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Known as the “fifth RNA nucleotide”, pseudouridine (Y or psi) is the first-discovered and
most abundant RNA modification occurring at the Uridine site, and it plays a prominent
role in a number of biological processes. Thousands ofY sites have been identified within
different biological contexts thanks to the advancement in high-throughput sequencing
technology; nevertheless, the transcriptome-wide distribution, biomolecular functions,
regulatory mechanisms, and disease relevance of pseudouridylation are largely elusive.
We report here a web server—PIANO—for pseudouridine site (Y) identification and
functional annotation. PIANO was built upon a high-accuracy predictor that takes
advantage of both conventional sequence features and 42 additional genomic features.
When tested on six independent datasets generated from four independent Y-profiling
technologies (Y-seq, RBS-seq, Pseudo-seq, and CeU-seq) as benchmarks, PIANO
achieved an average AUC of 0.955 and 0.838 under the full transcript and mature
mRNAmodels, respectively, marking a substantial improvement in accuracy compared to
the existing in silico Y-site prediction methods, i.e., PPUS (0.713 and 0.707), iRNA-PseU
(0.713 and 0.712), and PseUI (0.634 and 0.652). Besides, PIANO web server
systematically annotates the predicted Y sites with post-transcriptional regulatory
mechanisms (miRNA-targets, RBP-binding regions, and splicing sites) in its prediction
report to help the users explore potential machinery of Y. Moreover, a concise query
interface was also built for 4,303 knownY sites, which is currently the largest collection of
experimentally validated human Y sites. The PIANO website is freely accessible at: http://
piano.rnamd.com.

Keywords: pseudouridine sites, genome-derived feature, RNA modification, Web-server, functional annotation
INTRODUCTION

Pseudouridine (5-ribosyluracil, Y, and psi) is the first-discovered (Cohn and Volkin, 1951) and
most abundant RNA modification occurring at the Uridine site catalyzed by 13 pseudouridine
synthase (PUS) (Chen and Patton, 2000; Zhao et al., 2004; McCleverty et al., 2007; Shaheen et al.,
2016; Jacob et al., 2017). Y is present in many classes of RNA within all organisms, such as
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messenger RNA (mRNA), transfer RNA (tRNA), small nucleolar
RNA (snoRNA), small nuclear RNA (snRNA), and ribosomal
RNA (rRNA) (Ge and Yu, 2013). Y was termed as “the fifth
nucleotide” with an estimated Y/U ratio of 7–9% (Jacob et al.,
2017), and it is considered to be the most prevalent of the mRNA
modifications (Meyer and Jaffrey, 2017). Y plays a prominent
role in many biological processes. The presence of Y in tRNA
and rRNA regulates the entry site binding process in ribosomal
RNA (Jack et al., 2011) and RNA structure stabilization (Kierzek
et al., 2014). A recent study also demonstrated thatY is related to
transcript stability (Schwartz et al., 2014), environmental signal
response (Carlile et al., 2014), and genetic code switching in
mRNA (Karijolich and Yu, 2011; Fernández et al., 2013). Y
deficiency may be associated with various diseases. It has been
found that the dysregulation of Ymodification of mitochondrial
tRNA acts as an etiology of mitochondrial myopathy and
sideroblastic anemia (MLASA) (Bykhovskaya et al., 2004).
Furthermore, mutations in pseudouridine are also involved in
diseases like lung cancer and duykeratosis congenita (Mei
et al., 2012).

Several high-throughput sequencing approaches have been
developed for profiling the transcriptome-wide distribution ofY,
including Pseudo-seq (Carlile et al., 2014),Y-seq (Schwartz et al.,
2014), PSI-seq (Lovejoy et al., 2014), and CeU-seq (Li X,et al.,
2015). These approaches all share the same principle, in which
RNA is treated with the N-cyclohexyl-N’-(2-morpholinoethyl)-
carbodiimide-metho-p-toluenesulfonate (CMC) to leave a bulky
group on Y and stop reverse transcription. Since the bulky
adduct on the Y may reduce the sensitivity in the detection of
Y, Vahid et al. recently developed a new approach, RBS-seq,
which is based on a modification of RNA bisulfite sequencing
and claims better sensitivity (Khoddami et al., 2019). Currently,
the experiment-validated Y sites in human, mouse, and a few
other model organisms are available from RMBase database
(Xuan et al., 2017), and the regulation pathways of Y were
more explicitly explained in MODOMICS database (Boccaletto
et al., 2017).

Wet-lab approaches are surely effective for the study of
transcriptome pseudouridylation with respect to a specific
biological context; however, they are also laborious and offer
only limited coverage, i.e., the reported RNA Y sites by wet-lab
experiments are still restricted to the transcripts more readily
expressed under a specific cell/tissue condition. Alternatively,
computational efforts may provide a more cost-effective avenue
(Chen X, et al., 2017). To date, many computational efforts have
been made to facilitate the study of RNA epigenetics (Boccaletto
et al., 2017; Chen X, et al., 2017; Chen Z, et al., 2019; Xue et al.,
2020; Liu et al., 2020) in terms of both experimental data
collection and site prediction works. For predictors related to
the identification of Y RNA modification, PseUI (He et al.,
2018), XG-PseU (Liu et al., 2019), and iRNA-PseU (Chen et al.,
2016) allow for prediction of putative Y sites from an RNA
sequence, and PPUS (Li Y.H, et al., 2015) can predict the Y sites
regulated by a specific pseudouridine synthase. However, these
three predictors are all based on sequence-derived features only
without considering other genomic features (such as
Frontiers in Genetics | www.frontiersin.org 2
conservation, gene annotation, and miRNA binding) that may
contribute to the prediction, and thus their performance is
limited (Chen K, et al., 2019). Moreover, their prediction
results are not functionally annotated with potential post-
transcriptional regulation machineries that may explain the
functional consequences of the predicted Y sites.

We present here a web server—PIANO—for pseudouridine site
identification and functional annotation. Inspired by theWHISTLE
framework (Chen K, et al., 2019), PIANO took advantage of both
the conventional sequence features and 42 additional genomic
features. Using six independent datasets generated from four
different technologies, we showed that PIANO adds a marked
improvement to the accuracy of existing Y-site prediction.
Moreover, the PIANO web server accepts both genomic location
and RNA sequence format as input file when making predictions,
and the putative Y sites returned are also annotated with various
post-transcriptional regulations, including miRNA-targets, RBP-
binding regions, and splicing sites, to unveil potential functional
mechanisms ofY. The PIANO website is freely accessible at: http://
piano.rnamd.com.
MATERIALS AND METHODS

Training and Testing Data for
Y-Site Prediction
To construct the Y-site prediction model, we used the known
human Y sites detected from four different base-resolution Y
profiling techniques, including Y-Seq, RBS-Seq, CeU-Seq, and
Pseudo-Seq (see Table 1). The Y sites at base-resolution were
directly downloaded from Gene Expression Omnibus (GEO).

In the beginning of the performance evaluation, dataset H1 (see
Table 1) was used as the testing data, while dataset H2-H4 were
used as for training. Specifically, the base-resolution Y sites in
training datasets were used as the positive training data. The
negative sites used in model training were randomly selected
from unmodified U sites located on the same transcripts of
positive sites (see Figure 1). To make the best use of the limited
volume of positive data, we randomly selected 10 negative sites for
TABLE 1 | Base-resolution dataset used for Y-site prediction.

Dataset Cell line Treatment Technique Site
#

Source

H1 HEK293 Y-Seq 652 (Schwartz et al.,
2014)

H2 Hela RBS-Seq 322 (Khoddami et al.,
2019)

H3 HEK293T CeU-Seq 1555 (Li X, et al., 2015)
H4 HEK293T H2O2 460
H5 HEK293T Heat Shock

(HS)
421

H6 Hela Pseudo-
Seq

156 (Carlile et al., 2014)
March 2
020 | V
The experimentally validated human Y sites used in this project are also available from the
PIANO website of this project (http://piano.rnamd.com), annotated with various post-
transcriptional regulations.
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each of the positive sites. To balance the positive-to-negative ratio,
the negative sites were then randomly split into 10 subsets, and 10
separate predictors were generated with a 1:1 positive-to-negative
ratio. The negative sites of testing data were generated following the
same procedure. Consequently, 10 separate predictors were
generated, and their prediction results were averaged.

Following the experimental design of WHISTLE framework
(Chen K, et al., 2019), we performed dataset level leave-one-out
validation over the H1-H5 base-resolution datasets; four samples
from H1–H5 were used as training, while the other was used for
testing. Subsequently, the sites from the datasets H1–H5
(generated from Y-Seq, RBS-Seq, and CeU-Seq) were used to
establish a predictor, whose performance was evaluated on the
dataset H6, which was generated from an independent
technology (Pseudo-Seq).

Features Used for Y-Site Prediction
Sequence-Derived Features
The length of 41bp was widely used to extracted sequence
information in many previous studies, which was determined
as a suitable flanking window by relevant tests, i.e., iRNA-m7G
(Liu et al., 2019), iRNA-2OM (Yang et al., 2018), andMethyRNA
(Chen W, et al., 2017). Consequently, the sequence-derived
information of 41 bp flanking window of Y and non-Y (U)
sites as central was generated using the chemical properties of
nucleotides, position-specific nucleotide propensity (PSNP), and
cluster information.

In the first encoding method, the nucleotides are classified
into three categories based on three distinct structural chemical
properties. Ring structures of nucleotides are the first to be
considered; here, adenosine and guanosine have two rings,
while cytidine and uridine only have one ring. In addition, the
guanosine and cytidine have stronger hydrogen bonding than
adenosine and uridine. Furthermore, adenosine and cytidine can
be classified as the amino group, while guanosine and uridine
contain the keto group. Based on these chemical properties
defined above, the i -th nucleotide from sequence S may be
encoded by a vector Si = (xi, yi, zi):

xi =
1 if  si∈ A,Gf g
0 if  si∈ C,Uf g,  yi =

1 if  si∈ A,Cf g
0 if si∈ G,Uf g ,  zi =

1 if  si∈ A,Uf g
0 if si∈ C, Gf g

nnn
(1)

Thus, the A, C, G, and U may be encoded as a vector (1,1,1),
(0,1,0), (1,0,0), and (0,0,1), respectively.

The position-specific nucleotide propensity (PSNP) stands for
the differences of the frequency of nucleotides calculated in
Frontiers in Genetics | www.frontiersin.org 3
specific locations between RNA sequences of positive and
negative data. The frequency of occurrence of A, U, G, and C
in the i -position were calculated for both positive and negative
data, respectively, to obtain two matrices with 4×41 dimension as
Zplus and Zminus, where Zplus was extracted from sequence of all
positive data, and Zminus was extracted from sequence of all
negative data. The position-specific nucleotide propensity
(PSNP) matrices was defined as ZPSNP:

ZPSNP = Zplus = Zminus (2)

For the cluster information, the average relative position of
the closest k (k=1,2 and 3) nucleotide to center Y/non-Y was
calculated for each nucleic acid (A, G, C, and U). The k was
considered as 1 to 3. Using sequence ‘AGCUAGCCAUC
CUACGGUACAGCAU’ as an example, the center U is at the
ninth positive. For encoding the cluster information of adenine,
the average relative position of the closest 1 (k=1) adenine to
center U is 1 (1/1); when k equals to 2, the relative position of the
second closest adenine to center U is 4, and, therefore, the
average relative position of the closest 2 (k=2) adenine to
center U is 2.5 (5/2) and 3.7 (11/3) when k equals to 3.
Similarly, the cluster information of guanosine in this example
sequence is 3 (3/1), 3.5(7/2), and 4.7(14/3) when k equals to 1, 2,
and 3, respectively.

The sequence-derived encoding methods employed by the
three previously published predictors were used to reproduce the
PPUS, iRNA-PseU, and PseUI with the same training data of
PIANO, respectively, and their performances were compared
with PIANO using independent datasets.

Genome-Derived Features
In the original WHISTE approach, 35 additional genomic
features that might contribute to the prediction of m6A RNA
methylation sites were considered (Chen K, et al., 2019). In
PIANO, seven new genomic features were added to the
prediction model, the details of the 42 genomic features
considered in the predict ion were summarized in
Supplementary Table S1. Specifically, genomic Features 1–
16 are dummy variable features indicating whether the uridine
sites shall fall within the transcript regions that satisfy certain
topological properties. All the features in this category are
generated by the GenomicFeatures R/Bioconductor package
using the transcript annotations hg19 TxDb package
(Lawrence et al., 2013). To remove the ambiguity caused by
transcript isoforms, only the primary (longest) transcripts of
FIGURE 1 | Negative and Positive Data. Negative sites were randomly selected from un-modified U sites located on the same transcripts of the positive sites.
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each gene were kept for the extraction of the transcript sub-
regions. The longest transcript isoform was used to
unambiguously assign m6A peak regions to mRNAs (Ke et
al., 2017) and contributed to a better performance in accuracy
compared with using the average value of multiple transcripts.
Genomic Features 17–20 are real valued features defining the
relative position of the transcript regions (3’UTR, 5’UTR,
CDS, and whole transcript), i.e., the distance from the
adenine to the 5’ end divided by the width of the region.
The values are also set to zero for sites that do not belong to
the region. Genomic features 21–25 represent the length of the
transcript region containing the modification site. The values
are also set to zero for sites that do not belong to the region.
Features 26–27 captured the distance from the adenine sites to
the 5’end or 3’end of the splicing junctions. Additionally, the
distance to the nearest neighboring y sites in the training data
is generated to measure the clustering effect of the y RNA
modification sites. Evolutionary conservation score of the
uridine sites and its flanking regions are measured by Phast-
Cons (Siepel et al., 2005) score, and the fitness consequence
(Gulko et al., 2015) scores were presented in features 28–31.
To consider the RNA secondary structures around the uridine
site, the RNA secondary structures are predicted using
RNAfold from the Vienna RNA package (Lorenz et al.,
2011) and presented in features 32–33. Genomic properties
of transcripts containing theY sites were presented in features
34–38. Finally, features 39–42 represent omics information,
such as microRNA target sites (Chou et al., 2017) and
HNRNPC binding sites (2012).

Machine Learning Approach Used for
Y-Site Prediction
As a high-efficiency machine learning algorithm in
computational biology, the SVM (Support Vector Machine)
has been widely applied in microRNA target prediction (Liu et
al., 2010), protein phosphorylation prediction (Wong et al.,
2007), and m6A RNA methylation site prediction (Chen W, et
al., 2017). In this project, the R language interface of LIBSVM
(Chang and Lin, 2011) was used to build our model with the
radial basis function as kernel, and the other parameters were
set at the default.

Performance Evaluation of Y-Site
Prediction
To evaluate the performance of PIANO, a 5-fold cross-validation
was employed on training datasets using the SVM classifier, and
the independent testing dataset was used to measure the final
performance of PIANO. There is no overlap between the training
sites and testing sites, as only the Y sites not previously used as
training data were considered during performance evaluation;
the performance evaluation result should thus directly reflect the
capability of the algorithm to identify previously unknown Y
sites. To evaluate the performance, the ROC (receiver operating
characteristic) curve (sensitivity against 1-specificity) was used,
and the area under ROC curve (AUROC) was calculated as the
main performance evaluation metric.
Frontiers in Genetics | www.frontiersin.org 4
Estimate the Probability of Y
The likelihood ratio (LR) of a Y site is calculated to estimate the
probability of Y RNA methylation:

LR =
P(observationjY)
P(observationjU) (3)

In the PIANO web server, a site was predicted to be a putative
Y site if its predictive value was above 0.5 with a minimum LR
value of 1. A site with a larger LR value suggests that it is more
likely to be a Y site. The machine learning classifiers usually
obtain the lowest empirical rate with the value of 0.5 as cutoff.
The statistical significance of LR is assessed by an upper bound of
the p-value, indicating how extreme the observed LR is among all
the transcriptome U sites. It is calculated from the relative
ranking of the putative Y sites among all the transcriptome U
sites, i.e., if only 0.1% of U sites have a LR score larger than a
specific U site, then the upper bound of the p-value of this site is
0.001. In the report of PIANO web server, a putative Y site is
considered to be of high confidence if its LR within the top 0.5%
of all transcriptome Us (corresponding to an upper bound of the
p-value < 0.005) of all the transcriptome U sites, followed by
medium confidence (0.005 < upper bound of the p-value ≤ 0.05)
and low confidence (p-value > 0.05).

Functional Annotation of Putative Y Site
The gene symbol, Ensembl gene ID, gene region, and gene type
for each putative Y site were annotated using ANNOVAR
package (Wang et al., 2010). Furthermore, we annotated the
putative Y sites with three kinds of post-transcriptional
regulation, including RNA-binding proteins (RBPs) regions,
miRNA-RNA targets, and splicing sites. We first found the
intersection between the computational predicted Y sites and
POSTAR2-derived RBP binding regions (Zhu et al., 2018). For
miRNA targets, we obtained the information from miRanda
(Agarwal et al., 2015) and starBase2 (Li et al., 2013), and we
found the Y sites within the miRNA targets regions to explore
the potential influence of Y on miRNA-target interactions.
Finally, we obtained the Canonical splice sites (GT-AG) from
UCSC (Lawrence et al., 2013) annotations, 100 bp upstream
region from 5’ splicing sites and 100 bp downstream region from
3’ splicing sites were extracted for the subsequent analysis of Y
sites on splicing sites. The detailed information of the post-
transcriptional regulation association analysis can be found in
Supplementary Table S2.
RESULTS

Although the genome-derived features alone are already very
effective for predicting Y sites, the best performance was
achieved when the sequence features and genomic features were
combined. Consequently, our PIANO predictor was established
based on both the genome-derived features and sequence-derived
features. When designing the encoding methods for sequence
features used for the PIANO approach, the chemical properties of
nucleotides, position-specific nucleotide propensity (PSNP), and
March 2020 | Volume 11 | Article 88
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cluster information were considered. We found that this
combination (sequence and genomic features) achieved the best
performance in accuracy compared with combining genome-
derived features with other basic sequence encoding methods
(i.e., one-hot encoding method).

The performance of the predictor was evaluated under two
modes. For the full transcript mode, the positive and negative Y
sites located in both exonic and intronic regions are all
considered to construct the predictor. In the mature mRNA
mode, only positive and negative Y sites located on mature
mRNA transcripts are considered; this is because existing
experimental datasets overwhelmingly relied on polyA
selection in RNA-seq library preparation, and intronic Y sites
are likely to be underrepresented in the data, which may lead to
an over-estimation of accuracy under the full transcript mode.

To avoid potential over-fitting and to identify the most
significant subset of genomic features, feature selection was
implemented; the datasets H2–H5 were used as training data,
while dataset H1 was used for the independent testing data. The
relative importance of each genome-derived feature were
measured by the Perturb method (Gevrey et al., 2003).
According to the rank of importance, the top N most
important features were reserved in the prediction and were
evaluated with a 5-fold cross-validation. For the predictor under
full transcript model, the top 17 genomic features led to the best
predictor performance, with fitCons scores, exons containing
stop codons, and number of exons as the top three most
important genomic features for prediction. Similarly, the top
20 genome-derived features were selected under the mature
mRNA model. The length of the mature transcript plays the
most important role under this model, and the exons containing
stop codons and an miRNA target won the second and third
significance. Consequently, to obtain the most robust
performance, only the top 17 and 20 genomic features were
used under full transcript model and mature mRNAmodel forY
site prediction, respectively. Please see Supplementary Figure S1
for more details.

We showed that the newly developed method PIANO
substantially outperformed competing approaches on cross-
validation (Supplementary Table S3) when tested on
independent datasets (Supplementary Table S3) or
benchmarked by an independent technique (Supplementary
Table S4). To sum up, by testing independent datasets
generated from four different Y profiling technologies (Y-seq,
RBS-seq, Pseudo-seq, and CeU-seq), the newly developed
method PIANO achieved an average AUC of 0.955 and 0.838
under full transcript and mature mRNA modes, respectively (see
Table 2), representing a marked improvement compared to
PPUS (0.713 and 0.707), iRNA-PseU (0.713 and 0.712), and
PseUI (0.634 and 0.652).

The performance of the purposed predictor was further
evaluated by separating the training and testing datasets
between the cell type in which datasets H3–H5 generated from
HEK293T were used for training, while datasets H2 and H6 from
Hela were used for independent testing. Consistent with previous
validation results, our method PIANO achieved a marked
Frontiers in Genetics | www.frontiersin.org 5
improvement in prediction accuracy compared with existing
predictors, using the AUROC (area under ROC curve) and
AUPRC (area under precision-recall curve) as an evaluation
metric, when tested on independent dataset with a 1:1 positive to
negative ratio (Supplementary Table S5) and 1:10 positive to
negative ratio (Supplementary Table S6), respectively,
suggesting the reliability of our newly proposed approach.
Besides, the comparison between different algorithms indicated
that SVM (Support Vector Machine) was a quite effective
machine learning approach and achieved the best performance
in our study (Supplementary Table S5). In addition, to further
evaluate different approaches, we also considered the prediction
of PUS-specific Y sites. In this experiment, TruB1, PSU7, and
TruB2 were considered, and the goal was to predict their specific
substrates (Safra et al., 2017). Consistent with previous results in
Y-site prediction, the PIANO method again substantially
outperformed competing approaches under both the full
transcript and mature mRNA model (Table 3), suggesting the
effectiveness of the approach.

Construction of the PIANO Website
A website PIANO, which stands for pseudouridine site
identification and functional annotation, was built for the
convenience of academic users. Hyper Text Markup Language
TABLE 2 | Performance evaluation of Y-site predictors.

Mode Method Benchmarking data (AUC) Average
AUC

Y-
Seq

RBS-
Seq

CeU-
Seq

Pseudo-
Seq

Full
transcript

PIANO 0.957 0.978 0.914 0.972 0.955
iRNA-
PseU

0.679 0.727 0.721 0.708 0.713

PPUS 0.700 0.721 0.724 0.705 0.713
PseUI 0.631 0.710 0.610 0.585 0.634

Mature
mRNA

PIANO 0.859 0.770 0.864 0.857 0.838
iRNA-
PseU

0.753 0.582 0.760 0.751 0.712

PPUS 0.749 0.575 0.757 0.748 0.707
PseUI 0.666 0.651 0.652 0.639 0.652
March 2020 | Volume 11 |
The table presents the performance of differentY site predictors achieved on independent
human datasets with different technologies as a benchmark, and it is summarized from
Supplementary Table S3 and S4. Only the Y sites not previously used as training data
were considered during performance evaluation, so the training sites and testing sites did
not overlap. Because existing datasets overwhelmingly relied on polyA selection in RNA
library preparation and intronic Y sites are likely to be underrepresented in the data, the
performances were evaluated under two modes: full transcript and mature mRNA modes.
In the mature mRNA mode, only positive and negative Y sites located on mature mRNA
transcripts are considered, as previously described (Chen K,et al., 2019). Our new
approach PIANO substantially outperformed competing approaches in accuracy.
TABLE 3 | PUS-specific substrate prediction.

Method Full transcript model Mature mRNA model

TruB2 PSU7 TruB1 TruB2 PSU7 TruB1

PIANO 0.981 0.966 0.973 0.837 0.960 0.910
iRNA-PseU 0.812 0.829 0.838 0.719 0.812 0.731
PPUS 0.806 0.824 0.824 0.733 0.816 0.739
PseUI 0.853 0.870 0.840 0.805 0.861 0.786
Ar
ticle 88
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(HTML), Cascading Style Sheets (CSS), and Hypertext
Preprocessor (PHP) were used to construct the PIANO web
interface. This included a database containing 4,303
experimentally validated Y sites reported from four different
high-throughputY profiling techniques, which is so far the most
complete collection of Y in humans. Among those
experimentally validated Y sites, we found Y was distributed
most often along coding DNA sequence and 3’UTR, but it was
relatively rare in 5’UTR (Supplementary Figure S2). Secondly, a
web server for putative Y-site identification from the user-
defined genomic ranges or provided FASTA sequences
(detailed in Figure 2) was used. The help document of the
PIANO web server is provided in the Supplementary Materials.
Both experimentally validated Y sites and the predicted putative
Y sites are functionally annotated with various post-
transcriptional regulations to unveil potential functional
mechanism concerning Y. The data and prediction results may
be conveniently downloaded and visualized with web browser.
The PIANO website is freely accessible from: http://piano.
rnamd.com.
CONCLUSION

With recent advancements that unveiled various biomolecular
functions of Y under different biological contexts, Y starts to
capture broader interests of the scientific community (Schwartz
Frontiers in Genetics | www.frontiersin.org 6
et al., 2014; Carlile et al., 2014; Li X, et al., 2015; Karijolich et al.,
2015; Dominissini et al., 2016; Penzo et al., 2017; Guzzi et al.,
2018; Adachi et al., 2018; Shaheen et al., 2019). To date, a number
of high-throughput approaches have been developed for
profiling the transcriptome-wide distribution of Y (Adachi
et al., 2019), including Pseudo-seq (Carlile et al., 2014), Y-seq
(Schwartz et al., 2014), PSI-seq (Lovejoy et al., 2014), CeU-seq
(Li X, et al., 2015), and RBS-seq (Khoddami et al., 2019). These
technologies all reported the widespread occurrence of Y on
mRNA and lncRNA in human cells. Four Y site predictors have
been built, including PseUI (He et al., 2018), XG-PseU (Liu et al.,
2019), iRNA-PseU (Chen et al., 2016), and PPUS (Li Y.H, et al.,
2015); however, all of them are based on sequence-derived
features only without considering other genomic features that
may contribute to the prediction and thus l imited
their performance.

Here, by integrating 42 genomic features together with
conventional sequence-derived features, we have developed the
(so far) most accurate Y-site predictor. Our new method
(PIANO) substantially outperformed competing approaches
when using four different Y profiling protocols as the
benchmarks (with 0.24 and 0.12 improvement in terms of
AUC under full transcript and mature mRNA modes,
respectively) and supports functional annotation for the
putative Y sites. A web site—PIANO—was also developed,
including (1) a database hosting currently the largest collection
of 4,303 experimentally validated human Y sites; and (2) a web
FIGURE 2 | Interface and output of the PIANO web server for Y-site prediction and functional annotation. (A) When predicting human Y sites, the PIANO web
server supports two types of input: the genomic ranges of human genome assembly and the FASTA sequences. As the prediction process may take quite some
time, it is highly recommended that the user should provide an email address, where an email notification will be sent when the job is finished. (B) The basic
information of each putative Y site, such as gene symbol, likelihood ratio, confidence level, and the number of related post-transcriptions associated with the putative
site. (C) The source and detailed information of each putative Y site. If the input file contains any experimental validated Y sites collected in PIANO, the sites will be
annotated with additional information. (D) The details of the site-relevant RBP information. (E) A graph to visualize the position of predicted Y sites on a user-
provided FASTA sequence. (F) An overall review of the prediction result.
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server enabling the prediction of novel Y sites from given
genomic ranges or FASTA sequences. Users may query and
download their predicted results with clear and simple
instructions (see Supplementary Materials). The scripts used
to generate genomic and sequence features considered in
PIANO’s framework, the training and testing data, and
datasets related to the construction of the PIANO database
were provided in the download page of PIANO website. In
conclusion, our work will serve as a useful resource for
researchers who are interested in Y and its role concerning
various post-transcriptional regulations.

Nevertheless, it is worth noting that there exist significant
discrepancies in the Y sites reported by different technologies
(Zaringhalam and Papavasiliou, 2016; Adachi et al., 2018).
Although the discrepancy may be due to the context-specificity
of pseudouridylation and technology preferences, our PIANO
predictor achieved reasonable consensus with all the four high-
throughput profiling Y techniques; Y is, however, considered as
the most prevalent mRNA modifications (Meyer and Jaffrey,
2017) with an estimated Y/U ratio of 7–9% (Jacob et al., 2017).
Currently, only a small number ofY sites have been reported; we
are therefore not able to calculate a reasonable number for the
real-life estimate of class imbalance. This may due to the limited
detection power of existing experimental approaches. With an
estimated real-life Y/U ratio as 8%, we can expect at least 10
times the number of negative sites. Under this assumption, we
tested the stability of our method by assigning 1:10 and 1:1
positive-to-negative ratio for the training and testing data. The
result showed that the performance generated by the 1:10 class
were more stable than the 1:1 class (Supplementary Figure S3).
We further calculated the value of FDR, FPR, and TPR in this
setting, using different LRs as cutoff (Supplementary Table S7).
To sum up, we cannot rule out the possibility of experimental
bias, and the training data (gold standard data) may be further
optimized in the future as more experimental evidence is
Frontiers in Genetics | www.frontiersin.org 7
accumulated. To make the PIANO method more practically
useful, the predictor should be used by combining with other
experimental evidence and knowledge, e.g., the Us within a
binding site of PUS. The performance of PIANO method is
much better than all existing approaches, and it can provide the
most reliable putative Y sites for users.
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