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Abstract

Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The
coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical
relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing
data. To compare the performance of these widely applied models, we performed a simulation study. We simulated
phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially
growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a
coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate
of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum
likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model
had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD)
interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive
ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the
assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when
analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as
long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic
dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early
outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population.
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Introduction

In many applications determining the past dynamics of

populations is of interest. In an epidemiological context in

particular, the interest lies in knowing two quantities: the basic

reproductive ratio R0 and the growth rate r of the epidemic. R0 is a

key parameter that determines the probability and the extent of

spread of the disease in the population. It is defined as the number of

secondary infections a single pathogen is expected to cause when

introduced into a population of susceptible individuals [1,2]. The

growth rate r determines the speed of spread of the pathogen.

Accurate estimation of these two parameters (R0 and r) is required

in order to take appropriate measures of intervention, e.g.

vaccinations or isolation of infected individuals. Until recently,

estimation of these parameters was exclusively based on prevalence

and incidence epidemiological data. However, recent progress in

phylodynamics has enabled the inference of these parameters from

pathogen sequence data by integrating methods of phylogenetics

with those of mathematical epidemiology (for review see [3]).

SIR-type models have been widely used to describe epidemi-

ological dynamics [1,4]. In essence, these models are based on

separating the population into different classes of individuals,

namely susceptibles (S), infecteds (I ) and recovereds (R). Individ-

uals can change their status, i.e. switch from one class to another.

The epidemiological dynamics depend on two rates: a birth rate

lS=N and death rate d, where S is the number of susceptibles and

N the total population size. The birth rate, or transmission rate, is

the rate with which one infected individual will infect another

uninfected individual. In the transmission tree, an infection event

will be displayed as a bifurcation or split of one lineage into two

lineages. The death rate, or removal rate, is the rate with which an

infected individual becomes non-infectious, e.g. recovers from the

disease, dies, or changes behavior. In the transmission tree,

becoming non-infectious is a lineage that stops growing, i.e.

becomes a tip in the tree. Various sampling schemes select a

proportion of the infected individuals from the complete

transmission chain to be included into the observed phylogeny.

The observed phylogeny is the subtree induced by the complete

transmission chain that connects the sampled individuals. This

sub-selection of the individuals reflects the fact that in empirical

datasets the pathogens of only a small fraction of the infected hosts

have been sequenced and included into an epidemiological study.
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For an epidemic following SIR dynamics, the growth of the

population size at the initial stage of the spread follows an

exponential trend, although it slows down at later stages due to a

depletion of susceptibles. We focus on a special scenario, where only

the early epidemic outbreak, i.e. exponential growth of the infected

population, is being considered. We can simplify the model to a

constant rate birth-death process, where we assume no significant

decrease in the number of susceptibles over time, formalized as

S~N, implying that birth rate lS=N~l is constant.

Recent genetic sequencing efforts have produced many

pathogen sequences from different hosts. To reconstruct their

phylogenetic relationships, numerous methods have been devel-

oped (refer to books [5,6] and references therein). The resulting

phylogenetic trees are used as a proxy for the (incomplete)

transmission tree, and thus provide us with insights into the

dynamics of the epidemic. They enable us to estimate parameters

such as transmission rate (l), removal rate (d), growth rate

(r~l{d), or basic reproductive ratio (R0~
l
d). Methods based on

Bayesian inference coupled with a Markov chain Monte Carlo

(MCMC) procedure [7] infer the posterior distribution of trees (T )

together with the epidemiological parameters (g) and sequence

evolution parameters (h) from genetic sequencing data based on

the following relation:

f ½T ,g,hDdata�~ f ½dataDT ,h�f ½T Dg�f ½g�f ½h�
f ½data� : ð1Þ

Here, f ½T ,g,hDdata� is the posterior distribution of the

parameters and trees; f ½dataDT ,h� is the likelihood of the

parameters (T and h) that is usually computed by the Felsenstein

algorithm [8]; f ½T Dg� is the probability density of the phylogeny

given the epidemiological parameters (e.g. assuming an SIR-type

model); f ½h� and f ½g� are priors for evolutionary and epidemio-

logical parameters, respectively; and f ½data� is the normalizing

constant representing the integral of the numerator over all

phylogenies and parameters. As data are fixed, f ½data� is a

constant and thus irrelevant for the estimation of the posterior

probability density of the parameters in the MCMC procedure.

Here, we focus on the impact of the underlying epidemiological

model when calculating f ½T Dg�. Two models are mostly used in

epidemiological contexts for this purpose: the coalescent [7,9–14]

(uses and review of the model are described in [15]) and the birth-

death process [16–25] (reviewed in [26]). Both models have been

used to estimate R0 and/or the growth rate parameter r of HCV

[27,28] and HIV epidemics [24,25,29].

Since we only focus on phylogenies resulting from early

epidemic outbreaks, we apply a special case of the birth-death

model, namely the constant rate birth-death model with incom-

plete sampling, and a special case of the coalescent model, namely

the coalescent with deterministic exponential infected population

growth. Both models are implemented in the software package

BEAST v2.0 [30] and have been used interchangeably for

parameter inferences. The constant rate birth-death model

implemented for parameter inference in BEAST v2.0 is precisely

the epidemic outbreak model introduced above. The specific

sampling scheme used in this study is the implementation of a

constant sampling probability p upon ‘‘death’’ (happening with

rate d) for each individual (in BDSKY add-on of BEAST v2.0),

and is known as the incomplete sampling version of the birth-

death model [24]. The coalescent with deterministic exponential

infected population growth has been introduced in population

genetics, and is now also used as an approximation for

epidemiological dynamics.

Classically, the coalescent has been used in phylodynamic

studies. The coalescent reconstructs the ancestry of n sampled

individuals towards the most recent common ancestor (MRCA). In

fact, it reconstructs the probabilistic structure of the tree by

merging lineages progressively going back in time as a function of

the population size until there is only a single lineage left [31]. The

coalescent thus provides a prior distribution of trees given a

population size, where the population size may change through

time. In the epidemiological context the population size of interest

is that of the infected individuals. This probability density function

allows for the calculation of the probability of the tree for given

population size parameters [11,12,29]. The coalescent seems to be

a good approximation to many processes arising in biology (e.g.

[11,28,32]). However, violations of the model assumptions can

lead to consequences whose nature and extent are still not fully

explored [24,29]. The coalescent can be interpreted as a

continuous time approximation of the discrete time Wright-Fisher

model [33,34]. Based on this approximation, as stated by Rodrigo

and Felsenstein in [29], the requirements for the studied

population to be well approximated by the coalescent are:

1. individuals from one generation give rise to the individuals in

the next generation,

2. there exists sufficient genetic diversity within the population to

allow reconstruction of the phylogenetic relationships,

3. the population size is large enough (compared to the sample

taken), and

4. the population size is small enough to be able to trace back the

MRCA.

In most of the coalescent models, a further assumption is made:

5. the population size changes deterministically.

Author Summary

The control or prediction of an epidemic outbreak requires
the quantification of the parameters of transmission and
recovery. These parameters can be inferred from phylo-
genetic relationships among the pathogen strains isolated
from infected individuals. The coalescent and the birth-
death process are two mathematical models commonly
used in such inferences. No benchmark on the perfor-
mance of these models currently exists. We aimed to
objectively compare two specific models, namely the
constant rate birth-death model and the coalescent with a
deterministic exponentially growing infected population.
We compare coverage, accuracy, and precision with which
they can capture the true epidemic growth rate parameter
using simulated datasets. We find that the constant rate
birth-death process can account for early stochasticity and
is thus capable of recovering the epidemic growth rates
more successfully. Provided one of the parameters is
known, e.g. the sampling proportion of infected individ-
uals, then the basic reproductive ratio can also be
estimated reliably. We conclude that a birth-death-based
method is generally a more reliable method than a
deterministic coalescent-based method for epidemiologi-
cal parameter inference from phylogenies representing
epidemic outbreaks. Care should be taken if sampling is
not constant through time or across individuals, such
scenarios require so-called birth-death skyline models or
multi-type birth-death models.

Phylogenetic Inference of Epidemiological Dynamics
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The coalescent can also be interpreted as a continuous time

limit of the discrete time Moran process [35]. The assumptions

above with exception of 1) are also required for the continuous

time approximations of the discrete time Moran model, rather

than Wright-Fisher population model. Continuous time versions of

Wright-Fisher and Moran population models can also be

formulated directly rather than by approximation of discrete time

models. This is done by assuming a rate of coalescence in

continuous time instead of approximating it by a conversion from

discrete to continuous time space, as we point out in the

Supplementary Material S1. Such continuous time Wright-Fisher

and Moran population models can be formulated as a coalescent

process without the assumptions 1) and 3). Furthermore,

extensions to avoid deterministic population size changes, i.e.

assumption 5), have been developed [36].

In an epidemiological context, the sampling proportion in a

recent epidemic can be quite high. For instance, the sampling

proportion of the HIV epidemic in Switzerland has been estimated

to be 0.75 [37]. This high sampling proportion is a misspecifica-

tion for the discrete time Wright-Fisher and Moran process-based

coalescent models. Although some studies suggest that the

violation of this assumption should not be of significant

importance [38], its consequences on the model performance

when applied to empirical data are so far unknown. In addition,

impacts on the parameter inference under the coalescent in the

context of deviations from the deterministic population size

assumption are not well explored either.

The birth-death model also requires assumptions 2) and 4) to be

fulfilled. Additionally, the generation times are assumed to be

exponentially distributed, instead of discrete generations as in the

assumption 1). We see the major difference between the birth-

death model and the coalescent in three factors:

1. The birth-death process produces trees and analyzes phylog-

enies assuming stochastic population sizes, thus relaxing the

deterministic population growth assumption 5) of deterministic

coalescent models (note that extensions of the coalescent

accommodating stochastic populations sizes have recently also

been published [36]).

2. The birth-death process models do not expect the proportion

of the sampled individuals in the tree to be small, but rather

estimate this quantity along with the other model parameters,

i.e. assumption 3) is relaxed.

3. The birth-death process explicitly models the sampling process

while the coalescent conditions on sampling, assuming each

lineage at a sampling point is equally likely to be the one

included. The explicit modelling of sampling is an advantage if

the sampling process is known, but a disadvantage if the

sampling process is hard to estimate.

In this paper, we want to shed light on the practical importance

of the theoretical points raised above for parameter estimation. We

investigate the comparative performance of the birth-death and

the deterministic coalescent model in phylodynamic parameter

estimation by doing a simulation study. We first simulated both

constant rate birth-death model trees with incomplete sampling

(from now on simply referred to as the birth-death model, unless

specified otherwise), and coalescent model trees with deterministic

exponential infected population growth (from now on simply

referred to as the coalescent model, unless specified otherwise). We

then applied phylodynamic methods based on the birth-death

model and the coalescent model within the BEAST v2.0 software

package to the simulated phylogenies. In this fashion, we estimate

the phylodynamic parameters and compare coverage (measured as

the fraction of simulated trees where the HPD captures the true

parameter), accuracy (measured as the root mean square error

(RMSE)) and precision (measured as the width of HPD intervals)

of the parameter estimates.

Results

We simulated 100 trees with 100 tips (for each parameter

combination) under the birth-death model at different R0,

R0~f1,1:1,2,4,8,64,128g. We always assumed that the epidemic

was initiated by one single individual. Furthermore, we used a

fixed death rate, d~0:5 such that the expected time until

becoming non-infectious is 2 which defines our time unit. We

first kept the sampling probability at a fixed value p~0:5, to reveal

the effect of R0 independent of the effect of the sampling intensity

p. Second, we also used various p for simulations. We then applied

the birth-death model and the coalescent model to the simulated

trees to infer the model parameters. The coalescent has

parameters growth rate r~l{d and scaled population size

w~I(0)=2l [14], where I(0) is the present-day infected population

size. In addition to the length of the epidemic x0, the birth-death

model is specified by three population dynamic parameters

R0~l=d, d, and p. In fact, analog to the coalescent, the birth-

death model can only identify two compound parameters, namely

r~l{d and ldp based on phylogenies [22]. As l{d is estimated

under both models, we focused on comparing the inferred

epidemic growth rate r~l{d.

Role of stochastic population growth
The ability of this specific birth-death model and the coalescent

model to capture the true growth rate r~l{d in the 95% highest

posterior density (HPD) interval at fixed p~0:5 is summarized in

Table 1, and shown in Figure 1, Figure S1 and Figure S2. Note

that none of these, nor any of the results below, change

substantially if we use quantiles instead of HPD intervals (data

not shown). For R0§1:1, the birth-death model successfully

recovers the growth rate parameter for trees simulated under the

birth-death model, whereas the coalescent model successfully

recovers the growth rate parameter for those trees that were

simulated under the coalescent. This observation is not surprising

but confirms the basic expectations that the model used for

simulation should be good when it is also applied for inference.

In the critical case where l~d, the birth-death model recovers

the true growth rate only in 78% of the birth-death trees. This is

because the birth-death likelihood is conditioned on the time of

origin of the process x0 (length of epidemic). Our simulated trees are

all of different lengths, however, as we stop once reaching 100 tips.

That means that for low growth rates, we select a very biased set of

relatively big trees, as most realizations would die out before

producing 100 tips. By looking at Figure S1 we observed that

especially for low R0 values, i.e. R0~1:1 and R0~1, the selective

inclusion of the relatively big trees into the final set results in the

median estimates of the growth rate parameter to be biased towards

higher values than the truth. To show that the birth-death inference

method has no bias if applied to trees with a large fixed time of

origin, we simulated trees under l~0:55, d~0:5, p~0:5 until

reaching fixed time t~35, or t~50 (Figure S3). The 95% HPD

intervals of the birth-death model growth rate estimate capture the

true value of the growth rate in 95% and 96% of the cases,

respectively. The distribution of the medians of the 100 HPD

intervals is spread out evenly around the true value of r, meaning the

effect of growth rate over-estimation decreases for increasing t.

When applying the birth-death method to coalescent trees, the

growth rate coverage is higher than when applying the coalescent

Phylogenetic Inference of Epidemiological Dynamics
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method to birth-death trees. The higher coverage of the birth-

death model comes partially at the cost of a larger 95% HPD

interval size (see Table 1). The normalized 95% HPD interval

sizes of r produced by the birth-death process and by the

coalescent are almost identical for very large R0 (R0~128), and

they increase for both coalescent and birth-death model parameter

estimates with decreasing R0. However, the coalescent intervals

become smaller than birth-death intervals, and at R0~1:1 their

widths differ by a factor *3. This discrepancy between the HPD

sizes does not translate in decreased accuracy of the birth-death

model compared to the coalescent model. Accuracy can be

measured by the root mean square error (RMSE) of the median of

each posterior interval. The accuracy of the birth-death model is

higher (RMSE is lower) than the accuracy of the coalescent when

applied to the birth-death trees. The accuracy of the birth-death

model is lower than the accuracy of the coalescent model on the

coalescent trees for our analyses with R0ƒ4. As expected, the

above observations do not change when the branch lengths, i.e the

time units, are scaled. This corresponds to multiplying the birth

and the death rates, and thus the growth rate parameter r, by a

constant factor while keeping R0 unchanged (Table S1). The

increase in HPD interval size when lowering R0 may be due to

increasing stochasticity in population size variation over time. This

increased stochasticity is caused by decreased population growth

resulting from more death events per birth event.

We will now discuss the reason for biases when applying the

birth-death method to coalescent trees and vice versa. When

applying the birth-death method to coalescent trees, for R0§2,

the true growth rate is recovered very reliably. The birth-death

process has a small bias when applied to the coalescent trees for

R0~1:1 and R0~1. This can be explained again by the

simulation scheme and vanishes if simulating for a fixed time

rather than until a number of samples is reached (Figure S3).

When applying the coalescent method to birth-death trees, the

coalescent misses the true growth rate value (the HPD does not

contain the true growth rate) on the birth-death model trees more

often than the birth-death model on the coalescent trees. This is

accentuated with decreasing R0. The coalescent has a tendency to

overestimate the growth rate (see Figure 1 (R0~1:1) and Figure

S1). The growth rate overestimation can be explained by the push-

of-the-past effect described by Nee et al [39]. The exponential

growth coalescent model assumes a constant population growth

rate l{d. The push-of-the-past effect causes the expected

population size under the birth-death model to initially increase

faster than with rate l{d, and then slow down to grow with the

constant rate l{d. As a consequence, when a final population size

is fixed the coalescent trees are predicted to be longer than the

birth-death trees. Put in other words, given a fixed time after the

start of the process, the expected birth-death population size is

bigger than the expected coalescent population size. This push-of-

the-past effect becomes more severe for smaller values of R0. For

inference, this means that the coalescent applied to birth-death

trees infers inflated growth rates as coalescent trees with the true

growth rate would be expected to be longer.

We observe this push-of-the-past effect and the resulting

differences in coalescent and birth-death trees in our simulations.

We investigated the difference between birth-death and coalescent

trees for the parameter combinations where most stochasticity in

population size variation over time and most bias of the inferred

parameters was observed: l~0:55, d~0:5,p~0:5, i.e. R0~1:1.

Both the mean and the median measure of the tree lengths without

the root-origin distance showed that the coalescent had a strong

preference to produce overall longer simulated trees. Median tree

length of the coalescent trees was 35.2 while that of birth-death
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trees was only 26.1. Similarly, the mean tree length was 36.1 and

27.7 for coalescent and birth-death trees, respectively. Upon

visual inspection of these trees, we noticed that the coalescent

mostly produced trees with longer inner branches, especially close

to the root, as compared to trees simulated under the birth-death

model.

As the population size growth curves in semi-logarithmic plots

are parallel lines with the slope l{d for large t, the relative

difference between the coalescent and birth-death tree lengths

should become smaller for increasing t. This means that the ratio

of the length of the birth-death tree and of the length of the

coalescent tree tends to 1 when letting the trees (populations) grow

for longer times. In fact, by increasing the final population size

through sampling more tips (n~200, 500 or 1000) and thereby

suppressing the importance of the push-of-the-past, the median of

the coalescent estimates of the growth rate gets closer to the true

value. Nevertheless, the coverage of the coalescent model does not

improve due to overconfident estimates, i.e. shrinking HPD

intervals (Figure S4).

When applying the birth-death model to the long coalescent

trees we occasionally observed an overestimation of the growth

rate. In most cases the growth rate is estimated correctly by the

birth-death model though. The coalescent trees typically have long

branches close to the root. In the following we will demonstrate

that these early long branches do not strongly impact the overall

likelihood calculation in the birth-death model.

To investigate the impact of long early branches on parameter

estimation under each model further, we changed the simulated trees

systematically. We looked at trees simulated under R0~1:1 and

R0~128. In these trees, we extended each branch existing after 10%,

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% of the time between

the root an the present. We extended branches in all these cases by 48

for R0~1:1 and by 0.18 for R0~128, which was approximately the

full length of the birth-death tree (Figure 2 and Figure S5).

Re-analyzing the trees with R0~1:1 using the birth-death

model and the coalescent model revealed high sensitivity of the

coalescent estimates to early but not so much to the late

perturbations. The birth-death model estimates of the growth

rate proved to be more robust to early perturbations than to late

perturbations, see Figure 2. We note that the early perturbations

actually only affect very few branches, and thus only introduce

minor changes to the data. We hypothesize that the ability of the

birth-death model to account for stochasticity in population size

determines its robustness to above-introduced changes in branch-

ing times. When perturbing the tree close to present, the birth-

death model growth rate estimates decrease as all branches

occurring prior to the perturbation are not allowed to produce

sampled descendants later on. For that particular reason, the

birth-death method infers a much too low median growth rate

when we only extend the single branch leading to the most recent

bifurcation (data not shown). Thus, the birth-death method is very

sensitive to even minor perturbations close to the present.

Re-analyzing the trees with R0~128 revealed that both the

birth-death and the coalescent method are very sensitive to

perturbations (Figure S5). This is most likely because the process is

very deterministic at high R0 (Figure S2). The perturbation cannot

be considered to be the result of stochastic population size changes

as at low R0, and therefore they significantly influence the overall

likelihood values of the inference methods.

Another way to simulate trees under a different model than the

birth-death or the coalescent model is to simulate SIS/SIR trees.

In both these alternative models, there is an exponential growth of

the infected population early on, followed by a decrease in

transmissions (births) due to a depletion of susceptibles. In trees

produced by an SIS model with small total population size (N), the

curve of infected individuals over time follows a logistic trend. In

the case of the SIR model assuming a small total population size

the growth slows down after the exponential phase, then stops and

Figure 1. Comparison of the birth-death model and the coalescent model in estimating epidemic growth rate. For each plot, 100 trees
simulated under the constant rate birth-death (BD) model with incomplete sampling (subfigure A) or coalescent (CE) model with exponential growth
of the infected population (subfigure B) were analyzed assuming a birth-death model (blue bars) or a coalescent model with deterministic
exponential population growth (red bars). 95% highest posterior density (HPD) intervals of the growth rate parameter are shown (y-axis). The trees
are ordered (x-axis) by the median value of the posterior distribution of the growth rate parameter estimated by the coalescent (orange dot within
the red bar) from the birth-death trees. Median of the posterior estimates for the growth rate parameter estimated by birth-death model is indicated
as light blue dot within each blue interval. The true value of the growth rate parameter, i.e. the value under which the trees were simulated, is
displayed as black horizontal bar. Here, we used l~0:55, d~0:5 and p~0:5 (R0~1:1). See Figure S1 for the plots of other parameter settings.
doi:10.1371/journal.pcbi.1003913.g001
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finally becomes negative, i.e. the population size of infected

individuals decreases.

When applying the exponential growth birth-death and

coalescent models to the SIS/SIR trees, the birth-death process

underestimates the growth rate more severely than the coalescent

model in trees which reach the post-exponential growth phase.

This fits very well to the results presented above for the constant

rate birth-death trees. The birth-death model uses all available

information in the tree, and thus obtains an average growth rate

estimate from the SIS/SIR trees which is lower than the initial

growth rate due to the post-exponential slowdown in transmission.

The coalescent mainly uses information from the early epidemic.

It thus puts less emphasis on the post-exponential phase and

consequently does not severely underestimate the growth rate. The

birth-death model does not produce consistently larger HPD

intervals than the coalescent (see Table 2), in contrast to the

exponential growth trees.

In summary, the coalescent model estimates of the growth rate

seem to be influenced most strongly by the early branching

patterns in the tree. These early patterns most strongly reflect

stochasticity in population size. In contrast, the birth-death

method averages the information throughout the tree.

Role of sampling probability
Since the sampling probability is fixed to quite a high value

(p~0:5) in all the trees simulated above, the trees are not only

relatively short, but also a lower R0 translates to more death events

per birth event, and consequently means higher sampling from the

population (as we sample from the individuals that become non-

infectious with sampling probability p). We further investigated if

this relatively high sampling causes the coalescent methods to fail

for low R0.

We simulated trees at low, medium and high R0,

R0~f1:1,8,128g, but this time also at different sampling

probabilities p~f0:001,0:01,0:5,1g (see Table 3). For some

parameter settings with very low sampling probability, the tree

simulations did not finish within 7 days of simulation, and the

results are thus not displayed in the summary table.

We observed that the size of the 95% HPD interval become

smaller with lower sampling probability for both birth-death and

coalescent estimates of the growth rate. This means that both

methods become increasingly confident in the growth rate

estimates with increasing tree length due to decreased sampling.

Additionally, the smaller the sampling probability in the birth-

death tree simulation, the more often the true growth rate

parameter is recovered by the coalescent. The same is observed for

the growth rate parameter estimate produced by the birth-death

model on the coalescent trees.

In fact there are two ways to grow the tree longer, either by

decreasing the sampling probability or by sampling more tips. As

discussed in the previous section, growing the tree longer decreases

the push-of-the-past effect. In contrast to decreasing the sampling

probability, the coverage of the coalescent method does not

improve when sampling more tips. This is presumably because

stochastic effects are not diluted when sampling densely. This is

best seen when comparing the coverage of the coalescent on birth-

death trees grown for longer by increasing the final sample size (as

in Figure S4) to that on the trees grown longer by decreasing the

sampling probability (Table 3). An especially informative compar-

ison at R0~1:1 can be made between trees where the final sample

is equal to 10000, the average tree length of which (root-origin

distance not included) is 105.9, and the coverage is 8/100 (figure

not shown) and those trees grown with p~0:01, reaching average

length of 99.7 and coverage of 55/100.

Overall, the coalescent struggles most with correct growth rate

estimation for datasets with low R0 and high sampling probability.

At low R0, compared to high R0, we have a strong push-of-the-

past effect and remain for longer in the phase of strong stochastic

changes in population size over time. A high sampling probability

means that most samples are taken in the early phases of the

epidemic, the phase with the push-of-the-past effect and reflecting

stochasticity in population size the most.

Figure 2. Influence of branch length extension in various parts of the tree on the growth rate parameter estimation. For setting
l~0:55, d~0:5 and p~0:5 (R0~1:1), we modified all 100 birth-death trees (A) and all 100 coalescent trees (B) by branch extension. The unchanged
tree is denoted as ‘‘orig’’ on x-axis. We added 48 units of time, roughly corresponding to the full length of the longest trees, to the branches. We
extended the branches that were present in the tree at 10% of the tree (going from the root), at 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% (see x-axis
from left to right). We then re-estimated the growth rate parameter for each such tree. Unlike in previous plot, here we display a summary in form of
the median values of the start and the end of the 95% HPD intervals, and the median of the medians of the posterior estimates for all 100 trees per
setting.
doi:10.1371/journal.pcbi.1003913.g002

Phylogenetic Inference of Epidemiological Dynamics

PLOS Computational Biology | www.ploscompbiol.org 6 November 2014 | Volume 10 | Issue 11 | e1003913



T
a

b
le

2
.

Su
m

m
ar

y
o

f
g

ro
w

th
ra

te
p

ar
am

e
te

r
e

st
im

at
io

n
st

at
is

ti
cs

in
SI

S/
SI

R
tr

e
e

s.

S
IS

m
o

d
e

l
tr

e
e

s
S

IR
m

o
d

e
l

tr
e

e
s

b
ir

th
-d

e
a

th
co

a
le

sc
e

n
t

b
ir

th
-d

e
a

th
co

a
le

sc
e

n
t

re
co

v
e

re
d

H
P

D
si

z
e

R
M

S
E

re
co

v
e

re
d

H
P

D
si

z
e

R
M

S
E

re
co

v
e

re
d

H
P

D
si

z
e

R
M

S
E

re
co

v
e

re
d

H
P

D
si

z
e

R
M

S
E

N
1

0
0

0
0

:
R

0
~

1
2
8
,l

~
6
4
,d

~
0
:5

,p
~

0
:5

1
0

.2
1

1
0

.2
9

3
6

3
0

.2
5

3
0

.1
3

9
0

0
.2

1
3

0
.2

9
4

5
9

0
.2

5
9

0
.1

3
7

N
1

0
0

0
0

:
R

0
~

8
,l

~
4
,d

~
0
:5

,p
~

0
:5

9
5

0
.3

7
4

0
.1

0
1

6
2

0
.3

2
0

0
.1

6
7

9
6

0
.3

7
2

0
.1

0
0

6
4

0
.3

1
6

0
.1

7
4

N
1

0
0

0
0

:
R

0
~

1
:1

,l
~

0
:5

5
,d

~
0
:5

,p
~

0
:5

9
4

4
.4

1
0

1
.2

6
2

2
1

1
.3

7
4

1
.5

5
7

9
1

4
.3

3
9

1
.2

8
6

2
3

1
.3

9
0

1
.7

4
3

N
5

0
0

:
R

0
~

1
2
8
,l

~
6
4
,d

~
0
:5

,p
~

0
:5

0
0

.0
2

6
0

.9
4

9
0

0
.0

1
3

0
.7

0
2

0
0

.0
2

1
0

.9
6

7
0

0
.0

1
0

0
.7

6
9

N
5

0
0

:
R

0
~

8
,l

~
4
,d

~
0
:5

,p
~

0
:5

0
0

.2
5

1
0

.4
4

2
7

7
0

.2
9

2
0

.1
1

9
0

0
.2

2
2

0
.5

6
2

7
3

0
.2

8
8

0
.1

3
5

N
5

0
0

:
R

0
~

1
:1

,l
~

0
:5

5
,d

~
0
:5

,p
~

0
:5

9
7

4
.2

5
1

0
.9

0
4

4
4

1
.2

7
6

1
.2

3
5

9
9

3
.8

4
8

0
.5

8
6

5
0

1
.2

6
4

1
.1

3
3

N
3

0
0

:
R

0
~

1
2
8
,l

~
6
4
,d

~
0
:5

,p
~

0
:5

0
0

.0
1

6
0

.9
7

1
0

0
.0

0
9

0
.8

2
4

0
0

.0
1

0
0

.9
8

8
0

0
.0

0
5

0
.8

9
6

N
3

0
0

:
R

0
~

8
,l

~
4
,d

~
0
:5

,p
~

0
:5

0
0

.1
9

4
0

.6
1

7
5

9
0

.2
6

9
0

.1
4

3
0

0
.1

4
5

0
.7

9
9

7
0

0
.2

6
3

0
.1

2
8

N
3

0
0

:
R

0
~

1
:1

,l
~

0
:5

5
,d

~
0
:5

,p
~

0
:5

9
8

4
.2

4
0

0
.8

0
6

4
6

1
.2

4
2

1
.1

2
1

1
0

0
3

.6
6

2
0

.6
3

0
4

7
1

.3
5

5
1

.1
6

2

Fo
r

e
ac

h
o

f
th

e
1

0
0

tr
e

e
s

si
m

u
la

te
d

w
it

h
th

e
re

sp
e

ct
iv

e
m

e
th

o
d

(S
IS

o
r

SI
R

m
o

d
e

l)
an

d
th

e
to

ta
l

p
o

p
u

la
ti

o
n

si
ze

N
o

f
3

0
0

,
5

0
0

o
r

1
0

0
0

0
,

w
e

e
st

im
at

e
d

th
e

co
ve

ra
g

e
,

th
e

9
5

%
H

P
D

in
te

rv
al

si
ze

s
an

d
R

M
SE

o
f

r
b

y
th

e
b

ir
th

-d
e

at
h

m
o

d
e

l
an

d
th

e
co

al
e

sc
e

n
t

m
o

d
e

l,
an

d
d

is
p

la
y

th
e

su
m

m
ar

y
o

f
th

e
se

m
e

as
u

re
s.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

cb
i.1

0
0

3
9

1
3

.t
0

0
2

T
a

b
le

3
.

Su
m

m
ar

y
o

f
g

ro
w

th
ra

te
p

ar
am

e
te

r
e

st
im

at
io

n
st

at
is

ti
cs

at
va

ri
o

u
s

p
.

b
ir

th
-d

e
a

th
m

o
d

e
l

tr
e

e
s

co
a

le
sc

e
n

t
m

o
d

e
l

tr
e

e
s

b
ir

th
-d

e
a

th
co

a
le

sc
e

n
t

b
ir

th
-d

e
a

th
co

a
le

sc
e

n
t

re
co

v
e

re
d

H
P

D
si

z
e

R
M

S
E

re
co

v
e

re
d

H
P

D
si

z
e

R
M

S
E

re
co

v
e

re
d

H
P

D
si

z
e

R
M

S
E

re
co

v
e

re
d

H
P

D
si

z
e

R
M

S
E

R
0
~

1
2
8
,l

~
6
4
,d

~
0
:5

,p
~

1
8

7
0

.2
8

4
0

.0
8

5
6

2
0

.2
6

4
0

.1
4

4
9

8
0

.2
8

6
0

.0
6

5
9

1
0

.2
5

1
0

.0
8

0

R
0
~

1
2
8
,l

~
6
4
,d

~
0
:5

,p
~

0
:5

9
6

0
.2

7
3

0
.0

7
2

6
6

0
.2

5
8

0
.1

2
5

9
8

0
.2

7
4

0
.0

6
1

8
9

0
.2

4
4

0
.0

7
9

R
0
~

8
,l

~
4
,d

~
0
:5

,p
~

1
9

3
0

.4
4

2
0

.1
1

3
6

8
0

.3
4

8
0

.1
8

5
1

0
0

0
.4

3
8

0
.0

9
8

9
1

0
.3

3
1

0
.1

0
4

R
0
~

8
,l

~
4
,d

~
0
:5

,p
~

0
:5

9
4

0
.3

8
2

0
.0

9
3

5
9

0
.3

2
4

0
.1

8
4

9
9

0
.3

7
7

0
.0

6
7

9
4

0
.3

1
2

0
.0

8
7

R
0
~

8
,l

~
4
,d

~
0
:5

,p
~

0
:0

1
9

8
0

.2
6

7
0

.0
6

6
6

9
0

.2
4

6
0

.1
1

5
9

8
0

.2
6

1
0

.0
5

8
9

1
0

.2
3

8
0

.0
7

4

R
0
~

1
:1

,l
~

0
:5

5
,d

~
0
:5

,p
~

1
8

9
6

.2
4

4
2

.0
8

8
2

5
1

.8
5

8
2

.4
0

0
8

6
4

.7
1

6
1

.4
0

7
9

4
1

.4
1

6
0

.4
2

0

R
0
~

1
:1

,l
~

0
:5

5
,d

~
0
:5

,p
~

0
:5

9
4

4
.3

6
3

1
.2

7
8

2
8

1
.4

4
0

1
.6

0
8

9
0

3
.6

5
6

0
.9

1
4

9
3

1
.0

9
0

0
.3

3
5

R
0
~

1
:1

,l
~

0
:5

5
,d

~
0
:5

,p
~

0
:0

1
9

6
0

.7
8

7
0

.1
9

6
5

5
0

.3
9

5
0

.2
8

7
9

8
0

.7
7

6
0

.1
5

0
9

4
0

.3
9

4
0

.1
1

1

R
0
~

1
:1

,l
~

0
:5

5
,d

~
0
:5

,p
~

0
:0

0
1

8
8

0
.4

0
4

0
.1

2
1

6
3

0
.3

2
6

0
.1

9
0

9
7

0
.4

0
4

0
.0

9
7

9
3

0
.3

0
4

0
.0

8
8

Fo
r

e
ac

h
o

f
th

e
1

0
0

tr
e

e
s

si
m

u
la

te
d

u
n

d
e

r
th

e
re

sp
e

ct
iv

e
m

o
d

e
l(

th
e

b
ir

th
-d

e
at

h
o

r
th

e
co

al
e

sc
e

n
t)

,w
it

h
p
~
f1

,0
:5

,0
:0

1
,0
:0

0
1
g

ac
ro

ss
e

ac
h

R
0
~
f1

2
8
,8

,1
:1
g,

w
e

e
st

im
at

e
d

th
e

co
ve

ra
g

e
,9

5
%

H
P

D
in

te
rv

al
si

ze
s

an
d

R
M

SE
o

f
r

b
y

th
e

b
ir

th
-d

e
at

h
m

o
d

e
l

an
d

th
e

co
al

e
sc

e
n

t
m

o
d

e
l,

an
d

d
is

p
la

y
th

e
su

m
m

ar
y

o
f

th
e

se
m

e
as

u
re

s.
Si

m
u

la
ti

o
n

s
u

n
d

e
r

so
m

e
p

ar
am

e
te

r
co

m
b

in
at

io
n

s
d

id
n

o
t

fi
n

is
h

w
it

h
in

a
w

e
e

k,
an

d
ar

e
th

u
s

o
m

it
te

d
fr

o
m

th
e

ta
b

le
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

cb
i.1

0
0

3
9

1
3

.t
0

0
3

Phylogenetic Inference of Epidemiological Dynamics

PLOS Computational Biology | www.ploscompbiol.org 7 November 2014 | Volume 10 | Issue 11 | e1003913



It could be argued that a high sampling probability which leads

to a high sampling proportion is a violation of one of the main

assumptions of the coalescent model and the main reason for the

biases of the coalescent when applied to birth-death trees. Indeed,

for the discrete time Wright-Fisher and Moran model, we have to

assume a small sampling proportion when deriving the continuous

time coalescent approximation. However, as we show in the

Supplementary Material S1, the coalescent can also be interpreted

as a continuous time Wright-Fisher and Moran model, and these

models do not require a small sampling proportion. In fact, one

can even assume complete sampling, i.e. p~1. Therefore, we

suspect that the high sampling proportion just unmasks the real

reason for the frequent inability of the coalescent method to

include the true value of the growth rate parameter of the birth-

death trees in the 95% HPD interval. The real reason being the

stochastic population size variation over time.

Finally, we investigated the sensitivity of the models towards

variation in sampling schemes. We simulated trees where periods

of no, p~0 (or low, p~0:2), sampling at the beginning were

followed by a period of complete sampling, p~1. Furthermore, we

simulated trees where a period of initial complete sampling was

followed by a period of no (or low) sampling, and later again

followed by a period of complete sampling (Figure 3 and Figure

S6). The coalescent model is very robust to these changes in

sampling schemes. The birth-death model is robust to slight

sampling variations, but overestimates growth rate severely for

extreme changes to the sampling scheme in particular for high R0.

Use of the birth-death skyline model, assuming a time-varying

sampling probability rather than a constant sampling probability,

reduces this bias (Figure 3 and Figure S6, Table S2).

Inference of epidemiological parameters beyond growth
rate

So far we only investigated the inference of epidemic growth

rate using the birth-death and the coalescent models. Both models

also estimate other epidemiological parameters. The birth-death

model is parameterized by the transmission rate l, becoming-non-

infectious rate d and the sampling probability p. The coalescent

model is parameterized by l, d and I(0). These parameters as well

as the compound parameter R0~
l
d can be inferred given we fix

one of the three model-specific parameters.

For the birth-death process, so far we fixed p to the true value

during the analyses. Now we investigate to what extent we can

estimate the individual parameters, including p, using the birth-

death method. We re-analyzed all birth-death and coalescent trees

simulated above applying the birth-death model estimating l, d
and setting p to p~0:01, p~0:5, p~1 (and/or p~0:001, if this

was used for tree simulation), and not fixed sampling probability

but assume a uniform prior over interval ½0,1�. For example, trees

produced under l~4,d~0:5,p~0:01 were analyzed under

p~0:01 (true p), p~0:5, p~1 and p~½0,1�.
The likelihood of a tree only depends on l{d and ldp, rather

than on three parameters l, d, p [25]. We could confirm that no

matter what p is used for the analysis, true growth rate l{d is

equally well estimated by the birth-death process for both

stochastic birth-death trees or coalescent trees (Figure S7 shows

results for trees simulated under p~0:5). The same holds for

estimation of ldp (Figure S8 displays the results for trees simulated

under p~0:5).

During this analysis, we also noticed when we set p to its true

value (i.e. the value used during the tree simulation), we are able to

recover the true l and d parameters, and consequently also the

true R0 from both the trees generated under the birth-death model

and those generated under the coalescent model (see Figures S9,

S10, S11 and S12).

In the Supplementary Material S1, Section ‘‘Parameter

correlations under the birth-death process’’, we show analytically

that for fixed l{dw0 and ldp, R0 increases, and l and d
decrease with increasing p, and vice versa. In Figure 4, we plot the

impact of changing p on the R0 value. We confirmed this

theoretically predicted bias in parameter estimation in our

simulation study. If we fixed p during the birth-death analysis to

a bigger value than the true p used during the birth-death

simulations, then we overestimated R0 and underestimated l and

d, and vice versa. Similarly, when analyzing the coalescent trees

with the birth-death model, we observed an upward shift for R0

and downward shift for l and d when assuming a p value bigger

than used in the simulation of the sampling times, and vice versa.

Using a uniform prior for p over the interval ½0,1� had different

effects on estimation of l, d and R0, depending on the sampling

probability p used for simulation. First, in cases where the true

p~0:5, use of uniform prior for p during the analysis resulted in

wider 95% HPD intervals that either fully, or mostly, contained

the 95% HPD interval produced when p was fixed to the true

value (Figures S7, S8, S9, S10, S11 and S12). This is because the

value p~0:5 is the median of the prior. Second, for simulated trees

with a true p~0:001,0:01,1, the 95% HPD intervals produced

using a uniform prior on p were shifted away from the 95% HPD

intervals that resulted from analysis where p was fixed to the true

value (data not shown). As predicted by derivations in the

Supplementary Material S1, for a true p below 0:5, the estimated

interval for l and d was shifted downward, compared to the

interval estimated when the p was fixed to the true value, and the

estimated interval for R0 was shifted upward. When the true p
used for simulations was higher than 0:5, the posterior intervals for

l and d shifted upwards, whereas the posterior interval for R0

shifted downwards.

Overall, the birth-death method recovers two out of the three

individual epidemiological parameters l,d,p reliably if one of these

parameters is fixed (here p). The epidemic growth rate l{d can

be recovered well even if p is misspecified. If p, or any of the other

two parameters, l or d, is set to the true value, we can recover R0

(Figures 5, S13 and S14, for fixed d). If any of the parameters is

fixed to a wrong value, e.g. if one assumes incorrect p, then the

original (true) R0 cannot be recovered.

Equivalently, when using the coalescent for inference, and

knowing one of the parameters l, d or present day infected

population size I(0), we can also recover the R0 parameter, given

we estimated the growth rate r correctly (Figure 5 and Figure S14

display the scenario where d is known). We use the transformation

r=dz1~(l{d)=dz1~R0 [40] to obtain R0 estimates from the

posterior estimates of the growth rates.

Sampling tips at one point in time
The birth-death inference method is partially informed by the

sampling times, as the sampling times are outcomes of the birth-

death process with constant rate sampling. The coalescent is only

informed by the branching times in the tree, as the coalescent

conditions on sampling. In order to compare the ability of the

coalescent and the birth-death model to infer the underlying

population dynamic parameters in the absence of information on

sequentially sampled tips, we simulated 100 trees on 100 tips

sampled at one point in time under the birth-death model. The

simulation was done with ‘TreeSim v2.0’ on CRAN [41] (function

sim.bd.taxa). We assumed the two extremes, R0~1:1 and

R0~128 with d~0:5. We assumed a uniform prior (0,?) on

the length of the epidemic T and sampled each infected individual

Phylogenetic Inference of Epidemiological Dynamics
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at time T with sampling probability r~f0:01,0:5,1g. For

parameter inference, we again used the birth-death model in

BEAST v2.0. As the choice of r during inference does not

influence the growth rate estimate [22], analog to fixing p in the

sequential sampling model not influencing the growth rate

estimate, we fixed r to the truth. For the birth-death model, the

true growth rate was contained in the 95% HPD intervals in 91–

96 out of 100 cases. For the coalescent, the true growth rate was

contained in the 95% HPD interval in 63–75 out of 100 cases. The

increased coverage of the coalescent model compared to the

sequential model is likely due to two factors: 1) the trees are in

general longer meaning the early stochastic fluctuations are less

dominant, and 2) there is no sampled data during the early very

stochastic changes in population size, as all samples are collected

only at the end of the epidemic. The coalescent still does not reach

more than 80% coverage because similar to the case of sequential

sampling, too narrow HPD intervals are being inferred, see Table

S3, and Figures 6, S15 and S16. Overall, when using phylogenies

generated under the birth-death process, the birth-death model

produces better results than the coalescent even in the absence of

sequential sampling time information. Thus, when analyzing

sequentially sampled phylogenies, the better performance of the

birth-death model does not exclusively come from using the

information of the tip times explicitly. This supports our claim that

Figure 3. Influence of sampling scheme on the growth rate parameter estimation. For setting l~0:55, d~0:5 (R0~1:1), we modified the
birth-death tree simulations to include periods of higher (p~1) and lower sampling (either p~0, subfigures A and B, or p~0:2, subfigures C and D).
We simulated 100 birth-death trees (A and C) and corresponding coalescent trees (B and D) under various sampling schemes (see x-axis annotation).
We display a summary in form of the median values of the start and the end of the 95% HPD intervals, and the median of the medians of the
posterior estimates for all 100 trees per setting. For the settings where the constant rate birth-death method produced very severe biases, we also
analysed the trees with the birth-death skyline model with 10 intervals for the sampling probability (BDSKY, light-blue lines). The summary for trees
simulated under constant sampling p~1 throughout, is represented on the very left of each figure (p~1 on the x-axis). Next, we varied the sampling
as to e.g. sample no tips (p~0) in the early phases (t~0 until t~9) when going forward in time and then sampling all the tips that die (p~1) from
t~9 onward (corresponding to the setting denoted as ‘‘p = 0 from t = 0 to t = 9’’).
doi:10.1371/journal.pcbi.1003913.g003
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the main reason for the birth-death model in general producing

more reliable estimates comes from it taking stochastic population

size changes explicitly into account.

Point estimate of the epidemic growth parameter
As seen above, the coalescent is often overconfident, i.e. it

estimates too narrow 95% HPD intervals, and thus often does not

contain the true growth rate parameter. For comparison, we

calculated point estimates both for trees with tips sampled

sequentially and for trees with tips sampled at one point in time.

For various parameter combinations we determined the maximum

a posteriori (MAP) estimate from the final MCMC runs. We also

report the maximum of the tree likelihood values (ML) of the final

MCMC run. For uniform priors and fixed time to origin x0, the

ML corresponds to the maximum likelihood estimate. We verified

this for trees with sequentially sampled tips by estimating the

maximum likelihood values with ‘TreePar v3.0’ on CRAN [42]. In

contrast to the findings obtained when using the HPD intervals,

Figures 7, S17, S18 and S16 show that the 100 ML and 100 MAP

point estimates on the birth-death trees do not differ much for the

coalescent and the birth-death inference method. Similarly to the

results obtained when using HPD intervals for the coalescent trees,

the birth-death model overestimates growth rates for high p and

R0~1:1 and R0~1. This highlights that when evaluating the

performance of different inference methods, we should always

consider the HPD/credible/confidence intervals in addition to the

point estimates.

Discussion

Under both the birth-death and the coalescent models, the

times of coalescence or bifurcation are stochastically selected from

the distribution of coalescence and bifurcation event times. The

individual trees produced by both the coalescent and the birth-

death process are thus stochastic realizations of the respective

processes. However, the coalescent model with exponential growth

of the infected population assumes deterministic changes in the

population size. Therefore, the trajectory of the infected popula-

tion size follows an exponential growth. It has been pointed out

before [31] that the coalescent model can appropriately approx-

imate population dynamics reflecting models where the sampled

genealogy is conditioned on the total population size that varies

deterministically.

It has been postulated earlier [29] that coalescent approxima-

tions are good for datasets where the sample size n is sufficiently

smaller than the population size I : n(n{1)%I . On one hand, this

approximation is necessary when translating the discrete time

Wright-Fisher and Moran model population dynamics into a

continuous time coalescent framework. In fact, such an inequality

should hold also when n is the number of co-existing lineages in

the tree at any time point in the process. On the other hand, the

assumption of small sampling proportion (n%I ) is not required

when the coalescent is interpreted as a continuous time Wright-

Fisher and Moran model, and has been found unimportant for

some inferences based on the Kingman coalescent [38].

We show that the ability of the coalescent with deterministic

exponentially growing infected population to properly estimate the

dynamical parameters of the birth-death trees derived from early

epidemics is questionable, which was previously suggested by the

small simulation study in [24]. It often struggles with, and

overestimates the growth rate parameter from the birth-death trees

representing samples from early epidemics starting with one single

infected individual. This effect is accentuated when decreasing the

basic reproductive ratio R0 and increasing the sampling proba-

bility p. These settings (small R0 and high p) produce birth-death

trees that display a significant push-of-the-past effect, and thus

differ in their length (age) the most from the coalescent model

trees. Furthermore, both increasing the sampling probability and

decreasing R0 lead to smaller infected population sizes while

samples are collected, which in turn corresponds to more

stochasticity in population size changes over time reflected in the

final trees. Thus, we hypothesize that the coalescent model with

Figure 4. Error on R0 as a function of sampling probability p for fixed l{d and ldp. In (A) the relationship between the error on R0 , i.e.
estimated R0/true R0 , and the sampling probability p is plotted. The values r~l{d and d~ldp are fixed. For different R0, R0~f1:1,2,4,8,64,128g,
and d~0:5 and p~0:001, we calculate r and d , and plot the impact on R0 error when changing p during inference using Equation (3) in the
Supplementary Material S1. In (B) we display how error on R0 depends on different assumptions of p during inference for R0~1:1, and d~0:5 and an
array of true sampling probability p~f0:00001,0:0001,0:001,0:01,0:5,1g used for calculating r and d .
doi:10.1371/journal.pcbi.1003913.g004
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deterministic exponentially growing population fails to recover

population dynamic parameters when stochasticity is important.

This claim is supported by three observations. First, the birth-

death trees show systematic difference from the coalescent trees in

their lengths due to the push-of-the-past effect. This effect is the

strongest in low R0 regimes, the regime where we observe that the

coalescent struggles most with parameter recovery. Second, early

stochastic effects in the population size changes are not well

captured by the coalescent. This became apparent when we

introduced artificial perturbations to branching times early in the

tree, which had a large effect on parameter estimates. In fact, the

early phase in the tree informs the coalescent parameters the most,

and late perturbations in the tree have little impact on parameter

estimates. Additionally, increasing the sampling probability,

especially at medium and low R0, where the population growth

in the constant rate birth-death model displays much stochasticity,

results in the coalescent failing most often. Even if we increase the

final infected population size by sampling more tips, i.e. sampling

for a longer time period, this effect is not corrected for and the

coalescent has a very low coverage. Third, the coalescent does not

capture the true growth rates in many cases because the HPD

intervals are narrow around the median estimate. Short HPD

intervals likely result from the coalescent model only considering

one population size trajectory, namely the deterministically

growing exponential population size, per epidemiological param-

eter combination and ignoring any stochastic uncertainty. The

obvious solution to these problems would be to use the coalescent

that accounts for stochastic population sizes as in Rasmussen et al.

Figure 5. Effect of different information used in the R0 parameter inference. For setting l~0:55, d~0:5 and p~0:5 (R0~1:1), we
estimated the R0 parameter from the birth-death trees (A) and the coalescent trees (B) using four methods. First, using the coalescent posterior
estimates of the growth rate r and the true d, we obtained R0 ~r=dz1 ~(l{d)=dz1 ~l=d (red bars). Second, we used the birth-death posterior
estimates of r (trees analysed under uniform priors for R0, d, and p), and the true d in the post-processing (blue bars), similar to the procedure used
for the coalescent. Third, we also analyzed the trees by fixing the prior on the death rate d to the true value, d~0:5 (green bars) or by fixing the prior
on the sampling probability p to the true value, p~0:5 (purple bars) during the MCMC analysis. Note that y-axis now displays 95% HPD of the R0

parameter, and within each figure, the trees (simulations) are ordered (x-axis) by the median estimate of growth rate r parameter estimated by the
coalescent on the birth-death trees.
doi:10.1371/journal.pcbi.1003913.g005
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[36]. It is expected that such a model would show an increased

coverage rate, but also increased HPD interval sizes, similar to

those produced by the birth-death model. It would also be

interesting to investigate the performance of the two models on the

trees resulting from the epidemics starting with more than a single

individual.

In contrast to the coalescent, stochasticity in population size is

incorporated into the birth-death process. The birth-death model

performs well not only on birth-death trees but also on most

coalescent trees. This is due to the birth-death process interpreting

variation in branching times as stochastic changes in population

size over time leading to large HPD intervals. The birth-death

model therefore accepts many different parameter combinations

that may have given rise to the observed tree. Furthermore, the

ability of the birth-death model to correctly estimate the

parameters from the coalescent trees decreased only in those trees

that were simulated under combination of high p and low R0.

However, unlike in the case of the deterministic coalescent model,

in this case the bias can be easily corrected for by letting the trees

grow for longer, by sampling more tips or by decreasing the

sampling probability. It could be argued that the superior

performance of the birth-death model in terms of coverage of

the true growth rate comes from explicit usage of the sequential tip

sampling times. As we have shown here, even in the absence of

information from the sequentially sampled tip times, the birth-

death model shows higher coverage than the deterministic

coalescent model. This means that it is not only the sampling

process that improves the coverage of the birth-death model, but

the branching time information alone already leads to better

estimates under the birth-death model compared to the deter-

ministic coalescent.

The birth-death model is sensitive if large parts of the tree

depart from the birth-death model assumption, as the birth-death

model averages over observations throughout the whole tree. This

sensitivity becomes particularly apparent in the analysis of SIS/

SIR trees and of trees with varying sampling probability over time.

Both the birth-death skyline [25] and coalescent skyline plot [28]

method aim to capture transmission and removal rate changes

over time. Furthermore, the birth-death skyline plot accounts for

the sampling probability to change throughout the tree. If the

sampling probability changes frequently, it might become hard to

obtain good estimates for it. The coalescent conditions on the

Figure 6. Comparison of the birth-death model and the
coalescent model in estimating epidemic growth rate from
trees with tips sampled at one point in time. For simulated trees
where all 100 tips are sampled at one point in time, we estimated the
growth rate parameter assuming a birth-death model with fixed
sampling probability r~0:5 (blue bars) and the coalescent model with
a deterministic exponentially growing population (red bars). Here we
used l~0:55, d~0:5 and sampling probability r~0:5 (R0~1:1). See
Figure S15 for the plots of other parameter settings.
doi:10.1371/journal.pcbi.1003913.g006

Figure 7. Comparison of growth rate point estimates of the birth-death model and the coalescent model. For setting l~0:55, d~0:5
and p~0:5 (R0~1:1), we display the ML and MAP estimates for the birth-death trees (A) and the coalescent trees (B). As a comparison, the median
values of the start and the end of the 95% HPD intervals, and the median of the medians of the posterior estimates for all 100 trees per setting are
also displayed. The true value of the growth rate parameter, i.e. the value under which the trees were simulated, is displayed as a black horizontal bar.
See Figures S17 and S18 for the plots of other parameter settings.
doi:10.1371/journal.pcbi.1003913.g007
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sampling times and hence does not face the problem of estimating

highly varying sampling probabilities. It however still assumes that

at the time of sampling, a lineage is chosen uniformly at random

from all co-existing lineages. Developing a birth-death based

inference tool conditioning on sampling might make use of the

advantages of the birth-death and the coalescent tools: accurate

inference of HPD intervals by the birth-death method and

robustness to time-heterogeneous sampling by the coalescent. In

case of lineage-specific sampling, multi-type birth-death models

can be employed [43].

The differences of the birth-death method and the coalescent

method are mainly observed in the 95% HPD intervals, while only

minor differences were apparent in the point estimates, i.e. the

maximum a posteriori and maximum likelihood estimates. When

comparing the performance of inference methods, it is therefore

crucial to always assess the capability of recovering the uncertainty

in parameter estimates.

While our study only compared the birth-death and the

coalescent methods on simulated trees, previous work also

compared the two models on empirical data. A higher estimate

of the growth rate parameter of the HCV epidemic in Egypt was

reported previously when data were analyzed with the coalescent

model as compared to the birth-death model [22]. Furthermore,

the coalescent posterior for growth rate displayed a larger spread

(standard deviation) compared to the birth-death model. The

larger standard deviation should indicate larger HPD intervals.

Similarly, in [24], a higher growth rate estimate with larger 95%

HPD interval size was observed for Swiss HIV under the

coalescent compared to the birth-death model. As for our birth-

death simulated trees, the HPD intervals obtained using the

coalescent model compared to the birth-death model are shorter,

the results based on empirical data contradict these simulation

results. However, results from both of these studies are consistent

with the epidemic following either the SIS or the SIR-type

dynamic, already reaching the post-exponential growth phase

(compare with our simulation results in Table 2). Indeed,

application of the SIS model to the HIV epidemic in Switzerland

rejects the simple birth-death model and reveals a higher R0 [44]

than previously estimated [24].

In the present study we estimate epidemiological parameters

based on fixed trees. We note that the tree probability only

depends on the branching (transmission) and removal times. Thus,

the Bayesian estimates of growth rate r from trees under full

sampling, i.e. p~1, are equivalent to estimating the posterior

growth rate from full incidence and prevalence data.

Birth-death based methods explicitly parameterize epidemio-

logical parameters beyond the growth rate l{d. Previously

reported correlations when estimating d, l, and p simultaneously

[22,25] are confirmed by our simulation results. In fact, we can

only estimate two compound parameters, namely growth rate

l{d and ldp, when we have no information beyond the

phylogeny. If we are only interested in these two parameters, we

can fix one of the tree individual parameters, e.g. sampling

probability p, to an arbitrary value. Caution must be taken,

however, when drawing any conclusions on l, d, p and R0. Fixing

one of these parameters during the data analysis to a wrong value

will produce biased estimates of the remaining parameters.

Similarly, l, d, I(0) and R0 can be estimated by the coalescent

model, given that one of these parameters is known, and

conditioned on the fact that the growth rate r and scaled

population size w~I(0)=(2l) were inferred correctly.

In general, when one knows what kind of population dynamic

process gave rise to the tree, the appropriate method should be

applied for phylodynamic parameter estimation based on such

trees. In case of doubt of the underlying process generating the

genealogy, our results show that in scenarios of constant sampling

and exponential population growth, especially when the samples

were drawn early in the epidemic outbreak, the constant rate

birth-death process with incomplete sampling is a better choice

than the coalescent assuming deterministic exponential infected

population growth.

The assumption of exponential spread of a pathogen with

constant sampling is limiting since many epidemics are better

characterized by SIS or SIR dynamics with time-varying

sampling, for example. Recent work proposed birth-death based

SIS and SIR models [44,45] with time-varying sampling [25], and

coalescent based SIS and SIR models [13,14] for phylodynamic

inference. It is not clear how important stochasticity is for the

epidemiological SIS/SIR models. Future work should thus focus

on a detailed comparison of birth-death based and coalescent

based SIS and SIR models, such that the empirical data can be

analyzed and interpreted using appropriate methods.

Materials and Methods

Birth-death tree simulations
We used three epidemiological SIR-type models to simulate

transmission trees growing forward in time, namely the constant

rate birth-death process (epidemic outbreak), the SIS model and

the SIR model. All of the models are implemented as a Gillespie

algorithm [46] in the R package ‘TreeSim v2.0’ on CRAN [41] in

the function sim.bdsky.stt.

All models have a common birth or transmission rate lS=N
with which one infected individual transmits the pathogen, where

N~SzIzR is the total population size assumed to be constant.

In the birth-death model, the impact of the susceptible population

size is assumed to be neglected and thus S~N meaning

transmission rate l is constant. In all models, infected individuals

become non-infectious with rate d. In the SIS model, a recovered

(removed/non-infectious) individual goes back into the susceptible

class, while in the SIR model, a recovered individual goes into the

recovered class. Note that in the constant rate birth-death model,

the fate of a recovered individual does not have to be modelled, as

the number of susceptibles does not influence transmission rate.

These models induce transmission trees in the following way.

Each infected individual is represented by a lineage. A transmis-

sion event results in a branching event, while a removal event

results in the termination of a lineage, thus a tip in the tree. We

assume that we sample each tip from the complete transmission

tree with probability p, acknowledging that in empirical data only

a fraction p of the infected individuals are sampled and thus

included into the dataset. The tree on the sampled tips is called the

(observed) phylogeny, on which we do all our analyses. Note that

the sampled tips are spaced through time, i.e. serially sampled.

Initially, the population size of infected individuals simulated by

these models is increasing at the rate r~l{d. Thus, in

expectation, the total infected population size at time t before

present time 0 is I(t)~I(0)e{rt.

The constant rate birth-death process always stays in the

exponential growth phase. Under the SIS model, we have a finite

total population size N~SzI , resulting in expectation in a

logistic curve of number of infecteds over time: the initial

exponential growth phase is followed by the slow down (saturation)

of the apparent growth rate of the epidemic until the equilibrium

lS=N~dI is reached and the growth ceases.

Under the SIR model, there is only a single one-way flow of

individuals from S to I to R and those that recover cannot become

susceptible again, nor are they replaced by new susceptible
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individuals. The total population size is again limited and constant,

N~SzIzR. Given the definition of the model, the number of

infecteds over time first increases exponentially, then slows down

(when there are still susceptible individuals available) reaching a

peak, and then declines to 0. The number of susceptibles in turn

constantly decreases, and the number of recovered individuals

constantly increases.

For each chosen parameter setting of l,d,p,N, we simulate 100

trees. We stop each tree simulation once we reach 100 serially

sampled tips.

Coalescent tree simulations
We produce trees generated both by SIR-type models (constant

rate birth-death, SIS and SIR models above) and by coalescent

models for optimal comparison of performance of the birth-death

and the coalescent model in estimation of phylodynamic

parameters.

We used the BEAST v2.0 package [30] to simulate coalescent

trees with temporarily spaced leaves by sampling from the prior

distribution of trees generated by the coalescent model with

deterministic exponentially growing population (example xml is in

File S1). For the coalescent simulation, we used the same

parameter settings as in the birth-death simulations whenever

possible. Thus, we used l and d to specify the rate of exponential

population growth l{d (as under the birth-death model the

population size also grows exponentially in expectation), as well as

generation time (inter-transmission interval length = 1
2l [14]). As

the coalescent does not model a sampling process, we conditioned

the sampling times for each of the 100 coalescent simulations to

those obtained by the birth-death simulation. Further, we assumed

the present day infected population size to match the final infected

population size in the birth-death simulation. During each

coalescent tree simulation, we sampled 10,000,000 trees from

the prior and chose the last one (10,000,000th) to be analyzed by

the birth-death model and the coalescent model in order to infer

the growth rate parameter.

Parameter inference based on simulated datasets
The constant rate birth-death model with incomplete sampling

and the coalescent model with deterministic exponential popula-

tion growth were applied to the simulated trees to infer the

posterior distribution of parameters. For this purpose, we used

equation (1). As we did all analyses on fixed trees and did not use

sequence data, only f ½T Dg� and f ½g� are relevant, all other terms

are constant.

For the analysis of the simulated trees, we assumed that the

epidemiological parameters did not change at any time during the

time span encompassed by the phylogenetic tree; meaning we

assumed simple exponential growth of the epidemic. We explored

performance of the MCMC implementation of the birth-death

skyline serial model with 1 interval and the coalescent model with

exponential growth rate as implemented in BEAST v2.0 (birth-

death skyline model in add-on BDSKY [25]). For the analyses

explicitly mentioning use of the birth-death skyline model, we used

10 intervals for the sampling probability.

The expression for f ½T Dg� under the exponential growth

coalescent and the birth-death model have been derived previously

[12,23,24]. As the goal of our paper is to identify the impact of

using either of these formulations for inferring the epidemiological

parameters, we will state the mathematical expressions here.

For stating f ½T Dg� under the coalescent, we need the following

definitions. We measure time going backwards from present.

Present time is defined to be 0. Let r~l{d be the growth rate,

c~ 1
2l be the duration of one generation in calendar units (equal to

the inter-transmission interval length) [14], and w~I(0)c, which

leads to I(t)~ w
c e{rt. Thus, 1

w ert is the instantaneous rate of any

pair of lineages merging. Let i[Y be an internal node at time ti of

the tree (if we have n leaves in the tree, the number of internal

nodes is n{1), corresponding to, going back in time, a coalescent

event. Let i[Z be a tip at time ti (total of n) and ki be the number

of lineages co-existing in the interval between time ti and si, where

si is the time of the node (internal node or tip) occurring directly

after (i.e. more recent) than node i (if ti = 0, we set si = 0). Then,

from [12], corrected by [44],

f ½T jg~(w,r)�~P
i[Y

1

w
erti exp

{

ki

2

 !

wr
(erti {ersi )

0
BBBB@

1
CCCCAPi[Z

exp {

ki

2

 !

wr
(erti{ersi )

0
BBBB@

1
CCCCA:

ð2Þ

We assume throughout that the effective population size Ie

equals the infected population size, i.e. I(t)~Ie(t).

For calculating f ½T Dg� under the birth-death model with serial

sampling, we need the following definitions:

c1~D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l{d)2z4ldp

q
D,

c2~{
l{d

c1
,

p0(t)~

lzdzc1
e{c1t(1{c2){(1zc2)

e{c1t(1{c2)z(1zc2)

2l
,

q(t)~2(1{c2
2)ze{c1t(1{c2)2zec1t(1zc2)2:

Note that p0(t) is the probability that an individual at time t in

the past will have no sampled descendants [23].

The probability f ½T Dg� under the birth-death process, condi-

tioned on the epidemic circulating for time x0 before the present

(i.e. the first lineage appeared at time x0), and conditioned on

sampling at least one infected individual, is [23,24],

f ½T Dg~(l,d,p,x0)�~ (dpl)n

lq(x0)(1{p0(x0))
P
i[Y

1

q(ti)
P
i[Z

q(ti): ð3Þ

For sampling all tips at one point in time, we again use the birth-

death skyline model in add-on BDSKY [25], now with sampling

probability through time being 0 and present-day sampling

probability being r.

MCMC procedure
To sample from the posterior distribution of the parameters of

interest, we apply the Markov chain Monte Carlo (MCMC)
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computational procedure, which explores the posterior parameter

surface by taking samples from their combined posterior

distribution. We run the MCMC chain in BEAST v2.0 [30] for

2,000,000 steps and sample every 1,000th step to obtain an

effective sampling size (ESS) for each parameter of * 800, or

higher. For this purpose, we examined the log output file from

BEAST in Tracer [47]. We remove the first 200,000 steps (10%)

as burn-in. For each parameter on each simulated tree, we plot the

95% highest posterior density (HPD) interval, meaning the

shortest interval containing 95% of the posterior samples.

We picked uniform priors for all parameters. Priors for the two

parameters r,w in the coalescent model with deterministic

exponential population growth (available in BEAST v2.0) were

chosen as:

1. w: the prior was set to a uniform distribution over interval

[0,10000000], with starting value of 0.3 (w is called ePopSize in

BEAST)

2. growth rate r: the prior was set to a uniform distribution over

interval [-150000,150000], with starting value of 3:10{4.

In the birth-death model, we put priors on R0~l=d,d,p,x0. We

used the birth-death skyline serial model, setting the interval

number to 1, available in the BEAST v2.0 add-on BDSKY [25]:

1. R0: prior was set to a uniform distribution over interval

[0,1000000], with starting value of 2.0

2. d: prior was set to a uniform distribution over interval

[0,200000], with starting value of 1.0

3. sampling probability p: we set this quantity to the true value

(under which the birth-death trees were simulated) to enable

recovery of l and d; alternatively, we fix it to false p, or we set a

uniform prior over [0,1]

4. time between the origin x0 of the tree and the earliest

branching event in tree (called orig_root in BEAST): prior was

set to a log normal distribution with parameters M = 1 and

S = 1.25 and upper limit of 1000, with starting value of 1.0.

For the birth-death skyline analyses we set the interval number

for sampling probability p to 10. For sampling all the tips at one

point in time, p is fixed to 0 and r is set to the value used for tree

simulation. For the remaining parameters, the same priors as

above were used.

Supporting Information

Figure S1 Comparison of the birth-death model and the
coalescent model in estimating epidemic growth rate at
R0~f128,64,8,4,2,1:1,1g. For each plot, 100 trees simulated

under the constant rate birth-death (BD) model with incomplete

sampling (A, C, E,…) or coalescent (CE) model with exponential

growth of the infected population (B, D, F,…) using various

parameter combinations (see the header of each subfigure) were

analyzed. See the legend of Figure 1 for detailed description.

(TIF)

Figure S2 Tracking of cumulative infecteds, infecteds
and sampled individuals over time in the birth-death
tree simulations: R0~f128,64,8,4,2,1:1,1g. For each selected

R0 (see title of each subfigure) we simulated 100 trees under the

birth-death model and counted the number of cumulative

infected, infected and cumulative sampled and LTT sampled

individuals at each time step. The x-axis represents the time, going

backwards from present t~0, and y-axis the counts. Each line

represents history of one tree over time. The left column (denoted

‘‘CE’’) shows the trajectories colored on the basis of whether,

within the 95% HPD interval, the coalescent was able to correctly

recover (grey lines) or not (red lined for over- and orange lines for

under-estimated) the true growth rate parameter from the

corresponding trees. The right column (denoted ‘‘BD’’) shows

the same for birth-death process applied to the same trees, with

purple-colored lines indicating trajectories of trees for which the

growth rate was overestimated, and blue lines marking trees whose

growth rate was underestimated. The abbreviations in the legend

stand for the following; BD - birth-death skyline serial model (with

1 interval), CE - coalescent with deterministic exponential growth

of infected population, LTT - lineages-through-time.

(TIF)

Figure S3 Influence of fixing the age on the growth rate
parameter estimation. For setting l~0:55, d~0:5 and

p~0:5 (R0~1:1), we modified the sampling scheme as not to

stop simulation when 100 tips are sampled but rather when the

tree age reaches certain value: t~35 for subfigures A, B and t~50
for subfigures C, D. Again, both birth-death model trees (A, C)

and the coalescent trees (B, D) were simulated and analysed.

(TIF)

Figure S4 Influence of increasing the sample size on the
growth rate parameter estimation. For setting

l~0:55, d~0:5 and p~0:5 (R0~1:1), we modified the sampling

scheme. We do not stop simulation when n~100 tips are sampled,

but rather when more tips are sampled: n~200 for subfigures A,

B, n~500 for subfigures C, D, or n~1000 for subfigures E, F.

(TIF)

Figure S5 Influence of branch length extension in
various parts of the tree on the growth rate parameter
estimation at R0~f128,1:1g. We display a summary in form of

the median values of the start and the end of the 95% HPD

intervals, and the median of the medians of the posterior estimates

for all 100 trees per each setting: R0~128 for subfigures A, B and

R0~1:1 for subfigures C, D. See the legend of Figure 2 for

detailed description.

(TIF)

Figure S6 Influence of sampling scheme on the growth
rate parameter estimation at R0~f128,4,1:1g. We display a

summary in form of the median values of the start and the end of

the 95% HPD intervals, and the median of the medians of the

posterior estimates for all 100 trees per setting: R0~128 for

subfigures A, B and G, H, R0~4 for subfigures C, D and I, J, and

R0~1:1 for subfigures E, F and K, L. Subfigures A-F represent

sampling schemes with p~0 alternating with p~1 and subfigures

G-L represent sampling schemes with p~0:2 alternating with

p~1. Note that for some settings, e.g. l~64, d~0:5, p~0 from

t~0:04 to t~0:4, we could not simulate trees within reasonable

time limit (7 days) and thus could not assess the effects of such

sampling scheme alterations on parameter estimation. See the

legend of Figure 3 for detailed description.

(TIF)

Figure S7 Interchangeability of sampling probability in
estimation of the growth rate parameter by the birth-
death model. We analyzed the 100 trees simulated with the

birth-death (A, C, E,…) and the coalescent (B, D, F,…) at

R0~f128,64,8,4,2,1:1,1g and p~0:5 under the birth-death

model assuming either the true p~0:5 (purple bars) or untrue

p~0:01,1,½0,1� (green bars). Within each figure the trees are

ordered (x-axis) by the median value of growth rate parameter

estimated by the coalescent from birth-death trees. The graphs

display the 95% HPD and the median (corresponding color dot
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within each HPD interval) of the growth rate r parameter. The

value of the growth rate r parameter under which the trees were

simulated, is displayed as black horizontal bar.

(TIF)

Figure S8 Interchangeability of sampling probability in
estimation of ldp parameter by the birth-death model.
Simulations and analyses are the same as in Figure S7, however,

this time displaying ldp. Shown are the results of analyses of the

birth-death trees (A, C, E,…) and the coalescent trees (B, D, F,…)

simulated under various settings: R0~128 for subfigures A-F,

R0~64 for subfigures G-L, R0~8 for subfigures M-R, R0~4 for

subfigures S-X, R0~2 for subfigures Y-DD, R0~1:1 for

subfigures EE-JJ, and R0~1 for subfigures KK-PP. Within each

figure the trees are ordered (x-axis) by the median value of growth

rate parameter estimated by the coalescent from birth-death trees.

The value of the ldp parameter under which the trees were

simulated, is displayed as black horizontal bar. See Figure S7 for

detailed description.

(TIF)

Figure S9 Interchangeability of sampling probability in
estimation of p parameter by the birth-death model.
Simulations and analyses are the same as in Figure S7, however,

this time displaying p. Shown are the results of analyses of the

birth-death trees (A, C, E,…) and the coalescent trees (B, D, F,…)

simulated under various settings: R0~128 for subfigures A-F,

R0~64 for subfigures G-L, R0~8 for subfigures M-R, R0~4 for

subfigures S-X, R0~2 for subfigures Y-DD, R0~1:1 for

subfigures EE-JJ, and R0~1 for subfigures KK-PP. Within each

figure the trees are ordered (x-axis) by the median value of growth

rate parameter estimated by the coalescent from birth-death trees.

The value of the p parameter under which the trees were

simulated, is displayed as black horizontal bar. See Figure S7 for

detailed description.

(TIF)

Figure S10 Interchangeability of sampling probability
in estimation of l parameter by the birth-death model.
Simulations and analyses are the same as in Figure S7, however, this

time displaying l. Shown are the results of analyses of the birth-death

trees (A, C, E,…) and the coalescent trees (B, D, F,…) simulated

under various settings: R0~128 for subfigures A-F, R0~64 for

subfigures G-L, R0~8 for subfigures M-R, R0~4 for subfigures S-

X, R0~2 for subfigures Y-DD, R0~1:1 for subfigures EE-JJ, and

R0~1 for subfigures KK-PP. Within each figure the trees are

ordered (x-axis) by the median value of growth rate parameter

estimated by the coalescent from birth-death trees. The value of the

l parameter under which the trees were simulated, is displayed as

black horizontal bar. See Figure S7 for detailed description.

(TIF)

Figure S11 Interchangeability of sampling probability
in estimation of d parameter by the birth-death model.
Simulations and analyses are the same as in Figure S7, however, this

time displaying d. Shown are the results of analyses of the birth-death

trees (A, C, E,…) and the coalescent trees (B, D, F,…) simulated

under various settings: R0~128 for subfigures A-F, R0~64 for

subfigures G-L, R0~8 for subfigures M-R, R0~4 for subfigures S-

X, R0~2 for subfigures Y-DD, R0~1:1 for subfigures EE-JJ, and

R0~1 for subfigures KK-PP. Within each figure the trees are

ordered (x-axis) by the median value of growth rate parameter

estimated by the coalescent from birth-death trees. The value of the

d parameter under which the trees were simulated, is displayed as

black horizontal bar. See Figure S7 for detailed description.

(TIF)

Figure S12 Interchangeability of sampling probability
in estimation of R0 parameter by the birth-death model.
Simulations and analyses are the same as in Figure S7, however, this

time displaying R0. Shown are the results of analyses of the birth-

death trees (A, C, E,…) and the coalescent trees (B, D, F,…)

simulated under various settings: R0~128 for subfigures A-F,

R0~64 for subfigures G-L, R0~8 for subfigures M-R, R0~4 for

subfigures S-X, R0~2 for subfigures Y-DD, R0~1:1 for subfigures

EE-JJ, and R0~1 for subfigures KK-PP. Within each figure the trees

are ordered (x-axis) by the median value of growth rate parameter

estimated by the coalescent from birth-death trees. The value of the

R0 parameter under which the trees were simulated, is displayed as

black horizontal bar. See Figure S7 for detailed description.

(TIF)

Figure S13 Fixing p or d in parameter estimation by the
birth-death model. Trees simulated with R0~f128,4,1:1g
under the constant rate birth-death model - left-hand column (A,

C, E,…) or under the coalescent model assuming deterministic

exponentially growing population - right-hand column (B, D,

F,…), were analyzed under the birth-death model assuming either

fixed true p~0:5 or fixed true d~0:5. Within each figure the trees

are ordered (x-axis) by the median value of growth rate parameter

estimated by the coalescent from birth-death trees. The graphs

display the 95% HPD and the median (corresponding color dot

within each HPD interval) of each parameter: growth rate r, ldp,

p, l, d, R0, in turn. The value of each parameter under which the

trees were simulated, is displayed as black horizontal bar.

(TIF)

Figure S14 Effect of different information used in the R0

parameter inference at R0~f128,4,1:1g. From trees simu-

lated under the setting R0~128 (subfigures A and B), R0~4
(subfigures C and D), and R0~1:1 (subfigures E and F) and

constant sampling p~0:5, we estimated R0 using the four methods

as described in the legend of Figure 5.

(TIF)

Figure S15 Comparison of the birth-death model and
the coalescent model in estimating growth rate param-
eter from trees with tips sampled at one point in time at
R0~f128,1:1g. For each plot, 100 trees simulated under the

constant rate birth-death (BD) model at R0~128 (A, C, E) or

R0~1:1 (B, D, F) using various sampling probabilities

r~f1,0:5,0:01g of each tip at one time point were analyzed.

See the legend of Figure 6 for detailed description.

(TIF)

Figure S16 Comparison of growth rate point estimates
of the birth-death model and the coalescent model from
trees with tips sampled at one point in time at
R0~f128,1:1g. For r~f1,0:5,0:01g, we display the ML and

MAP estimates and the HPD summary for the birth-death trees

with R0~128 (A, C, E) and R0~1:1 (B, D, F). See the legend of

Figure 7 for detailed description.

(TIF)

Figure S17 Comparison of growth rate point estimates
of the birth-death model and the coalescent model for
different R0 values. For R0~f128,64,8,4,2,1:1,1g and p~0:5,

we display the ML and MAP estimates and the HPD summary for

the birth-death trees (A, C, E,…) and the coalescent trees (B, D,

F,…). See the legend of Figure 7 for detailed description.

(TIF)

Figure S18 Comparison of growth rate point estimates
of the birth-death model and the coalescent model for
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different sampling probabilities. For R0~1:1 and

p~f1,0:5,0:01,0:001g, we display the ML and MAP estimates

and the HPD summary for the birth-death trees (A, C, E,…) and

the coalescent trees (B, D, F,…). See the legend of Figure 7 for

detailed description.

(TIF)

Table S1 Summary of growth rate parameter estima-
tion statistics at various r~l{d corresponding to the
same R0. For each of the 100 trees simulated under the

respective model (the birth-death or the coalescent), with p~0:5
and various growth rates r~l{d corresponding to

R0~f11,2,1:14,1:1g, we estimated the coverage, the 95% HPD

interval sizes and RMSE of r by the birth-death model and the

coalescent model, and display the summary of these measures.

Each value of R0 that corresponds to the same growth rate r~0:5
across all the R0 settings is marked in bold. Different simulations

corresponding to the same R0 are separated by horizontal double

line.

(PDF)

Table S2 Summary of growth rate parameter estima-
tion statistics in various sampling scenarios. For each of

the 100 trees simulated under the respective model (the birth-

death or the coalescent), with periods of p~1 sampling probability

alternating with periods of p~0 or p~0:2, we estimated the

coverage, the 95% HPD interval sizes and RMSE of r by the

birth-death model (1 interval), the birth-death skyline model

allowing for varying sampling proportion p (10 equidistant

intervals for p) and the coalescent model, and display the summary

of these measures. Different simulations corresponding to the same

R0 are separated by horizontal double line. R0~128 corresponds

to l~64, d~0:5, R0~4 corresponds to l~2, d~0:5 and

R0~1:1 corresponds to l~0:55, d~0:5.

(PDF)

Table S3 Summary of growth rate parameter estima-
tion statistics for trees with tips sampled at one point in
time. For each of the 100 trees simulated under the birth-death

model, with r~f1,0:5,0:01g and R0~f128,1:1g, we estimated

the coverage, the 95% HPD interval sizes and the RMSE of r by

the birth-death model and the coalescent model, and display the

summary of these measures.

(PDF)

Supplementary Material S1 First part describes the
derivation of waiting times until coalescent under
discrete time Wright-Fisher, discrete time Moran, and
continuous time Wright-Fisher and Moran population
models. Second part discusses parameter correlations under the

birth-death process.

(PDF)

File S1 An example xml file for simulation of coalescent
trees, using sampling times from the birth-death
process, by sampling from the coalescent tree prior in
BEAST v2.0 is provided.

(XML)
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