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A Nanotechnology-Ready 
Computing Scheme based on a 
Weakly Coupled Oscillator Network
Damir Vodenicarevic1, Nicolas Locatelli1, Flavio Abreu Araujo2, Julie Grollier2 & 
Damien Querlioz1

With conventional transistor technologies reaching their limits, alternative computing schemes based 
on novel technologies are currently gaining considerable interest. Notably, promising computing 
approaches have proposed to leverage the complex dynamics emerging in networks of coupled 
oscillators based on nanotechnologies. The physical implementation of such architectures remains 
a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ 
non-idealities. In this work, we propose and investigate the implementation of an oscillator-based 
architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the 
specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and 
does not require a fine tuning of the coupling values. After evaluating its reliability under the severe 
constraints associated to nanotechnologies, we explore the scalability of such an architecture, 
suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is 
robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design 
rules, we show that nano-oscillator networks could be used for efficient cognitive processing.

Synchronization in networks of interacting oscillators is a common phenomenon in our environment. It rises 
spontaneously, for example, in crowd-clapping, circadian rhythms, business cycles or even firefly colonies1. 
Coupled oscillators synchronization has therefore been studied extensively by mathematicians and theoretical 
physicists2–8. It was also identified as a likely source of high computational power in the brain, which contains 
assemblies of interacting oscillating neurons9–15.

Starting in early 1950s, efforts were made to leverage the appealing capabilities of synchronization for compu-
tation, with the development of parametrons as logic circuit elements16,17. These first technologies were eventually 
abandoned in profit of faster and more scalable Complementary Metal-Oxide Semiconductor (CMOS) technol-
ogy. Nevertheless, CMOS technology is currently reaching scalability limits18. The focus of computing has also 
shifted toward tasks such as pattern recognition, classification or decision taking, which do not map well on the 
conventional CMOS-based von Neumann architecture19. These two considerations have led to a renewing strong 
interest for the development of unconventional oscillator-based computing architectures20–25. This interest is also 
fueled by the development of an increasing number of compact and highly integrable oscillator nanotechnologies, 
which have proven synchronization abilities: superconducting Josephson junctions26,27, laser oscillators28, micro-
electromechanical systems29–32, spin-torque nano-oscillators33–39, oxide-based oscillators23,40,41. However, natural 
interactions between such nano-oscillators are usually weak, and have to face issues such as large phase-noise, 
variability and partly non-linear behaviors42,43 that can have a negative influence on synchronization44,45. Their 
influence must be assessed to design robust oscillator-based computing architectures.

Most architectures proposed for oscillator-based computing perform associative operations. The input is pre-
sented as a set of frequencies or initial phases. The network then naturally converges to a synchronization state, 
which can be taken as output and used for example for recognition or classification. Unfortunately, this gen-
eral scheme raises challenges for implementation with nanotechnologies. Notably, many architectures require 
perfect phase synchronization21,24,46,47, which is jeopardized by phase noise and variability. Many architectures 
also require changing the couplings between oscillators during the associative process21,48, which is very hard to 
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achieve in the context of nanotechnology. An alternative approach proposes to use a global time-dependent signal 
to emulate a dynamic connectivity in a network of homogeneous interconnections, but this comes at the expense 
of the generation of a highly complex arbitrary input signal49.

In this work, we investigate an oscillator network based computing architecture that avoids these issues and is 
specially relevant within the constraints of nanotechnologies. It is based on an approach, originally proposed by 
Vassilieva et al. and until now only studied in a computer-based machine learning context8, based on a fixed net-
work of weak connections between oscillators, and relying on the control of the natural frequencies of individual 
oscillators. This architecture avoids the reading and control of individual phases, and can process noisy inputs. 
Here, we suggest that this architecture can be implemented by leveraging a general property of nano-oscillators 
allowing convenient frequency tuning through an external bias (usually current or voltage) and that the readout 
could easily be implemented by pairwise synchronization evaluation using elementary logic circuits. With regards 
to ref. 8, we investigate the impact of the main issues regarding a nanotechnology implementation: intrinsic 
noise of the oscillators, variability of their physical properties as well of their coupling strength, presence of 
non-linearity or phase shifts, impact of the network geometry on the coupling. By the means of comprehensive 
simulations, we investigate how the architecture tolerates or can be adapted to these issues.

After introducing the architecture and its input and readout protocols, we investigate, through extensive 
numerical simulations and theoretical analysis, the resilience of such a pattern recognition scheme to phase noise, 
variability, and non-linearities present in nanotechnologies. We then assess the scaling properties of the network 
by evaluating the evolution of its pattern discrimination capacity with increasing numbers of oscillators. We 
complete this study by investigating geometrical effects that can appear in nano-device architectures. Finally, we 
discuss these results in the realistic context of available nano-devices and in the light of the latest achievements 
on their synchronization capabilities.

Results
System description.  The pattern recognition architecture chosen as the basis of this study is presented in 
Fig. 1(a). It consists of a core network of oscillators that are coupled by fixed bidirectional weak connections. 
All-to-all coupling is considered in this study unless stated otherwise. Such all-to-all coupling can be expected in 
the case electrical coupling of resistive elements50 or by summing the signals of all oscillators and re-injecting the 
total signal by the use of external circuitry38. As their natural frequencies are spread, no synchronization between 
the oscillators happens spontaneously. A set of input oscillators, with stronger couplings to the core oscillators, 
is used to perturb the core network. The input to the network is encoded as the natural frequency of these input 
oscillators.

The readout map of Fig. 1(b) illustrates the typical response of a system of 4 core and 2 input oscillators. Under 
the influence of the inputs (or stimuli), synchronizations between oscillators of the core network emerge. The map 
shows regions corresponding to the different output synchronization patterns triggered by the choice of input 
natural frequencies fA

0 and fB
0. On the sides of the map, only one input oscillator interacts with the core network, 

as the other one’s natural frequency is very different from the natural frequencies of the core oscillators. This 
results in the synchronization regions, , involving the synchronization of a single pair of core oscillators. 
The central regions, , result from the interaction of multiple core oscillators with both input oscillators. 
They correspond to the synchronization of more than a single pair.

The resulting list of synchronized pairs of core oscillators corresponds to the output synchronization pattern 
of the system and is strongly dependent on the natural frequencies of the input oscillators. It is therefore a signa-
ture of the input stimuli, and can be used to achieve classification/recognition of the presented input.

By performing an associative operation between a set of analog inputs and a limited set of synchronization 
patterns, this system behaves as a hetero-associative memory. This scheme can be used for different kinds of 

Figure 1.  (a) Diagram of the oscillator network showing input oscillators A,B and core oscillators 1, 2, 3, 4. (b) 
The output synchronization readout map of the ideal reference oscillator network. Each color represents a 
different set of synchronized pairs of core oscillators. The gray  regions represent areas where none of the 
oscillator pairs is synchronized. The white  regions correspond to situations where the evaluated 
synchronization state is sensitive to the initial conditions.
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multi-class classification problems, such as image classification8, spoken word classification or decision making. 
Shaping the response of such a network so that the output can be used for classifying the inputs requires a learn-
ing process such the one described in ref. 8.

In this work, except when assessing the impact of oscillator non-linearities, we simulate the oscillator-based 
architecture by using the Kuramoto equation (1) describing the evolution of oscillator i’s phase  θi as a function of 
its intrinsic frequency fi

0 and the influence of the other oscillators θ θ φ∑ − +k sin( )j i j j i i j, , . The coupling from 
oscillator j to oscillator i is modeled through the coupling strength ki,j and the coupling phase φi,j. Unless stated 
otherwise, a phase shift φi,j =​ 0 is assumed. When specified, a phase noise term is also included in the 
simulation.

∑
θ
π

θ θ φ= + − + +


f k
2

sin( ) Noise
(1)

i
i

j
i j j i i j

0
, ,

Despite its simplicity, the Kuramoto model captures the advanced dynamics of an oscillator network3,6,33 and 
is heavily used to model systems as complex as ensembles of interacting neurons15, while remaining generic and 
fit for the description of numerous nanodevices.

We consider that the core network is initially in a random, unsynchronized state before the input stimuli are 
applied. After applying the stimuli and waiting for the stabilization of the frequencies in the network during a 
given stabilization time, its state is read by pairwise evaluation of synchronization between core network oscil-
lators. For the sake of reducing complexity, only synchronization between oscillators with consecutive natural 
frequencies is evaluated, strongly reducing the number of circuits needed for the readout process.

Reference architecture.  To illustrate the robustness of this architecture, we focus on the small scale  
architecture shown in Fig.  1(a) which uses Nc = ​ 4 core oscillators with natural frequencies 

=f f f f{ , , , } {560, 580, 600, 620}MHz1
0

2
0

3
0

4
0  and Ni =​ 2 input oscillators {A, B} with variable frequencies 

f f{ , }A B
0 0  between 500 and 680 MHz. The natural frequencies of oscillators are set either at design time by tuning 

the material or geometrical properties of each oscillator, and/or by applying a bias assuming the knowledge of the 
frequency tuning function f0(bias). A properly scaled input pattern {v1, v2} is presented by setting the natural 
frequencies of the input oscillators α β=f f v v{ , } { , }A B

0 0
1 2 . For instance, as illustrated in ref. 8. in the case of image 

classification, f f{ , }A B
0 0  can code for the frequencies of the two main harmonics {v1, v2} of an image FFT. The weak 

core-core coupling constant kcc =​ 4 MHz and the stronger input-core coupling constant kic =​ 12 MHz are chosen 
so that no spontaneous synchronization emerges among the core oscillators in the absence of stimuli, and appro-
priate response arises when input stimuli are applied. For all simulations, the oscillator network dynamics are 
computed for 1 μs. The synchronization state is then evaluated during 0.5 μs after a 0.5 μs stabilization time.

The original proposal of ref. 8. for evaluating synchronization involves the computation of the variance of 
the sinus of the phase difference between two oscillators. Although this technique is perfectly appropriate for 
theoretical investigations, this measurement is hard to implement in hardware circuits. Instead, here, we make 
use of the detector circuit of Fig. 2(a), originally proposed in ref. 51, which uses basic logic counter circuits 
approximating the average absolute frequency difference between two oscillators and comparing it to a given 
threshold. The operation of this circuit is illustrated by simulating two oscillators (“1” and “2”) coupled with an 
input oscillator “A”, and sweeping the frequency of this input oscillator. Figure 2(b) plots the average frequencies 
〈​ f (A)〉​, 〈​ f (1)〉​ and 〈​f (2)〉​ of oscillators A, 1 and 2 and shows that oscillators 1 and 2 are synchronized in a narrow 
band of input frequencies. Figure 2(c) plots the synchronization of the two oscillators, as evaluated by the original 

Figure 2.  (a) Three-oscillator circuit, and direct counter synchronization detector between oscillators 1 and 2. 
(b) Average frequencies of the oscillators in the circuit when the natural frequency of input oscillator A ( f A

0
( )) 

varies. (c) Final absolute value of the direct counter as a function of f A
0
( ), compared to the state of the art 

variance measure approach. The green horizontal line corresponds to the threshold chosen to discriminate 
synchronization.
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variance method and our technique (“Direct count”). The two techniques result in measurements that can almost 
be superimposed, therefore validating the simple circuit. We also use this graph to define threshold values (green 
horizontal line) that separate “synchronized” from “unsynchronized” pairs. This definition of synchronization, or 
quasi-synchronization, does not require perfect phase locking and is particularly relevant in the context of noisy 
weakly coupled oscillators, and brings robustness to noise.

The complete readout map of the ideal system of Fig. 1(a) was computed on a massively parallel Graphics 
Computing Unit (GPU, see Methods) for 200 ×​ 200 =​ 40,000 input natural frequency combinations f f{ , }A B

0 0 , and 
is shown in Fig. 1(b), where points are colored according to the detected synchronization pairs. For each point, in 
order to avoid sensitivity to the initial state of the core network, the simulation was repeated 10 times starting with 
different random initial phases. The point is then blanked if at least one simulation yields a different output syn-
chronization pattern. Finally, a filtering step is applied to the map that blanks out all the points whose pattern does 
not appear consistently in a 3 MHz-radius region around the point. This step avoids counting spurious readout 
patterns and guarantees that the obtained synchronization regions are robust to small variations of the presented 
input frequencies.

As shown in the readout map of Fig. 1(b), the synchronization regions discriminating classes of inputs are 
fairly wide and clearly defined, which confirms that this approach is appropriate for oscillator-based pattern 
classification. The sizes and positions of the regions are of course strongly dependent on the choice of natural 
frequencies of oscillators in the core network as well as their associated frequency differences. This property is 
exploited as an asset to shape the network classification abilities by adaptation of the oscillator frequencies in 
ref. 8: the learning operation consists of presenting examples and adjusting the natural frequencies to promote 
expected synchronizations and break undesired ones. Furthermore, given the natural frequency tuning capabil-
ities of the proposed system, online learning algorithms can also be used. Following this scheme, the proposed 
architecture only uses natural frequencies as tuning parameters, with fixed couplings, which is highly relevant for 
the design of nano-architectures.

Behavior under the presence of noise.  Noise is an important challenge in hardware implementations of 
oscillator-based computing. In the literature, noise was observed to not only prevent synchronization1 but also to 
induce fluctuations in the synchronization pattern readout during evaluation time, showing transitions in regions 
where multiple synchronization attractors are available44. To fully assess the influence of noise in this architecture, 
we simulate the reference architecture for increasing phase noise levels on both input and core oscillators. We 
then compare the obtained readout map to the ideal map evaluated in the noiseless case (Fig. 1).

Noise is included in the solved Kuramoto equation 1 and the specific Euler-Maruyama SDE integration 
scheme is used (see details in Methods section). The noise FWHM is defined to be the Full Width at Half 
Maximum of the power spectrum density of an isolated oscillator.

The typical effect of noise is visible on the map of Fig. 3(b) obtained in the case of FWHM =​ 1 MHz: it erodes 
the surface of output synchronization pattern regions. Noise particularly affects the points where synchroni-
zation was weak, situated at the boundaries of the regions identified on reference map of Fig. 1(b). Figure 3(a) 
shows the percentage of matching points to the noiseless ideal map of Fig. 1(b) at different levels of noise. These 
results show that this architecture is resilient to relatively high noise levels, demonstrating 70% matching at 
FWHM =​ 1 MHz, corresponding to oscillators with f/FWHM ≥​ 500. As a comparison, typical auto-oscillating 
magnetic nano-devices have shown f/FWHM ≥​ 600034 (FWHM lower than 100 kHz at 457 MHz), and mechanical 
oscillators29 can achieve f/FWHM ≈​ 103, which makes these technologies good candidates for this architecture.

In order to fully mitigate the effects of noise, we found that the distance between the natural frequencies of 
core oscillators can be increased. Figure 3(a) shows results for a case in which the couplings, distances between 
natural frequencies, and input frequency sweep ranges have been multiplied by a factor of 1.5(Δ​). This system is 
notably more robust to noise than the initial system. However, this is a trade-off as it requires accessing a larger 
range of natural frequencies for the core oscillators, and ensuring stronger couplings. As a conclusion, the level 
of phase noise in oscillators should define the minimal interdistance between core oscillator natural frequencies.

Figure 3.  (a) Percentage of matching points to the ideal map with respect to noise FWHM for the original(▲​)  
and the adjusted(Δ​) systems. (b) An example of synchronization readout map under oscillator noise 
FWHM =​ 1 MHz in the original system.
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Effects of natural frequencies variability.  Tuning the sizes and positions of the readout synchronization 
pattern regions requires the ability to set the natural frequency of every core oscillator. This is done either at 
design time by geometrical or material engineering of each oscillator, or by relying on the knowledge of the nat-
ural frequency tuning function f 0(bias) of every oscillator. Both approaches are prone to device variability, which 
can lead to random shifts in the natural frequencies of the oscillators. As the distances between frequencies in the 
core network are critical parameters, this variability can induce behavioral changes.

To study the effects of natural frequency variability, the readout map was computed for increasing variability 
factors and compared to the reference map of Fig. 1(b). For increasing Δ​f0  values, 100 possible outcomes are 
computed with core oscillator natural frequencies uniformly drawn in the range − ∆ + ∆f f f f[ , ]i i

0 0 0 0  where fi
0 

is the target natural frequency of oscillator i. Figure 4(a) shows the degree of matching with the expected readout 
map as a function of Δ​f 0. The solid curve represents the average matching for the 100 simulations, while the blue 
filled region shows the span between the worst and best matching values reached.

For low variability values, the worst case matching first slowly decreases up to approximately ±​3 MHz, before 
dramatically falling below 50% for higher variability values. This worst case corresponds to a situation where 
the natural frequencies of a pair of core oscillators are brought close enough so that undesired synchronization 
appears even without input stimuli. Nevertheless, the worst case matching stays over 70% up to a variability 
of ±​2 MHz, which corresponds to 10% of the initial difference between two consecutive core network natural 
frequencies.

An example of obtained readout map is shown on Fig. 4(b) in a case of 2 MHz variability. In this map, f1
0 and 

f2
0 are slightly further apart than expected, which reduces the region  in which they can synchronize. On the 

contrary, f f f, ,2
0

3
0

4
0 are closer than expected and regions  where all three are synchronized appear on the sides 

of the map.
These results show that the system is robust to moderate natural frequency variability, but that high variability 

on natural frequencies rapidly induces uncertainty on the system response. Again, we conclude that knowledge 
of the variability level of the system defines the minimal natural frequency difference between consecutive core 
oscillators.

In the presence of high variations, an effective approach could be to take inspiration from the reinforcement 
learning algorithms from the machine-learning expertise, and use the readout to implement a feedback of the 
oscillator biases in order to achieve the correction of the natural frequency values8,52, taking advantage from the 
tunability of the core oscillators.

Effects of coupling constants variability.  Variability on the coupling values can arise from variability in 
inter-oscillator distances (in case of proximity coupling effects), variability in electrical connections, variability in 
the signal amplitude they emit or variability in their individual response to stimuli40,45.

The consequences of such variability were studied by computing the readout map for increasing variability 
amplitudes in the coupling strengths. For each value of variability amplitude μ ranging between 0 and 100%, 100 
simulations were run after randomly drawing individual couplings ka ,b in the uniform range 

µ µ− +k k[ (1 ), (1 )]a b a b,
0

,
0  where ka b,

0  is the initial coupling without variability.
A typical map obtained under a coupling variability μ =​ 20% is shown in Fig. 5(b). It shows that coupling 

variability has an influence on the size and shape of the synchronization regions in the readout map. Notably, it 
has a significant impact on regions corresponding to the synchronization of a single pair of oscillators. Indeed, 
the smaller the coupling between the two oscillators, the smaller the input frequency range in which they will 
synchronize is. The readout map also shows that the core network no longer responds symmetrically to the two 
input stimuli, due to variability in input-core couplings.

The average matching with the expected readout as a function of the coupling strength variability amplitude is 
shown in Fig. 5(a). The filled region represents the span between the worst and best matching rates encountered. 
Results show that the network is robust to coupling variability. Indeed, even 100% variability does not fully ham-
per the function of the recognition process, as no sudden breakdown is observed. A reasonable 20% variability, 
even in the worst case scenario that was simulated, leads to more than 70% matching with the expected readout 

Figure 4.  (a) Average matching with the expected map for 100 draws on different natural frequency uniform 
variability ranges, filled between best and worst cases encountered. (b) An example readout map where f2

0 was 
shifted by +​2 MHz and f4

0 by −​2 MHz: =f f f f{ , , , } {560, 582, 600, 618} MHz1
0

2
0

3
0

4
0 .
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map. This robustness can be attributed to the existence of redundant couplings in the core network, that tends to 
even out local coupling variations. These results are very positive in the context of nanotechnologies, for which 
precise engineering of individual couplings in a network are complex to achieve.

Effects of coupling phase shifts.  Coupling between oscillators can arise from many different phenomena: 
magnetic interaction35, electrical coupling30,37, mechanical coupling31. Notably, couplings can have both a con-
servative and a dissipative component1,5, and sometimes involve delays. To fully account for the different types of 
interactions, a non-zero uniform coupling phase shift term φi,j =​ φ is added in the solved Kuramoto equation 1, 
and its influence on the system is assessed through the following simulations. The readout map was simulated for 
different values of the coupling phase-shift term φ, in the ideal case of noiseless oscillators and with no variability.

Figure 6(a) shows the evolution of the degree of matching of the readout map to the ideal map of Fig. 1(b), 
as well as of the number of different discriminated synchronization patterns, as a function of the coupling phase 
shift value. Results show that the phase-shift has significant effects on the response of the system, as the matching 
with the reference map drops with increasing φ. Notably, it drops under 50% for |φ| >​ π/6. It then reaches a pla-
teau at 25% of matching for |φ| >​ π/3 where only the areas of the map where no synchronizations are present are 
consistent with the ideal readout map.

Figure 5.  (a) Average matching with the expected map for 100 draws with different coupling uniform 
variability amplitudes μ, filled between best and worst cases encountered. (b) An example readout map for 
μ =​ 0.2.

Figure 6.  (a) Matching with the ideal map(+​) and total number of different discriminated patterns( ) in the 
readout map as a function of phase shift φ. (b) An example readout map for a phase shift φ =​ 0.12π. (c) Example 
readout map for φ =​ π.
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The number of discriminated synchronization patterns is also strongly affected by the appearance of a cou-
pling phase-shift. The maximum number, 8, holds for only small phase-shifts, and then progressively falls as |φ| 
increases toward π

3
, for which all the synchronizations break. As shown by the map of Fig. 6(c), when |φ| 

approaches π, we observe that only synchronization of pairs of oscillators arises, in the regions for which the two 
inputs have close frequencies.

The map obtained for φ =​ 0.12π is shown in Fig. 6(b). We can see that for this phase-shift, the synchronization 
pattern region shapes are already significantly deformed with regards to Fig. 1(b), especially when several pairs 
of core oscillators are involved. Indeed, while interaction phase-shifts do not prevent synchronization between 
two oscillators, frustrations a rise when several oscillators are involved in the synchronization process as seen in 
other contexts in refs 53 and 54. This phenomenon is critical in the context of the stimuli-induced core oscillator 
synchronizations, as at least three oscillators (2 core and 1 input) are involved.

As a conclusion, as the engineering of the pattern recognition architecture using a network of oscillators 
relies strongly on the ability to synchronize more than two oscillators, the phase relation between synchronized 
oscillators should be carefully cared about. The use of delay lines or reactive components in the network can in 
particular be integrated in the design process to solve this issue by bringing the coupling phase shift back to zero 
for optimal performance. Technological solutions allowing this can be found in refs 37, 53, 55 and 56.

Effects of oscillator non-linearity.  Non-linear behavior, i.e. phase-amplitude coupling, is a common 
property of nano-oscillators. It manifests itself through a frequency dependence on the oscillation amplitude. 
This non-linearity has a strong influence on the synchronization efficiency as it amplifies the effects of interac-
tions42. In the following, we assess the consequences of non-linearity on the behavior of our pattern recognition 
architecture.

We now model the oscillators of the system by the following set of coupled equations:

∑

∑

γ θ θ φ

θ νγ θ θ φ

= − + − +

= + − + − +





r r r k r

w r k
r
r

(1 ) cos( )

( 1) sin( )
(2)

i i i
j

i j j j i

i i i
j

i j
j

i
j i

2
, 0

0 2
, 0

where ri is the amplitude of oscillator i, γ is the damping coefficient for radius deviation, v is the dimensionless 
nonlinear frequency shift that quantifies the non-linearity, and φ0 is the coupling phase that depends on the phys-
ical nature of the coupling mechanism. This is a conventional way to model nonlinear oscillators, as described in 
ref. 42. The phase equation of this model reduces to the Kuramoto equation 1 in the absence of nonlinearity 
(v =​ 0). When phase-amplitude coupling is involved, it can be shown that a pair of oscillators interact with an 
increased effective coupling term: ν′ = +k k 1ij ij

r

r
2j

i
. The second effect of the nonlinearity implies a contribu-

tion to the effective coupling phase-shift, that then verifies:

φ φ ν′ = + .arctan( )0

The choice of a too strong coupling is detrimental for the recognition abilities of the network, this effective 
increase should be conveniently leveraged to allow the use of weaker physical couplings at design time, or allow a 
larger spacing between core oscillator natural frequencies. As an illustration, we show in Fig. 7 the readout map 
obtained in a case when the coupling between the oscillators is conservative (φ0 =​ −​π/2) and with a strong 
non-linearity v =​ 5, for which all coupling strengths kij were reduced by a factor ν+ ≈1 52 . This rescaling 
allows to come back to effective coupling strengths close to those of Fig. 1(b). However, the map appears deformed 
as anticipated due to the non-zero effective phase-shift (φ π′ ≈ − .0 06  for v =​ 5).

Figure 7.  Readout map obtained for an oscillator network with conservative coupling (φ0 = −π/2), 
dimensionless non-linear frequency shift v = 5 and coupling strengths reduced by a factor + ν ≈1 52  
compared to the linear network.
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We conclude that the nonlinearity effects are interestingly beneficial for the design of the introduced pattern 
recognition architecture. By artificially increasing the coupling strength, it allows the use of even more weakly 
coupled networks, but mostly it will allow to increase the spacing between core oscillators’ natural frequencies, 
that has strong interest to mitigate the effects of phase noise and variability.

In case of a conservative coupling, strong non-linearities can also be beneficial to push the effective coupling 
phase towards zero. In general cases, effects of the non-linear behavior on this phase-shift should be carefully con-
sidered as a function of the physical origin of the coupling, and the subsequent φ0 value, aiming for an effective 
phase-shift as close to 0 as possible.

System scalability.  We observed that our reference architecture composed of four core oscillators and two 
input oscillators already allows discriminating up to eight different classes of stimuli. We now study the evolution 
of the maximum number of synchronization patterns reached by the proposed architecture as it scales by increas-
ing the number of both core and input oscillators.

During the readout phase, synchronization is evaluated between pairs of core oscillators with consecutive 
natural frequencies. For Nc core oscillators, each one of the Nc −​ 1 pairwise evaluations can return a positive or a 
negative answer. The theoretical upper bound on the number of discriminated patterns can then be derived as the 
number of possible values taken by a binary word of Nc −​ 1 bits, i.e. 2Nc−1.

Nevertheless, depending on the number of input oscillators, different proportions of these synchronization 
outcomes can be reached. To investigate the actual capacity of the system, we have computed the readout maps of 
the proposed circuit on GPU for different numbers of core oscillators and different numbers of input oscillators, 
and have counted the number of different unique available synchronization patterns in each of them. To keep the 
parameters of the system unchanged, we maintain a constant 20 MHz difference between consecutive natural fre-
quencies in the core network. Note that an increase in the number of core oscillators is bounded by the availability 
of a larger range of natural frequencies. The number of dimensions of the computed maps is equal to the number 
of inputs. The ideal cases (without noise nor variability) in Fig. 8 show the number of discriminated patterns for 
the readout maps obtained for different numbers of ideal core and input oscillators, as well as the aforementioned 
theoretical upper bound.

These results show that the response of the ideal system is very rich as it displays an important number of dif-
ferent synchronization patterns. The number of observed synchronization patterns substantially increases both 
with the number of core oscillators, and with the number of input oscillators. More specifically, the number 
of patterns versus number of core oscillators follows the exponential theoretical upper bound curve before its 
increase starts slowing down. The maximum number of patterns stays equal to the theoretical upper bound longer 
when more inputs are present. This is due to the fact that a bigger number of groups of oscillators can be synchro-
nized independently when more inputs are available, which increases the total number of patterns reachable by 
the system.

As we have seen that the presence of noise and variability in such oscillator-based computing architectures 
has an influence on the network’s synchronization behavior, it is important to assess the scalability of the sys-
tem in a non-ideal case. We reproduced simulations including an important level of noise and variability: noise 
FWHM =​ 1 MHz, ±​1 MHz variability on natural frequencies and 10% variability on the couplings, as defined in 
the previous sections. The non-ideal cases in Fig. 8 show the average number of discriminated synchronization 
patterns in the response maps obtained on 10 random trials in these conditions. The filled areas correspond to the 
span between the best and worst cases encountered during the random trials.

We observe that this level of noise and variability does not or barely affect the number of discriminated patterns 
in the 1 and 2 input cases, as well as in the 3 inputs case until Nc =​ 5. For higher Nc values, in the three-input case, the 
number of output synchronization patterns is reduced with regards to the ideal case: in the worst case Nc =​ 10, the 
number of stable patterns discriminated drops from 169 in the ideal case, to 107 on average. This loss is mainly due 

Figure 8.  Number of different discriminated patterns in the readout map as a function of the number 
of core oscillators Nc, for Ni = {1, 2, 3} input oscillators, as evaluated in an ideal case and in an average 
case with high noise and variability. The filled regions represent the span between the best and worst cases 
encountered during 10 random variability trials. The theoretical upper bound(■​) corresponds to 2Nc−1.
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to the noise effects: the tested variability values, although high, have little effect on the number of synchronization 
patterns. The patterns suppressed by noise tend to be the smallest, therefore less-reliable, patterns.

Nevertheless, we see in Fig. 8 that the presence of noise and variability does not fundamentally affect the 
scaling capability of the system, but requires avoiding using unreliable patterns of the response map. We should 
also remark that, in the presence of noise and variability, the previously mentioned frequency spacing criteria 
also limit the scalability of the system provided that the accessible natural frequency range for core and input 
oscillators is limited.

Overall, these results show that the maximum number of synchronization patterns of the proposed system is 
high and scales well with the number of oscillators, which makes the system attractive for many-class classifica-
tion and associative memories.

Effects of geometrical constraints in the network.  Uniform all-to-all coupling is a straightforward 
hypothesis when considering networks of oscillators. Nevertheless, densely packed networks of oscillators also 
offer the possibility to leverage coupling through proximity effects. In such a situation, the distance between oscil-
lators can affect their coupling strength and/or induce phase shifts in their signals. The geometrical arrangement 
of devices then appears as a fundamental consideration. It is then interesting, in the nano-device context, to assess 
the robustness of the studied computing scheme in the case of non-uniform couplings.

Spatially decaying coupling strengths.  Proximity couplings usually involve short characteristic interaction dis-
tances. Coupling strength then decreases with the physical distance between two oscillators. This applies for 
example to mechanical couplings through acoustic waves31, to spin wave coupling of spintronic oscillators36,57, to 
optical couplings28 or to couplings through dipolar electrical or magnetic fields35.

To assess this effect, we simulate our 2-input architecture considering 10 core oscillators arranged along a line, 
sorted by increasing natural frequency, and with core-core coupling strengths |

≠ ∈
ki j i j, ( ) core

 decreasing exponen-
tially with distance:

λ| = × − | − | −
≠ ∈

k k i jexp( ( 1)) (3)i j i j cc, ( ) core

where λ is the spatial coupling decay factor. For generality, input-core couplings are left unchanged.
Figure 9(a) shows the number of discriminated patterns in the response map, as well as its matching to the 

map with all-to-all uniform couplings (λ =​ 0), as functions of the spatial coupling decay factor λ. The graph shows 
that the system behavior changes minimally up to λ =​ 0.075, where it shows 90.6% matching to the all-to-all map 
with all its 53 patterns still present. The number of discriminated patterns then drops and stabilizes to 46 for 
λ >​ 0.4 and the matching with the all-to-all map drops and stabilizes to 75.4% for λ >​ 5.8.

In order to illustrate the effects of such a decay, we also compute an example Nc =​ 4 core oscillator response 
map under a high decay factor (λ =​ 0.5). The corresponding response map Fig. 9(b) shows that only the 
4-oscillator pattern  disappears as the coupling decay increases. On the other hand, patterns involving a single 
input and 2 core oscillators,  remain unaffected.

Patterns involving at most single pairs of synchronized oscillators remain unaffected because they rely on 
first-neighbor couplings only. On the other hand, patterns involving at least one group of more than 2 synchro-
nized oscillators are affected because long range interactions between distant neighbors in the group contribute 
to their stability.

These results show that in a configuration where couplings are decaying in space, or even limited to first neigh-
bors, the system only loses a small portion of its capacity, as most of the synchronization patterns can be stabilized 
by short-range interactions alone.

Figure 9.  (a) Matching with the response map in the uniform all-to-all coupling case(■​), and number of 
discriminated patterns( ) in the resulting map for Nc =​ 10 core oscillators as a function of the spatial coupling 
exponential decay factor. The oscillators are assumed to be arranged along a line, spaced by one distance unit, 
and ordered by increasing natural frequency. (b) Example response map obtained for Nc =​ 4 core oscillators, 
Ni =​ 2 input oscillators and λ =​ 0.5.
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Spatially-increasing coupling phase shifts.  When coupling in the network involves propagating waves, the dis-
tance between two oscillators can also induce non-negligible time delays, and therefore distance-dependent cou-
pling phase shifts. They can also be induced by material non-linearities58.

To account for distance-dependent coupling phase shifts we simulate the 2-input architecture with 10 core 
oscillators arranged spatially along a line, ordered by increasing natural frequency, and with a distance-dependent 
coupling phase shift term between core oscillators φ |

≠ ∈i j i j, ( ) core
:

φ η| = − × −
≠ ∈

i j (4)i j i j, ( ) core

where η represents the phase shift per unit distance.
Figure 10 shows the number of discriminated patterns in the response map, as well as its matching to the 

ideal η =​ 0 map, as functions of the phase shift per unit distance η. Similarly to the uniform phase shift case, the 
response map of the system is heavily altered by distance-related phase shifts. For η =​ 0.04π, the matching with 
the ideal map already drops to 63.4%, as the shape of pattern regions is changing, but only 3 patterns are not 
observed anymore. Generally, while the matching to the ideal η =​ 0 map quickly decreases below 60%, the num-
ber of stable patterns stays high, over 40, for moderate values of η (<​0.4π). A locally optimal situation is observed 
around η =​ 0.22π, which is related to system symmetries. Patterns involving only 2 core oscillators synchronized 
with a single input are again the most resilient to these phase shifts, while the apparition of frustrations quickly 
destabilizes patterns involving multiple synchronized oscillators.

Overall, to keep the maximal capacity of the system, accumulated contributions to the phase-shifts between 
every pair of oscillators should be brought as close to zero as possible. Considering propagation-related effects, 
a careful distribution of oscillators in space should be considered to ensure target phase-shift. It is however 
expected that, in case of decaying coupling, the influence of distance-dependent phase-shift should be lower.

Discussion
In this work, we have shown that a network of nano-oscillators can be used to achieve recognition/classification 
operations by relying on the rich synchronization dynamics of its oscillators.

In an ideal situation with noiseless oscillators and in absence of variability issues, it allows the classifica-
tion of stimuli in a large number of classes. Even if its capacity is diminished as compared to an ideal case, this 
computing architecture is also fully compatible with noise levels and device variability corresponding to cur-
rent achievements in nanotechnology. Resilience to noise and device variability is a widespread feature of neural 
network-inspired architectures59, and a strong advocate for their use in conjunction with nanotechnologies. In 
the case of our system, the relaxed nature of synchronization evaluation further helps the system deal with noisy 
situations.

A challenge for the design of oscillator-based computing units and their scalability is the minimal number 
of oscillators that is required to achieve non-trivial computational tasks. In this work, we have shown that this 
architecture can allow for complex classification tasks even with a network of a reduced number of oscillators. 
It is able to discriminate oscillating stimuli into a number of classes that scales rapidly with the number of core 
oscillators, even in situations with high phase noise and variability. With this fast increase of the computational 
complexity with the number of oscillators, complex cognitive tasks can already be achieved with a limited number 
of oscillators, as illustrated in this study in the case Nc ≤​ 10 oscillators.

Concerning scalability, our study has highlighted network design rules, for which the minimal natural 
frequency spacing among core oscillators has to be set in agreement with the expected noise and variability 
amplitudes. As a consequence, the accessible natural frequency range appears as a crucial parameter during the 
architecture design.

Nanodevice-based oscillators are generally non-linear42,43. We have shown that these non-linearities – i.e. 
phase-amplitude coupling – allow the use of weaker couplings in the core computing network, by increasing 

Figure 10.  Matching with the ideal map(+​) and total number of different discriminated patterns( ) in the 
readout map as a function of the phase shift per distance unit, for Nc =​ 10 core oscillators. Oscillators are 
assumed to be arranged along a line, spaced by one distance unit, and ordered by increasing natural frequency.
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the oscillators’ synchronization capabilities. They allow the spacing between core oscillators frequencies to be 
increased, but also contribute to the phase-shifts between synchronized pairs of oscillators.

Such phase-shifts, that also arise from the global properties of the coupling, appear to be the most important 
practical challenge towards achieving oscillator network computation. They are responsible for the appearance 
of frustrations that restrict synchronization of more than two oscillators, and reduce the global synchronization 
capabilities of the network. Therefore, this point should receive special attention for the choice of ideal technol-
ogy as well as ideal coupling type and geometry in the design of the network. Coupling phase shifts can also be 
adjusted at design time: for instance, in the case of high frequency oscillators, proper transmission line design can 
introduce phase delays between oscillators so that phase shifts are ideally brought back to zero37,53,55,56.

The computing scheme described through this work was also shown to be compatible with different oscilla-
tor coupling strategies. While all-to-all coupling guarantees the highest classification capacity, coupling through 
proximity effects, prone to appear in nano-device networks, can also be leveraged with high computing capacity.

Another challenge for scalability in the context of nanotechnology implementation is the number of detection 
circuits. In the proposed architecture, the number of necessary detection circuits is limited to Nc −​ 1, scaling lin-
early with the number of oscillators.

A proposal to achieve advanced classification could also be to rely on the juxtaposition of several small core 
networks, trained independently to discriminate complementary subsets of patterns. From a nanotechnology 
point of view, this also avoids the complex fabrication of large networks of nano-objects and would facilitate the 
training of the networks.

This work contributes to a recent vision of nanodevice-based computing where nanodevices would be “more 
than a switch”60. We can exploit the whole intrinsic physics of the devices for achieving significant computing 
tasks with a minimal number of devices. The most important challenge for the success of this vision will be to 
demonstrate practically scaling and programming capabilities.

Methods
Simulations not involving noise use 4th order Runge Kutta integration. When noise is involved, the 
Euler-Maruyama SDE integration scheme is used. To ensure convergence, decreasing time-steps were tried until 
no change on the phase evolution of individual oscillators was observable, and the limit time-step was further 
divided by 10. The final time-step used that ensures convergence of both integration schemes is dt =​ 100 ps. The 
numerical scheme used for the Kuramoto equation is given in equation 5, where   is the Gaussian distribution.

∑θ π π θ θ φ=







× + × − + +

π ×
×








×d f k

dt
dt2 2 sin( ) 2 FWHM (0, 1)

(5)
i i

j
i j j i i j

0
, ,

The total simulation time was 1 μ​s of which the first 0.5 μ​s are the transient stabilization time after which syn-
chronization detection counting starts. This waiting time was chosen to ensure the stabilization of the dynamics 
on 1,000 simulation runs of the reference system with different random initial conditions. The total simulation 
time corresponds to approximately 600 periods of the oscillators and is chosen to be a realistic scale for real-life 
implementations. Two oscillators are considered synchronized when the final absolute value of their counter is 
strictly less than 6, that is less than about 2% difference in their number of periods51.

The computed 4 core oscillator maps are 200 ×​ 200 points with 10 simulations per point, which amounts for 
400,000 simulations. To keep the same resolution, the maps of the scaling study and 10 core oscillator maps were 
computed using 333 ×​ 333 ×​ 10 =​ 1,108,890 simulations. Since all simulations are independent, they were run in 
parallel on nVidia Tesla K40m GPUs. The simulation code is written in C+​+​ and uses the CUDA Thrust library.
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