ecosystem and host health. In fact, many studies within natural systems and animal 
hosts have shown that the associations (positive and negative) between bacteria are an important foundation 
for the continued stability and proper functioning of these ecosystems20–25. As such, it is of great importance to 
assess the relationships that exist between bacteria within the healthy human gut microbiome in order to better 
understand the ecological associations important for the structure and maintenance of the gut microbiome and 
its related processes. Naturally, this raises an important question: are there similarities in the structural features 
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of bacterial association networks in human gut microbiomes across healthy populations, and if so, are there 
conserved associations?

Microbial associations in a community are characterized by both direct and indirect interactions between 
the constituents26. In this paper, we depict these associations using a weighted graph (network) in which the 
nodes represent bacterial species and an edge between two nodes represents an association between the corre-
sponding species, with the edge weight capturing the strength of the association. This framework enables us to 
model both positive and negative associations between species, and thus can help to shed light on cooperation 
and competition between species in the community. Once a network is constructed, an analysis of the various 
topological properties of the network can enable us to decipher the underlying ecological rules associated with 
the microbial ecosystem. These networks also provide the ability to determine the relative importance of species 
for ecosystem structure and function.

Microbial association networks are typically constructed from a sample-taxa count matrix generated by 
collecting multiple samples from the community and determining the taxa counts in each sample. With the 
availability of high-throughput and low-cost DNA sequencing technologies, these counts are generated by 
sequencing the collected biological samples. Microbiome sequence data are generated either using a targeted 
approach, involving the sequencing of a taxonomic marker gene (e.g., the 16S ribosomal RNA gene)27 or using 
a whole-genome shotgun (WGS) sequencing approach28. However, estimates of taxa abundances using 16S 
rRNA sequences can be confounded by several factors including the presence of multiple copies and variants of 
the 16S rRNA gene in genomes, and the lack of taxonomic resolution in the selected variable region of the 16S 
gene29,30. Conversely, WGS data can be used to provide more accurate estimates of genome relative abundances 
as well as higher resolution taxonomic classification, compared to 16S rRNA data31,32. Regardless of sequenc-
ing approach, the taxa count data generated by DNA sequencing are compositional in nature and provide only 
relative abundance information of the constituent taxa33. This poses challenges for inferring associations, and 
the computation of measures like correlation directly from the observed sequence counts can be misleading34. 
While several methods have been proposed for constructing association networks that address this challenge35, 
here we use a Gaussian Graphical Model (GGM) framework on Centered Log-Ratio (CLR) transformed count 
data to construct an association network36,37.

We are motivated by the observation that the covariance matrix of a multivariate Gaussian distribution used 
to fit log-transformed relative count data provides a good approximation to the covariance matrix of the log-
transformed absolute count data36,37. The GGM framework also enables the modeling of conditional dependencies 
of the random variables that represent taxa abundances. The adjacency matrix of the association network that 
we construct is the inverse covariance matrix (i.e. the precision matrix) of the underlying multivariate Gaussian 
distribution used in the GGM. This graph has the property that an edge exists between two nodes if and only 
if the corresponding entry in the precision matrix is non-zero. A zero entry in the precision matrix indicates 
conditional independence between the two corresponding random variables. We also incorporate sparsity in 
our framework using the l1-penalty norm and construct sparse association networks using the graphical lasso 
method (glasso)38.

In this study we investigate bacterial association networks in gut microbiomes across four healthy human 
populations. Previous studies analyzing bacterial association networks have mainly used 16S rRNA data, and 
given its lower taxonomic resolution, these studies have analyzed associations at the genus level39. Instead, here 
we use a large collection of WGS samples from multiple human populations to investigate bacterial associations 
at the species level. We use a machine learning algorithm to identify a set of signature species that can accurately 
distinguish between the different healthy populations. Using these signature species, we construct networks by 
employing a glasso method that incorporates a bootstrapping40 approach to reduce the number of false positive 
edges inferred41. We analyze these networks to assess the theoretical ecology, and potential importance of species 
within healthy human gut microbial communities.

Results
Signature species in the healthy human gut microbiome.  For each cohort, the prevalence of indi-
vidual species across all samples was measured and plotted. All cohorts exhibited a skewed bi-modal distribu-
tion (Fig. 1a). The first peak in the distribution was centered around a prevalence of 10%, while the second 
peak occurred around a prevalence of 90%. This skewed bi-modal distribution has been previously observed 
in a microbial community, and organisms that were highly prevalent were deemed the ‘abundant core’ as they 
were found to account for the majority of total sample abundances42. The 90% prevalent species set for each 
cohort consisted of 127 (American), 109 (Indian), 182 (European), and 146 (Japanese) species respectively, and 
these species were found to account for a large majority of the total sample proportions, the median values for 
the cohorts were 0.93 (American), 0.93 (Indian), 0.87 (European), and 0.81 (Japanese) (Fig. 1b). We utilized a 
Random Forest Classifier (RFC) framework to determine the effect of prevalence threshold values on the abil-
ity to distinguish between cohorts using the taxonomic profiles of the constituent samples. For each prevalence 
threshold value, a single input feature set was generated to construct the classifier; this feature set was produced 
by taking the union of the bacterial species sets for the four cohorts (at that prevalence threshold value). The RFC 
was able to distinguish between cohorts with an F1-score > 0.85 for all tested prevalence thresholds (0%, 20%, 
40%, 50%, 60%, 80%, 90%, 100%), but demonstrated the highest F1-score at the 90% threshold, even though 
less than 10% of the original species remained (Supplemental 1). Based on this analysis, we define the set of sig-
nature species to be the union of the prevalent (> 90%) species sets from the four cohorts. The signature species 
set consisted of 202 species and was used for constructing the bacterial association network for each cohort. We 
explored the variability in signature species relative abundance between samples using principal components 
analysis (PCA) applied to the CLR-transformed data (Fig. 1c). PCA showed evidence for separation of samples 
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from the Indian and American cohorts, but ultimately the PCA only explained a small amount of the total vari-
ance (PC1: 11.38%, PC2: 10.91%).

Bacterial association networks.  Prior to its application on the cohort data, the network inference 
method with bootstrapping was tested on synthetic data (see Supplemental) notably, most graph-types were 
inferred with an F1-score above 0.7 (band: 0.974, hub: 0.885, random: 711, cluster: 0.692, scale-free: 0.416) (Sup-
plemental 2a). Furthermore, we demonstrate that as the sample-to-taxa ratio increases, F1-scores approach 1, 
and all groups demonstrate mean F1-scores above 0.9 (Supplemental 2a). Finally, we observe that our network 
inference method tends to underestimate edge weights, and on average the estimated edge weights are 53.23% 
of the actual edge weights (Supplemental 2b). A bacterial association network was constructed for each cohort 
using the CLR-transformed relative abundances of the signature species (see “Methods”). Each network was 
modeled as an undirected graph consisting of nodes and edges (Fig. 2). At a high-level, differences in the struc-
ture of the four networks were apparent. The European, Japanese, and Indian networks exhibited a high density 
of edges occurring between nodes from the phylum Firmicutes, whereas the American network had the largest 
density of edges existing between nodes from the phylum Bacteroidetes. Positive associations were dominant in 
all networks (American: 0.98, Indian: 0.97, European: 0.96, Japanese: 0.96), and negative associations involve 
nodes from the phylum Firmicutes. Network topology was studied by calculating the following network proper-
ties: average shortest path length (ASPL), transitivity, modularity, degree assortativity, and genera assortativity 

Figure 1.   ‘Abundant cores’ and Signature Species. (a) All cohorts exhibit a bimodal distribution for species 
prevalence. Species that are prevalent in 90% or more samples within a cohort is considered a member of 
that cohort’s ‘abundant core’. (b) The proportion of total sample relative abundance each cohort’s ‘abundant 
core’ species and the union of all ‘abundant cores’ species (i.e., Signature Species/Sig). The ‘abundant core’ 
microbiota is shown to account for the bulk of reads mapped within each sample. Each dot represents a sample 
from that cohort. (c) PCA demonstrating the lack of distinct clustering of samples from different cohorts 
based on the CLR-transformed relative abundance data of the signature species. Samples from the Indian and 
American cohorts appear to separate from the rest of the cohorts however, samples from the other two cohorts 
demonstrate little separation. The diamonds indicate cluster centroids.
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(see “Methods”) (Table 1). These properties were compared to random networks using Monte Carlo simulations 
(see Supplemental). All cohort networks were deemed non-random in their topology and exhibited significantly 
low ASPL (all P-values < 0.05), significantly high modularity (all P-values < 0.01), significantly high transitivity 
(all P-values < 0.001), significantly high genera assortativity (all P-values < 0.001) and significantly high degree 
assortativity (all P-values < 0.01), relative to the random networks. The low ASPL within networks suggest that 
nodes are connected to one another through short paths within the network. The high transitivity and modular-
ity indicate that nodes form cliques and networks exhibit compartmentalization (modules), respectively. Lastly, 

Figure 2.   Species-level bacterial association networks. Network modeling of associations between (173/202) 
signature species within each network. A total of 29 species were not shown as they had zero edges in all 
networks. Node color designates the phylum each species belongs to, node size is reflective of node degree, 
and edge color represents if the association is positive (blue) or negative (orange). Nodes are ordered 
counterclockwise around the circle by the alphabetical order of the concatenated string of all taxonomic levels. 
Nodes that are numbered correspond to species with the highest degree centrality within modules, designated 
as “hubs”. Brackets around [Bacteroides] pectinophilus indicate that it is misclassified (i.e., placed incorrectly 
in a higher taxonomic rank and awaiting to be formally renamed). We utilized Blast to designate [Bacteroides] 
pectinophilus as belonging to the phylum Firmicutes91. For a full list of species shown and not shown within 
network models see Supplemental.

Table 1.   Cohort network topological properties. Network topological properties calculated for each cohort’s 
network. The plus (+) or minus (−) sign indicates that the network property was greater or lower than the 
average of 1000 random networks. Stars indicate that the network property was statistically significantly 
different (P-value: * < 0.05, ** < 0.01, *** < 0.001) based on the Monte Carlo simulations.

Network Nodes Edges Density ASPL Transitivity Modularity Degree assortativity
Genera 
assortativity

American 202 338 0.017 1.539 (−, ***) 0.487 (+, ***) 0.475 (+, *) 0.338 (+, ***) 0.144 (+, ***)

Indian 202 273 0.013 1.874 (−, *) 0.452 (+, ***) 0.667 (+, ***) 0.330 (+, ***) 0.163 (+, ***)

European 202 386 0.019 1.369 (−, ***) 0.353 (+, ***) 0.681 (+, ***) 0.158 (+, *) 0.196 (+, ***)

Japanese 202 274 0.013 1.444 (−, ***) 0.471 (+, ***) 0.755 (+, ***) 0.308 (+, ***) 0.242 (+, ***)
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the high (assortative) degree assortativity and genera assortativity portrays that nodes tend to form connections 
to other nodes that have a similar degree and taxonomy.

Theoretical ecology based on bacterial association networks.  All cohort networks were found to 
contain highly similar distributions of association (edge) weights, where positive associations were more fre-
quent and greater in magnitude than negative associations (Fig. 3a). Furthermore, a large percentage of associa-
tions (American: 40%, Indian: 40%, European: 40%, Japanese: 53%) were found to be shared with at least one 
other network, however, the Japanese network shared the largest proportion of associations with all other net-
works (American: 26%, Indian: 22%, European: 33%) and the Indian network the least with all other networks 
(American: 18%, Japanese: 22%, European: 16%) (Supplemental 3). Interestingly all shared associations were 
positive (Fig. 3b). A conserved structure of 14 associations, composed of 20 species (Fig. 3c), mainly from the 
genus Bacteroides, was observed to be contained within all networks (Supplemental 4). Many of these conserved 
associations were associations with relatively higher edge weights (Fig. 3a). No negative association was retained 
across networks. However, viewed at the higher taxonomic rank for those species involved in negative associa-
tions, we observed that across all cohort networks, members from the phylum Firmicutes were involved in a 
large percentage of the negative associations (American: 100%, Indian: 100%, European: 62.5%, Japanese: 100%), 
and specifically these negative associations were mainly occurring between species from the order Clostridi-
ales (American: 25%, Indian: 89%, European: 56%, Japanese: 100%) (Supplemental 5). We next explored the 
taxonomic relationship between species and their association type (positive or negative) (Fig. 4a), as well as the 
genome functional profile dissimilarities, according to Bray–Curtis dissimilarity, between network neighbors 
against their association weight (Fig. 4b). We found that most positive associations take place between bacteria 
that are more taxonomically and functionally similar, while negative associations were never found between 
species within the same genus, or between species with low genome functional profile distance (< 0.2), and lin-
ear regression showed a negative correlation (p-value < 0.05) between association weight and partner genome 
functional distance (Supplemental 6).

Figure 3.   Cohort network association analysis. (a) The distribution of bacterial association weights within 
each cohort’s network, dots (black and yellow) and (n) represent total associations. Yellow dots represent species 
associations that were found shared across all networks. (b) The proportion of associations within each cohort’s 
network that are unique (red) or shared (blue) with at least one other network. (c) Sub-graph displaying only the 
20 conserved nodes (species) and 14 edges (associations) retained across all cohorts.
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Network cliques and module detection.  As our networks exhibited both high transitivity and mod-
ularity, we sought to investigate the cliques and modules of species contained within them. We first found 
all cliques of three species (1588 unique cliques) within our networks (see “Methods”). These triadic cliques 
are important to understand because their formation provides stability to the community structures existing 
between species43,44. Of these cliques: 113 were shared in at least 1 other network, 8 were shared across three 
networks, and only 1 (Bacteroides caecimuris, Bacteroides fluxus, Bacteroides thetaiotaomicron) was found in all 
networks. In total, 66 genera were shown to participate in clique formation, however, cliques were shown to be 
mainly (American: 29%, Indian: 72%, European: 64%, Japanese 55%) formed between species from differing 
genera (Supplemental 7a). Species from the genus Bacteroides were found to be involved in the largest percent-
age of cliques (American: 21.0%, Indian: 4.0%, European: 4.9%, Japanese: 5.8%) within most cohort networks 
(Supplemental 7b). Interestingly, the cliques that contained species from Bacteroides were also the most retained 
(American: 20.9%, Indian: 8.5%, European: 8.5%, Japanese: 10.8%) across all cohorts (Supplemental 7c).

Following clique analysis, we performed module detection utilizing an asynchronous Label Propogation 
Algorithm (aLPA) (see Supplemental) which identified a total of 49 modules (American: 10, European: 11, Indian: 
14, Japanese: 14) that contained 3 or more members45 (Supplemental 8). The quality of network partitioning 
by the module detection algorithm (performance) was analyzed (American: 0.96, Indian: 0.98, European: 0.94, 

Figure 4.   Taxonomic and functional relationships between species. (a) Proportion of associations within 
each cohort’s network that are either positive or negative at the lowest level of taxonomic relation (n = total 
associations). Most positive associations appear between taxonomically similar species. (b) Association weight 
vs Bray–Curtis distance of genome functional profiles between network partners. Positive associations between 
functionally similar species are both common and greater in strength than negative associations. There appears 
to be a minimal distance between genome functional profiles before a negative association is demonstrated. 
(c) An asynchronous LPA was used to analyze the modules composing the networks of each cohort. Each 
dot represents the aggregated TIGRFAM profiles of an individual module found by aLPA and the diamonds 
represent the cohort centroids. Four distinct clusters were found, and each cohort was represented within each 
cluster. The American cohort appears to be biased towards Cluster IV, however the other cohorts do not appear 
overtly biased to any one cluster.
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Japanese: 0.98) showing that the majority of edges between nodes were contained within modules (see Supple-
mental). PCA was utilized to examine the variance between Module Functional Profiles (MFP’s) of the different 
cohort (Fig. 4c). This analysis revealed MFPs fell within one of four clusters, and each cohort had representation 
within each cluster. Taxonomic and functional characteristics of the clusters were analyzed. Cluster I contained 
modules formed mainly by the genera Streptococcus and Bifidobacterium (Fig. 5a). Cluster II modules were 
mainly composed of species from the genera Alistipes, Bacteroides, and Prevotella (Fig. 5b). Cluster III modules 
were dominated by the genera Bacteroides (Fig. 5c). Cluster IV modules were mainly composed of species from 
the genera Blautia, Eubacterium, Lachnoclostridium, and Ruminococcus (Fig. 5d). Functional analysis of clus-
ters revealed unique roles in each cluster. Cluster I displayed an increase in roles linked to toxin production, 
protein secretion, anaerobic metabolism, nucleic acid metabolism, and a decrease in roles linked to thiamine 
biosynthesis. Cluster II displayed an increase in roles linked to cellular metabolism and protein degradation, 
displayed a decrease in roles linked to cell division and signal transduction. Cluster III displayed an increase in 
roles linked to chemoautotrophy, sulfur and phosphorous metabolism, and DNA metabolism. Lastly, cluster IV 
displayed an increase in roles tied to transcription factors and a decrease in roles associated with adaptation to 
atypical conditions (Supplemental 9).

We next analyzed the sample functional profiles using PCA (Supplemental 10a). PCA explained a modest 
amount of variance (PC1: 27.82%; PC2: 5.99%) although samples between cohorts were found to overlap. When 
analyzing the Cohort Functional Role Profiles (CFRP’s), only 11 differences, when comparing the signs (+/−), 
out of the 113 found roles were found, and only the European cohort exhibited more than two differences (Sup-
plemental 10b).

Node centrality analysis.  We utilized degree and betweenness centrality measurements to identify “hub” 
and “bottleneck” nodes, respectively, within our networks (see Supplemental). These centrality measurements 
were selected because ‘hubs’ and ‘bottlenecks’ are nodes that could have strong influence within a network and 
have been utilized previously to identify important species within microbial ecosystems21,23,46. Considering all 
cohort networks were deemed assortative in respect to their degree assortativity, we did not expect to find net-
work “hub” nodes. However, we did find that nearly all modules, within each cohort, were disassortative in 
their degree assortativity which hinted at “hub” nodes existing within modules (Supplemental 11). For these 
reasons, we chose to select the node within each module that exhibited the highest degree (see Fig. 2), and the 
top 10 nodes within each network with the highest betweenness. Across all cohorts we found variation in the 
species deemed module ‘hubs’ and ‘bottlenecks’ (Supplemental 12a), although at the genus level there was a large 
amount of agreement (Supplemental 12b). In at least three out of the four cohorts, species from Bacteroides, 
Alistipes, Bifidobacterium, Eubacterium, Parabacteroides, and Streptococcus were designated as ‘hubs’, whereas 
species from Bacteroides and Lachnoclostridium were designated as ‘bottlenecks’.

Discussion
In this study, we used WGS data in conjunction with a network inference method that is robust to sequence data 
compositionality to analyze the associations occurring between species within the healthy human gut micro-
biome across different populations. The association networks were constructed utilizing the signature species.

We demonstrated that bacterial association networks, across all cohorts, do not have the same properties as 
random networks. However, relative to each other, the networks of the four cohorts display similar properties. 
Random networks are known to contain short average path lengths, low node clustering, and high modularity46,47. 
Compared to random networks each cohort network was found to exhibit significantly shorter average shortest 
path lengths, significantly higher transitivity (clustering), significantly higher modularity, significantly higher 
degree assortativity, and significantly higher genera assortativity. We posit that the similarities in network prop-
erties reflect an organization of the bacterial community that is important to underlying ecological processes. 
For instance, the short average path lengths within our networks could imply rapid signaling between bacterial 
species, potentially facilitating swift changes in community metabolism. This is supported by previous studies 
demonstrating that the human gut microbiome exhibits rapid alterations in bacterial metabolism and abundance 
in conjunction with change in host diet19.

In addition to exhibiting similar properties, cohort networks also shared a large percentage of associations 
(American: 40%, Indian: 40%, European: 40%, Japanese: 53%), including a conserved set of 14 positive associa-
tions composed of 20 species. These conserved associations may be indicative of strong partner fidelity, important 
ecological relationships, or potentially obligate partnerships. Furthermore, we found that taxonomically and 
functionally similar species tended to have positive associations. This finding was unexpected as some previous 
studies on microbial ecosystems, including the human gut48–50, have shown negative interactions between bacteria 
(competition, predation, etc.) should be the dominant form of interaction51, especially when those bacteria are 
taxonomically or functionally alike52. The differences between our results and the aforementioned research may 
be due to their use of non-transformed data and pairwise analysis. It has been noted that compositional data 
exhibit a negative correlation bias33, and thus, failing to account for the compositional nature of sequencing data 
may lead to inferring more negative associations than those that actually exist. In fact, a previous comparison 
of compositionally robust network methodologies demonstrated that the majority of associations for these 
methodologies are positive37. Our findings would suggest that kin-selection53 (positively associating with those 
of similar lineage to directly or indirectly pass on one’s genes), as opposed to competitive exclusion54 (bacteria 
with similar lineage or functionality are more likely to compete within a habitat), is more prevalent within the 
healthy gut microbiome. This observation cannot be excluded as there is precedence within microbial ecosystems 
for the co-occurrence of bacteria with similar genetic traits52,55, and studies on bacterial dynamics in the gut that 
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Figure 5.   Pie plots of the cluster taxonomy. Pie plots demonstrating genus-level taxonomic compositions 
within each of the module clusters. Clusters were determined using PCA of module functional profiles for 
each module. (a) Cluster I is dominated by members of the Streptococcus and Bifidobacterium genera and no 
genus represents less than 3% relative abundance. (b) Members of the Bacteroides genus are also the most 
abundant in the Cluster II, however the Prevotella and Allistipes genera are also abundant and account for > 70% 
of abundance when combined with Bacteroides. There are 6 genera with relative abundances below 3%. (c) 
Members of the Bacteroides genus are the most abundant in the Cluster III and there are 49 genera with relative 
abundances below 3%. (d) There are only 5 genera above 3% relative abundance and 44 genera below 3% with 
no one genus showing greater than 15% relative abundance. Genera with < 3% relative abundance were placed in 
the ‘Others’ category.
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suggest close relatives to bacteria currently present in the gut are more likely to be recruited into the community, 
i.e., phylogenetic under-dispersion (nepotism) hypothesis56.

Within all cohorts, positive associations were not only the most dominant form of association, but also the 
only associations that were shared across networks. This finding seems logical as within the anoxic environment 
of the gut, bacterial energy production is limited which would make positive associations, such as mutual cross-
feeding, preferable in order to produce and utilize energy more efficiently57. In addition, ecological community 
theory suggests that partitioning of resources in space and time drive coexistence58, and bacteria within the 
human gut microbiota are known to exhibit diurnal fluctuations59 and exist in distinct spatial organizations60–62. 
Furthermore, positive associations between species are also known to alleviate ecosystem stresses and allow for 
a greater diversity of organisms to coexist63, and the healthy gut microbiome has a high level of biodiversity64. 
However, it is Important to be cognizant that a positive association between species does not rule out the presence 
of a negative interaction completely, as negative interactions between species can still have a net positive result 
if an increased survival rate is occurring, as well as to understand that these positive associations are not always 
indicative of cooperative activities as they could simply reflect a common preferred environmental niche63. In 
contrast to the large proportion of shared positive associations, negative associations were always unique to a 
specific cohort; however, as we viewed the higher-level taxonomic ranking of species involved in negative asso-
ciations, we found that across all cohorts most negative associations were occurring between species from the 
order Clostridiales. Species from the order Clostridiales are known to be largely cellulolytic, in that they mainly 
hydrolyze the polysaccharide cellulose65. This limited nutritional niche could theoretically create competition 
between Clostridiales sp., and in any case, these associations might be important for community stability as nega-
tive associations within microbial communities are thought to be an important stabilizing force50. In our analysis, 
29 (out of the 202) species were found to exhibit no associations (positive or negative) across all networks. It may 
be possible that these species have very low strengths of association with some of the other species (i.e., partial 
correlation values below the detection threshold). It is also possible that some of these species occupy a unique 
metabolic niche in which they are capable of utilizing a specific resource for their metabolic requirement that is 
inaccessible to other microorganisms thereby limiting any cooperative or competitive actions.

While the healthy human gut microbiome is indeed routinely described as stable64, the low abundance of 
negative associations within our networks suggests that the gut microbiome would be more vulnerable to positive 
feedback loops between species which could result in instability50. We hypothesize that the high modularity found 
within all cohort networks could mitigate the vulnerability to positive feedback loops as high network modularity 
has been shown to have a stabilizing effect47. We used a module detection algorithm to identify groups of highly 
connected species within our networks. The algorithm identifies modules of species which have previously been 
noted to benefit by growing together (e.g., Bifidobacterium sp.)66. As we analyzed the variance between module 
functional profiles, using PCA, we found that modules gravitated towards one of four clusters. Although some 
cohorts had a greater proportion of modules within certain clusters, all cohorts had some level of representation 
within each cluster. Upon further analysis, we were able to find distinct functional and taxonomic differences 
between module clusters, but we were not able to distinguish overt functional differences between CFRP’s. This 
implies that a general set of functions is present in each healthy population regardless of taxonomic differences. 
These module clusters may be indicative of niches that are retained in the healthy human gut microbiome, and 
the redundancy of multiple modules of a cohort falling within a cluster is potentially a further stabilizing force for 
the ecosystem. These findings agree with previous studies showing comparable communities and high functional 
redundancy across gut microbiome data sets55,67.

Lastly, we identified species that acted as “hubs” or “bottlenecks” within the structure of cohort networks. 
These node types are important for maintaining network structure and thereby also potentially important species 
for community structure within the human gut microbiome35. Notably, we found Bacteroides sp. were designated 
as both “hubs” and “bottlenecks” across all networks. Interestingly, Bacteroides sp. were also found to be the 
largest constituent of bacterial cliques and these cliques were the most retained across all cohorts. Additionally, 
of the 20 species from the 14 conserved associations found across networks, most were species belonging to 
Bacteroides. These findings suggest that Bacteroides sp. are important drivers of the ecosystem within the healthy 
human gut microbiome. Interestingly, previous studies have also designated Bacteroides sp., such as Bacteroides 
fragilis and Bacteroides stercosis, as potentially important (keystone) species within the human gut microbiome68.

It is important to consider the limitations of our study. Our samples originated from different geographi-
cal locations and utilized different preparation procedures both of which are known to introduce biases24,69,70. 
Another limitation is the presence of potential confounding variables within the cohorts such as age and sex. 
Additionally, due to the cross-sectional nature of our data we are only able to capture snapshots of the gut 
microbiome and are unable to examine the dynamics of the ecosystem. Furthermore, we utilized a reference-
based mapping approach for taxonomic classification potentially causing our classifications to be limited by 
the genomes available. Finally, the constructed bacterial networks were undirected, and the study was non-
mechanistic which prevents us from being able to examine the influence individual species have on one another 
(unidirectional ecological interactions).

In closing, we have demonstrated that bacterial communities across healthy human populations are similar 
in their organization and functional capacities. We have also revealed that positive associations regularly occur 
between taxonomically and functionally related species despite bacterial carriage differences, healthy human gut 
microbiomes across populations exhibit less variation (structural and functional) than previously believed. Our 
future research will build upon these findings to better understand how bacterial associations change within the 
disease microbiome. Also, by using the prevalent species, we can minimize the ‘noise’ of bacterial variation across 
hosts, especially since low prevalence species may ultimately be transient in nature42. This could be advantageous 
as it has been suggested that the most abundant organisms are the ones that act as “ecosystem engineers”52, and 
the study of these organisms would be important to understand how the microbiome responds to disturbances.
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Materials and methods
Data acquisition.  We utilized 606 WGS fecal samples (1.68 Tbp), which were obtained from four previ-
ously published human gut microbiome studies from four different healthy human populations (cohorts). Three 
cohort datasets were downloaded from the NCBI Sequence Read Archive (SRA): American15 (PRJNA48479; 
202 samples), Indian71 (PRJNA397112; 106 samples), and European72 (PRJEB2054; 120 samples). The Japanese 
cohort dataset was downloaded from the DDBJ Sequence Read Archive (DRA): Japanese73 (PRJDB4176; 178 
samples) (Supplemental 13). All cohort sample groups had similar male-to-female frequencies, except for the 
European cohort (American: 0.53/0.47; Indian: 0.50/0.50; European: 0.34/0.66; Japanese: 0.56/0.44) (Supple-
mental 14).

Data pre‑processing.  Reads from all samples were first trimmed using Trimmomatic74 (version 0.36) and 
then human reads were filtered using BowTie275 (version 5.4.0) and the GRCh38.p12 (https​://www.ncbi.nlm.
nih.gov/assem​bly/GCF_00000​1405.38/) human reference genome. After removal of human reads, 15.9 billion 
high-quality reads remained (Supplemental 15).

Read mapping and species‑level taxonomic profiling.  Reads were mapped to a collection of 10,839 
bacterial reference strain genomes downloaded from RefSeq76, using Bowtie2. The read mapping information 
was analyzed using a probabilistic framework based on a mixture model to estimate the relative copy number 
of each reference genome in a sample. This framework used an Expectation–Maximization (EM) algorithm to 
optimize the log-likelihood function associated with the model77. The EM algorithm was found to be highly 
accurate when benchmarked using simulated WGS reads produced by WGSim (https​://githu​b.com/lh3/wgsim​
) (Supplemental 16). Sub-sampling and benchmark testing of sample read mapping counts showed that a read 
depth of 250,000 mapped reads at a noise threshold of 1e−5 correlated well with samples mapping over 5 million 
mapped reads (R2 > 0.85, Supplemental 17). Any bacterial strain found in a sample below 1e−5 relative abun-
dance was considered statistical noise and was dropped to an abundance of 0. Strains were then grouped by their 
species classification and their relative abundances were summed to produce species abundances.

Bacterial genome annotation and functional profiles.  All bacterial reference genomes were func-
tionally annotated in-house to create reference strain functional profiles. Before genome annotation, we utilized 
CheckM78 (v1.0.13) to ensure that these reference genomes were mostly complete (Supplemental 18). Prodigal79 
(version 2.6.3) was used to identify genes, and generate protein sequence translations, which were then provided 
to InterProScan80 (version 5.39-77.0) to find matches to protein families using the TIGRFAM81 (version 15.0) 
database. The functional profile for a bacterial strain was created by identifying the total number TIGRFAM 
matches to the strain, and subsequently converting these counts to relative abundances. The functional profile 
for a bacterial species was created separately for each cohort. This was computed by first finding the average 
genome abundance of each strain within the cohort, weighting the strain functional profiles based on these 
proportions, and then aggregating the resulting strain profiles. Each species functional profile was then CLR-
transformed. CLR-transformation is defined as:

where x is the vector of species abundances within each sample, D is the total number of species. The geometric 
mean of vector x is defined as:

TIGRFAM functional annotations were obtained from TIGRFAMs_ROLE_LINK and TIGRFAM_ROLE_
NAMES (ftp://ftp.jcvi.org/pub/data/TIGRF​AMs/14.0_Relea​se/).

Cohort sample functional profiling.  A Simplified Annotation Format (SAF) file containing the bacterial 
chromosomal coordinates of TIGRFAMS (features) for all reference strains was provided to FeatureCounts82 
(Subread package 2.0.0) to find the total features contained within sample reads. Counts of features were subse-
quently length normalized, summed, and re-normalized (by total) for each sample producing sample functional 
profiles. Protein families were grouped by their TIGRFAM role, and their relative abundances were aggregated 
and CLR-transformed to generate the cohort functional role profiles (CFRP). Roles that were a different sign 
(+/−) in one cohort, when compared to all other cohorts, were considered different (elevated/reduced).

Construction of bacterial association networks.  For each cohort, a sample-taxa matrix was con-
structed containing the relative abundances of the signature species in each sample. The bacterial association 
network for a cohort was constructed from its CLR transformed sample-taxa matrix using the GGM framework. 
In each case, a sparse precision matrix was computed using the R83 huge84 package, and this matrix formed the 
adjacency matrix of the association network. The tuning parameter ρ in the l1-penalty model for sparse preci-
sion matrix estimation was chosen using the stability approach to regularization (StARS) method85. In order 
to reduce the number of false positives, the estimated sparse precision matrix Ω was processed further using 
a bootstrap method as follows: r bootstrap datasets, each with n samples, were generated from the original 
CLR-transformed matrix by random sampling with replacement. A sparse precision matrix was estimated from 
each bootstrap dataset using the same previously chosen value of the tuning parameter ρ used to estimate Ω. 

clr(x)=
[

ln
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g(x)
. . . , ln

x2

g(x)
. . . , ln
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The final precision matrix Ω′ is derived from Ω as follows: (a) if Ω[i,j] = 0, then Ω′[i,j] = 0. (b) if Ω[i,j] ≠ 0, then 
Ω′[i,j] = Ω[i,j] if the entry [i,j] is non-zero in at least f*r precision matrices estimated from the bootstrap datasets. 
Otherwise Ω′[i,j] = 0. Thus, Ω′ is at least as sparse as Ω. Partial Correlation matrix, P, was calculated as:

The value f is a preset threshold (0 ≤ f ≤ 1). We used r = 50 (bootstrap replicates) and f = 0.8 (e.g. association 
must be non-zero ≥ 80% of the time) in our analysis. Partial correlation matrices were parsed using python and 
all associations below a magnitude of 0.01 were considered statistical noise and removed.

Network property, clique, and module analysis.  For each cohort network, the following properties 
were computed using NetworkX86 (version 2.4): average shortest path length (ASPL), transitivity, modularity, 
degree assortativity, degree centrality, betweenness centrality, and genera assortativity. The ASPL (α) is defined 
as:

where V is the set of nodes in the graph (G), D[s,t] is the shortest path from s to t, and n is the total number of 
nodes in G. The transitivity (T) of a network is the fraction of all possible triangles present in the graph, and is 
defined as:

triangles are a clique (a subset of nodes within a network where each node is adjacent to all other nodes within 
the subset) of three nodes, and triads are the count of connected triples (three nodes xyz with edges (x,y) and 
(y,z) where the edge (x,z) can be present or absent)86,87. Modularity (Q) is defined as:

where A is the adjacency matrix of graph (G), m is the total number of edges, ki is the degree of node i, and 
δ(Ci,Cj) is 1 if i and j (node pair) are in the same community or 0 if in different communities87,88. Assortative 
mixing is a predilection of nodes to form connections with other nodes that are like (assortative) or unlike (dis-
assortative) themselves. We measured node mixing preference according to node degree (degree assortativity) 
and node genus classification (genera assortativity). Degree assortativity is calculated using the standard Pearson 
correlation coefficient:

where D is the joint probability distribution matrix, D[x,y] is the fraction of all edges in the graph that connects 
nodes with degree values x and y, ax and by are the fraction of edges that start and end at nodes with values x and 
y, and σa and σb are the standard deviations of the distributions ax and by. The value of r can be any value between 
− 1 (perfect disassortativity) and 1 (perfect assortativity). Genera assortativity is defined as:

where Q is the joint probability distribution matrix whose elements are Q[i,j] (the fraction of all edges in the 
graph that connects nodes of genus type i to genus type j), Tr is the trace of the matrix Q, and ||Q|| signifies the 
sum of all elements of the matrix Q89.

Modules within each network were found utilizing the label_propogation_communities algorithm, based on 
the asynchronous label propagation algorithm (aLPA)45 from NetworkX. To quantify the ability of the aLPA to 
partition the data, we utilized the performance function NetworkX. Performance (p) is defined as:

where a is the total intra-module edges, b is the total inter-module non-edges, and c is the total potential edges90. 
Monte Carlo simulations were utilized to test for statistical significance of network property differences (see 
Supplemental). Three member cliques and modules within each network were found using NetworkX. Module 
functional profiles (MFP) were created by aggregating the functional profiles of species contained within each 
module.

Network node centrality (“hubs” and “bottlenecks”) analysis.  Degree centrality is defined as the 
degree (total edges) of a node. The node within each network module exhibiting the highest degree central-
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ity was designated as a module “hub”. If two or more species were found to have equal degree centrality then 
centrality measurements of those nodes were re-computed in context of the entire network. The top ten nodes 
exhibiting the highest betweenness centrality within each network were designated as “bottlenecks”. To find 
“bottleneck” species, betweenness centrality was computed for each node. Betweenness centrality is defined as:

where the betweenness centrality of a node (υ) is the sum of the fraction of all-pairs shortest paths that pass 
through υ, V is the set of all nodes, σ(s,t) is the number of shortest paths (s,t)-paths, and σ(s,t| υ) is the number 
of those paths passing through node υ other than s,t91.

Data and script availability
All scripts and data from this study is available for download at github: (https​://githu​b.com/syoos​eph/Yoose​
phLab​/tree/maste​r/Micro​biome​Netwo​rks/Healt​hyPop​ulati​ons).
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