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Abstract

Pneumonia affects 7% of the global population, resulting in 2 million pediatric deaths every year. 

Chest X-ray (CXR) analysis is routinely performed to diagnose the disease. Computer-aided 

diagnostic (CADx) tools aim to supplement decision-making. These tools process the handcrafted 

and/or convolutional neural network (CNN) extracted image features for visual recognition. 

However, CNNs are perceived as black boxes since their performance lack explanations. This is a 

serious bottleneck in applications involving medical screening/diagnosis since poorly interpreted 

model behavior could adversely affect the clinical decision. In this study, we evaluate, visualize, 

and explain the performance of customized CNNs to detect pneumonia and further differentiate 

between bacterial and viral types in pediatric CXRs. We present a novel visualization strategy to 

localize the region of interest (ROI) that is considered relevant for model predictions across all the 

inputs that belong to an expected class. We statistically validate the models’ performance toward 

the underlying tasks. We observe that the customized VGG16 model achieves 96.2% and 93.6% 

accuracy in detecting the disease and distinguishing between bacterial and viral pneumonia 

respectively. The model outperforms the state-of-the-art in all performance metrics and 

demonstrates reduced bias and improved generalization.
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1. Introduction

Pneumonia is a significant cause of mortality in children across the world. According to the 

World Health Organization (WHO), around 2 million pneumonia-related deaths are reported 

every year in children under 5 years of age, making it the most significant cause of pediatric 

death [1]. Pneumonia sourced from bacterial and viral pathogens are the two leading causes 

and require different forms of management [2]. Bacterial pneumonia is immediately treated 

with antibiotics while viral pneumonia requires supportive care, making timely and accurate 

diagnosis important. Chest X-ray (CXR) analysis is the most commonly performed 

radiographic examination for diagnosing and differentiating the types of pneumonia [3]. 

However, rapid radiographic diagnoses and treatment are adversely impacted by the lack of 

expert radiologists in resource-constrained regions where pediatric pneumonia is highly 

endemic with alarming mortality rates. Figure 1 shows sample instances of normal and 

infected pediatric CXRs.

Computer-aided diagnostic (CADx) tools aim to supplement clinical decision-making. They 

combine elements of computer vision and artificial intelligence with radiological image 

processing for recognizing patterns [4]. Much of the published literature describes machine 

learning (ML) combine elements of computer vision and artificial intelligence with 

radiological image processing for recognizing patterns [4]. Much of the published literature 

describes machine learning (ML) algorithms that use handcrafted feature descriptors [5] that 

are optimized for individual datasets and trained for specific variability in size, orientation, 

and position of the region of interest (ROI) [6]. In recent years, data-driven deep learning 

(DL) methods are shown to avoid the issues with handcrafted features through end-to-end 

feature extraction and classification.

Convolutional neural networks (CNNs) belong to a class of DL models that are prominently 

used in computer vision [7]. These models have multiple processing layers to learn 

hierarchical feature representations from the input pixel data. The features in the early 

network layers are abstracted through the mechanisms of local receptive fields, weight 

sharing, and pooling to form rich feature representations toward learning and classifying the 

inputs to their respective classes. Due to lack of sufficiently extensive medical image data, 

CNNs trained on large-scale data collections such as ImageNet [8] are used to transfer the 

knowledge of learned representations in the form of generic image features to the current 

task. CNNs are also shown to deliver promising results in object detection and localization 

tasks [9].

The astounding success of deep CNNs coupled with lack of explainable decision-making 

has resulted in a perception of doubt. This poorly understood model behavior has limited 

their use in routine clinical practice [10]. There aren’t enough studies pertaining to the 

visualization and interpretation of CNNs in medical image analysis/understanding 

applications. In this article, we (i) detect and distinguish pneumonia ty pes in pediatric 

CXRs, and (ii) explain the internal operations and predictions of CNNs applied to this 

challenge.
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In this study, we evaluate, visualize, and explain the predictions of CNN models in 

classifying pediatric CXRs to detect pneumonia and furthermor e to differentiate between 

bacterial and viral pneumonia to facilitate swift referrals that require urgent medical 

intervention. We propose a novel method to visualize the class-specific ROI that is 

considered significant for correct predictions across all the inputs that belong to an expected 

class. We evaluate and statistically validate the performance of different customized CNNs 

that is trained end to-end on the dataset under study to provide an accurate and timely 

diagnosis of the pathology. The work is organized as follows: Section 2 discusses the related 

work, Section 3 elaborates on the materi als and methods, Section 4 discusses the results, 

and Section 5 concludes the study.

2. Related Work

A study of the literature reveals several works pertaining to the use of handcrafted features 

for detecting pneumonia in chest radiographs [11–14]. However, few studies reported the 

performance of DL methods applied to pneumonia detection in pediatric CXRs. Relatively 

few researchers attempted to offer a qualitative explanation of their model’s learned 

behavior, internal computations, and predictions. The authors of [15] used a pretrained 

InceptionV3 model as a fixed feature extractor to classify normal and pneumonia-infected 

pediatric CXRs and further distinguish between bacterial and viral pneumonia with an area 

under the curve (AUC) of 0.968 and 0.940 respectively. In another study [4], the authors 

used a gradient-based ROI localization algorithm to detect and spatially locate pneumonia in 

CXRs. They released the largest collection of the National Institutes of Health (NIH) CXR 

dataset that contains 112,120 frontal CXRs, the associated labels are text-mined from 

radiological reports using natural language processing tools. The authors reported an AUC 

of 0.633 toward detecting the disease. The authors of [16] used a gradient-based 

visualization method to localize the ROI with heat maps toward pneumonia detection. They 

used a 121-layer densely connected neural network toward estimating the disease probability 

and obtained an AUC of 0.768 toward detecting pneumonia. The authors of [17] used an 

attention-guided mask inference algorithm to locate salient image regions that stand 

indicative of pneumonia. The features of local and global network branches in the proposed 

model are concatenated to estimate the probability of the disease. An AUC of 0.776 is 

reported for pneumonia detection.

3. Materials and Methods

3.1. Data Collection and Preprocessing

We used a set of pediatric CXRs that have been made publicly available by the authors of 

[15]. The authors have obtained approvals from the Institutional Review Board (IRB) and 

Ethics Committee toward data collection and experimentation. The dataset includes 

anteroposterior CXRs of children from 1 to 5 years of age collected from Guangzhou 

Women and Children’s Medical Center in Guangzhou, China. The characteristics of the data 

and its distribution are shown in Table 1. The dataset is screened for quality control to 

remove unreadable and low-quality radiographs and curated by experts to avoid grading 

errors.
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The CXRs contain regions other than the lungs that do not contribute to diagnosing 

pneumonia. Under these circumstances, the model may learn irrelevant feature 

representations from the underlying data. Using an algorithm based on anatomical atlases 

[18] to automatically detect the lung ROI can avoid this. A reference set of patient CXRs 

with expert-delineated lung masks are used as models [19] to register with the objective 

pediatric CXR. When presented with an objective chest radiograph, the algorithm uses the 

Bhattacharyya distance measure to select the most similar model CXRs. The correspondence 

between the model CXRs and objective CXR is computed by modeling the objective CXR 

with local image feature representations and identifying similar locations by applying SIFT-

flow algorithm [20]. This map is the transformation applied to the model lung masks to 

transform them into the approximate lung model for the objective chest radiograph. The lung 

boundaries are cropped to the size of a bounding box to include all the lung pixels that 

constitute the ROI for the current task. The baseline data (whole CXRs) and the cropped 

bounding box are resampled to 1024 × 1024 pixel dimensions and mean normalized to assist 

the models in faster convergence. The detected lung boundaries for the sample pediatric 

CXRs are shown in Figure 2.

3.2. Configuring CNNs for Pneumonia Detection

We evaluated the performance of different customized CNNs and a VGG16 model in 

detecting pneumonia and furthermore distinguishing between bacterial and viral types to 

facilitate timely and accurate disease diagnosis. We evaluated the performance of three 

different customized CNN architectures: (i) Sequential CNN; (ii) CNN with residual 

connections (Residual CNN); and, (iii) CNN with Inception modules (Inception CNN).

3.2.1. Sequential CNN—A sequential CNN model belongs to the class of deep, feed-

forward artificial neural networks that are commonly applied to visual recognition [7]. It is a 

linear stack of convolutional, nonlinear, pooling, and dense layers. We optimized the 

sequential CNN architecture and its hyperparameters for the datasets under study through 

Bayesian learning [21,22]. The procedure uses a Gaussian process model of an objective 

function and its evaluation to optimize the network depth, learning rate, momentum, and L2-

regularization. These parameters are passed as arguments in the form of optimization 

variables to evaluate the objective function. We initialized the search ranges to [110], [1 × 

10−7 1 × 10−1], [0.7 0.99], and [1 × 10−10 1 × 10−2] for the network depth, learning rate, 

momentum, and L2-regularization respectively. The objective function takes these variables 

as input, trains, validates and saves the optimal network that gives the minimum 

classification error on the test data. Figure 3 illustrates the steps involved in optimization.

3.2.2. Residual CNN—In a sequential CNN, the succeeding network layer learns the 

feature representations from only the preceding layer. These networks are constraine d by 

the level of information they can process. Residual networks are proposed by [23] that wo n 

the ImageNet Large Sc ale Visual Recognition (ILSVRC) Challenge in 2015. These 

networks tackle the issue of representational bottlenecks by injecting the information from 

the earlier network layers downstream to prevent loss of information. They also prevent the 

gradients from vanishing by introducing a linear information carry track to propagate 
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gradients through deep network layers. In this study, we propose a customized CNN that is 

made up of six residual blocks, as shown in Figure 4.

3.2.3. Inception CNN—The Inception architecture, proposed by [24] consists of 

independent modules having parallel branches that are concatenated to form the resultant 

feature map that is fed into the succeeding modules. Unlike sequential CNN, this method of 

stacking modules help in separately learning the spatial and channel-wise feature 

representations. The 1 × 1 convolution filters used in these modules factor out the channel 

and spatial feature learning by computing features from the channels without mixing spatial 

information by looking at one input tile at a given point in time. We construct a customized 

Inception CNN by stacking six InceptionV3 modules [23], as shown in Figure 5.

3.2.4. Customized VGG16—VGG16 is proposed and trained by the Oxford’s Visual 

Geometry Group (VGG) [25] for object recognition. The model scored first in ILSVRC 

image localization and second in image classification tasks. We customized the architecture 

of VGG16 model and evaluated its performance toward the tasks of interest. The model is 

truncated at the deepest convolutional layer and added with a global average pooling (GAP) 

and dense layer as shown in Figure 6. We refer to this model as customized VGG16 in this 

study.

The hyperparameters of the customized residual, Inception and VGG16 models are 

optimized through a randomized grid search [26] that searches and optimizes the value of 

hyperparameters including learning rate, momentum, and L2-regularization. The search 

ranges are initialized to [1 × 10−6 1 × 10−1], [0.7 0.99], and [1 × 10−10 1 × 10−1] for the 

learning rate, momentum, and L2-regularization respectively. Callbacks are used to view the 

internal states during training and retain the best performing model for analysis. We 

performed hold-out testing with the test data after every step. The performance of 

customized CNNs are evaluated in terms of the following performance metrics: (i) accuracy; 

(ii) AUC; (iii) precision; (iv) recall; (v) specificity; (vi) F-Score; and, (vii) Matthews 

Correlation Coefficient (MCC).We used the NIH Biowulf Linux cluster (https://

hpc.nih.gov/) and the high performance computing facility at the National Library of 

Medicine (NLM) for computational analyses. Software frameworks included with Matlab 

R2017b are used to configure and evaluate the sequential CNN along with Keras and 

Tensorflow backend for other customized models used in this study.

3.3. Visualization Studies

The interpretation and understanding of CNNs is a hotly debated topic in ML, particularly in 

the context of clinical decision-making [4]. CNNs are perceived as black boxes and it is 

imperative to explain their working to build trust in their predictions [9]. This helps to 

understand their working principles, assist in hyperparameter tuning and optimization, 

identify and get an intuition of the reason behind the model failures, and explain the 

predictions to the end-user prior to possible deployment. The methods of visualizing CNNs 

are broadly categorized into (i) preliminary methods that help to visualize the overall 

structure of the model; and, (ii) gradient-based methods that manipulate the gradients from 
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the forward and backward pass during training [27]. We demonstrated the overall structure 

of the CNNs, as shown in Figures 4–6.

3.3.1. Visual Explanation through Discriminative Localization—The trained 

model focusses on discriminative parts of the image to arrive at the predictions. Class 

Activation Maps (CAM) help in visualizing and debugging model predictions, particularly 

in case of a prediction error when the model predicts based on the surrounding context [27]. 

The output of the GAP layer is fed to the dense layer to identify the discriminative ROI 

localized to classify the inputs to their respective classes. Let Gm denote the GAP that 

spatially averages the m-th feature map from the deepest convolutional layer, and wmp  denote 

the weights connecting the m-th feature map to the output neuron corresponding to the 

expected class p. A prediction score Sp at the output neuron is expressed as a weighted sum 

of GAP as shown in Equation (1).

Sp = ∑mwmp ∑x, y gm x, y = ∑x, y ∑mwmpgm x, y (1)

The value gm (x, y) denotes the m-th feature map activation in the spatial location (x, y). The 

CAM for the class p denoted by CAMp is expressed as the weighted sum of the activations 

from all the feature maps with respect to the expected class p at spatial location (x, y) as 

shown in Equation (2).

CAMp x, y = ∑mwmpgm x, y (2)

CAM gives information pertaining to the importance of the activations at each spatial grid 

(x, y) to It is rescaled to the size of the input image to classify an input image to its expected 

class p. It is rescaled to the size of the input image to locate the discriminative ROI used to 

classify the image to its expected class. This helps to answer queries pertaining to the ability 

of the model in predicting and localizing the ROI specific to its category. We propose a 

novel visualization method called average-CAM to represent the class-level ROI that is most 

commonly considered significant across for correct all class. prediction the inputs that 

belong to a given class. The average-CAM for the class p is computed by averaging the 

CAM outputs as shown in Equation (3).

average−CAMp x, y = ∑aCAMp
a x, y (3)

CAMp
a x, y  denotes the CAM for the a-th image in the expected class p. This helps to 

identify the ROI specific to the expected class, improve the interpretability of the internal 

representations, and explainability of the model predictions.

CAM visualization can only be applied to networks with a GAP layer. Gradient-weighted 

CAM (grad-CAM) is a strict generalization of CAM that can be applied to all existing CNNs 

[28]. It uses the gradient information of the expected class, flowing back into the deepest 

convolutional layer to generate explanations. Grad-CAM produces the weighted sum of all 
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the feature maps in the deepest convolutional layer for the expected class p as shown in 

Equation (4). A ReLU nonlinearity is applied to avoid the negative weights from influencing 

the class p. This is based on the consideration that the pixels with negative weights are likely 

to belong to other classes.

grad−CAMp x, y = ReLU ∑mβm
pgm x, y (4)

The value βm
p  is obtained by computing the gradient of the prediction score Sp with respect to 

the m-th feature map as shown in Equation (5).

βm
p = ∑x, y

∂Sp
∂gm x, y (5)

According to Equations (1) and (4), βm
p  is precisely the same as wmp  for networks with a 

CAM-compatible architecture. The difference lies in applying the ReLU non-linearity to 

exclude the influence of negative weights that are likely to belong to other classes. The 

average-grad-CAM for the class p is computed by averaging the grad-CAM outputs as 

shown in Equation (6). The value grad‐CAMp
a x, y  denotes the grad-CAM for the a-th image 

in the expected class p.

average−grad − CAMp x, y = ∑
a

grad − CAMp
a x, y (6)

3.3.2. Model-Agnostic Visual Explanations—Local interpretable model-agnostic 

explanations (LIME) is a visualization tool proposed by [29]. It helps to provide a qualitative 

interpretation of the relationship between perturbed input instances and the model 

predictions. The input image is divided into contiguous superpixels and a dataset of 

perturbed input instances is constructed by turning on/off these interpretable components. 

The perturbed instances are weighted by their similarity to the explained instance. The 

algorithm approximates the CNN by a sparse, linear model that is weighted only in the 

neighborhood of the explained predictions. An explanation is generated in the form of 

superpixels with the highest positive weights that demonstrate the discriminative ROI 

localized by the model to classify the image to its expected class. Let k ∈ ℝd be the 

explained instance, and k’ ∈ {0, 1}d, the binary vector that denotes the presence/absence of a 

superpixel. Let g ∈ G denote the explanation where G is a class of interpretable linear 

models. Let γ(g) denote the complexity measure associated with the explanation g ∈ G. The 

value γ(g) denotes the number of non-zero coefficients for the linear model. Let m:ℝd ℝ
denote the explained model and m(k), the probability that k belongs to a given class. Let 

Πk(x) denote the measure of proximity between the instance x to k and P(m, g, Πk) denote 

the loss of g toward approximating m in the neighborhood defined by Πk. The value P(m, g, 

Πk) is minimized and the value of γ(g) remains low enough for interpretability. Equation (7) 

gives the explanations produced by LIME.
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β(k) = argmin
g ∈ G

P m, g, ∏k + γ(g) (7)

The value P (m, g, Πk) is approximated by drawing samples weighted by Πk. Equation (8) 

shows an exponential kernel defined on the L2-distance function (J) with width €. For a 

given input perturbed sample b’ ∈ {0, 1}d’ containing a fraction of non-zero elements, the 

label for the explanation model m(b) is obtained by recovering the sample in the original 

representation b ∈ ℝd as shown in Equation (9).

∏k
b = exp −J (y, b)2

ϵ2 (8)

P m, g, ∏k = ∑b, b ∈ B∏k
b m b − g b′ 2

(9)

LIME provides explanations that help to make an informed decision about the 

trustworthiness of the predictions and gain crucial insights into the model behavior.

4. Results and Discussion

4.1. Performance Evaluation of Customized CNNs

Figure 7 shows the optimized architecture and parameters of the sequential CNN, obtained 

through Bayesian learning. We performed 100 objective function evaluations toward 

optimizing the model parameters. The optimized values are found to be 6, 1 × 10−3, 0.9, and 

1 × 10−6 for the network depth, learning rate, momentum, and L2-regularization parameters 

respectively. The number of convolutional layer filters is increased by a factor of 2 each time 

amax-pooling layer is used, in order to ensure roughly the same number of computations in 

the network layers. Rectified Linear Unit (ReLU) layers are added to introduce non-linearity 

and prevent vanishing gradients during backpropagation [7].

Our analysis shows an increase in the performance of the residual and inception CNNs when 

the number of filters in the convolutional layers of the succeeding blocks are increased by a 

factor of 2. We found the optimal hyperparameter values for the residual, inception, and 

VGG16 models through a randomized grid search. The values are tabulated in Table 2.

The customized CNNs are evaluated with the baseline and cropped ROI data. The results are 

tabulated in Table 3. We observed that the performance of the models with the cropped ROI 

is relatively promising in comparison to the baseline in classifying normal and pneumonia 

infected CXRs. This is obvious because the models trained with the cropped ROI learn 

relevant feature representations toward classifying the task of interest.

The customized VGG16 model demonstrates promising performance than the other CNNs 

under study. The model learned generic image features from ImageNet that served as a good 

initialization compared to random weights and trained end-to-end on the current tasks to 

learn task-specific features. This results in faster convergence with reduced bias, overfitting, 
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and improved generalization. In classifying bacterial and viral pneumonia, no significant 

difference in performance is observed for the customized VGG16 model with the baseline 

and cropped ROI. In the multi-class classification task, the cropped ROI gave better results 

than the baseline data. However, we observed that the differences in performance are not 

significant. This may be due to the reason that the dataset under study already appeared as 

cropped, and the boundary detection algorithm resulted in a few under-segmented regions 

near the costophrenic angle. The customized sequential, residual, and inception CNNs with 

random weight initializations didn’t have the opportunity to learn discriminative features, 

owing to the sparse availability and imbalanced distribution of training data across the 

expected classes. We observed that the sequential CNN outperformed the residual and 

inception counterparts across the classification tasks. The usage of residual connections is 

beneficial in resolving the issue of representational bottlenecks and vanishing gradients in 

deep models. The CNNs used in this study have a shallow architecture. The residual 

connections did not introduce significant gains into the performance for the tasks of interest. 

Unlike ImageNet, the variability in the pediatric CXR data is several orders of magnitude 

smaller. The architecture of residual and inception CNNs are progressively more complex 

and did not seem to be a fitting tool to use for the tasks of interest. The confusion matrices 

and AUC achieved with the customized VGG16 model are shown in Figures 8–10. We 

observed that the training metrics are poor compared to test accuracy. This is due to the fact 

that noisy images are included in the training data to reduce bias, overfitting, and improve 

model generalization.

We compared the performance of the customized VGG16 model trained with the cropped 

ROI, to the state-of-the-art. The results are tabulated in Table 4. We observed that our model 

outperforms the current literature in all performance metrics across the classification tasks. 

The customized sequential CNN demonstrates higher values for recall in: (i) classifying 

normal and pneumonia; and, (ii) identical recall measures to the customized VGG16 model 

in classifying bacterial and viral pneumonia. However, considering the balance between 

precision and recall as demonstrated by the F-Score and MCC, the customized VGG16 

model outperforms the other CNNs and the state-of-the-art across the classification tasks.

4.2. Visualization Discriminative Localization through

The customized VGG16 model has a CAM-compatible architecture owing to the presence of 

the GAP layer. This helps in visualizing the model predictions using both CAM and grad-

CAM visualization tools. Figures 11 and 12 demonstrate the results of applying these 

visualizations to localize the discriminative ROI in pneumonia-infected CXRs.

CXRs are fed to the trained model and the predictions are decoded. The heat maps are 

generated as a two-dimensional score grid, computed for each input pixel location. Pixels 

carrying high importance with respect to the expected class appeared bright red with distinct 

color transitions for varying ranges. The generated heat maps are superimposed on the 

original input to localize image-specific ROI. The lung masks that are generated with the 

boundary detection algorithm are applied to extract the localized ROI relevant to the lung 

regions. We observed that CAM and grad-CAM visualizations generated heat maps for the 
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pneumonia class to highlight the visual differences in the “pneumonia-like” regions of the 

image.

We applied our novel method of average-CAM and average-grad-CAM to visualize the 

class-specific ROI, as shown in Figures 13 and 14. Lung masks are applied to the generated 

heat maps to localize only the ROI specific to the lung regions. We observed that the class-

specific ROI localized by the average-CAM and average-grad-CAM for the viral pneumonia 

class follows a diffuse pattern. This is obvious for the reason that viral pneumonia manifests 

with diffuse interstitial patterns in both lungs [30]. For the bacterial pneumonia class, we 

observed that the model layers are activated on both sides of the lungs, predominantly on the 

upper and middle right lung lobes. This is for the reason that bacterial pneumonia manifests 

as lobar considerations [30]. The pneumonia dataset under study has more pediatric patients 

with right lobar consolidations.

4.3. Visual Explanations with LIME

Figure 15 shows the explanations generated with LIME for sample instances of pediatric 

chest radiographs. Lung masks are applied to the explanations to localize only the ROI 

specific to the lung regions. The explanations are shown as follows:(i) Superpixels with the 

highest positive weights and the rest are greyed out; and, (ii) superpixels superimposed on 

the extracted lung regions. We observed that the explainer focused on the regions with high 

opacity. The model differentiates bacterial and viral pneumonia by (i) showing superpixels 

with the highest positive activations in the regions of lobar consolidations for bacterial 

pneumonia; and, (ii) diffuse interstitial patterns across the lungs for viral pneumonia. We 

also observed that a number of false positive superpixels are reported. The reason is that the 

current LIME implementation uses a sparse linear model to approximate the model behavior 

in the neighborhood of the explained predictions. However, these explanations result from a 

random sampling process and are not faithful if the underlying model is highly non-linear in 

the locality of predictions.

5. Conclusions

We proposed a CNN-based decision support system to detect pneumonia in pediatric CXRs 

to expedite accurate diagnosis of the pathology. We applied novel and state-of-the-art 

visualization strategies to explain model predictions that is considered highly significant to 

clinical decision-making. The study presents a universal approach to apply to an extensive 

range of visual recognition tasks. Classifying pneumonia in chest radiographs is a 

demanding task due to the presence of a high degree of variability in the input data. The 

promising performance of the customized VGG16 model trained on the current tasks 

suggest that it effectively learns from a sparse collection of complex data with reduced bias 

and improved generalization. We hope that our results are useful for developing clinically 

useful solutions to detect and distinguish pneumonia types in chest radiographs.
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Figure 1. 
Pediatric CXRs: (a) Normal CXR showing clear lungs with no abnormal opacification; (b) 

Bacterial pneumonia exhibiting focal lobar consolidation in the right upper lobe; (c) Viral 

pneumonia manifesting with diffuse interstitial patterns in both lungs.
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Figure 2. 
Detected boundaries in sample pediatric CXRs.
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Figure 3. 
Flowchart describing the optimization procedure.
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Figure 4. 
The architecture of customized residual CNN: (a) Residual block; (b) Customized residual 

CNN stacked with six residual blocks.
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Figure 5. 
The architecture of customized InceptionV3 CNN: (a) InceptionV3 module; (b) Customized 

Inception CNN stacked with six InceptionV3 modules.

Rajaraman et al. Page 17

Appl Sci (Basel). Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
VGG16 model truncated at the deepest convolutional layer and added with a GAP and dense 

layer.
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Figure 7. 
The optimized architecture of customized sequential CNN.
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Figure 8. 
Confusion matrices for the performance of the customized VGG16 model: (a) Normal v. 

Pneumonia; (b) Bacterial v. Viral Pneumonia.
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Figure 9. 
ROC curves demonstrating the performance of the customized VGG16 model: (a) Normal v. 

Pneumonia; (b) Bacterial v. Viral Pneumonia.
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Figure 10. 
Performance of customized VGG16 model in multiclass classification: (a) Confusion 

matrix; (b) ROC curves.
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Figure 11. 
Visual explanations through gradient-based localization using CAM: (a) Input CXRs; (b) 

Bounding boxes localizing regions of activations; (c) CAM showing heat maps 

superimposed on the original CXRs; (d) Automatically segmented lung masks; (e) CAM 

showing heat maps superimposed on the cropped lungs.
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Figure 12. 
Visual explanations through gradient-based localization using grad-CAM: (a) Input CXRs; 

(b) Bounding boxes localizing regions of activations; (c) Grad-CAM showing heat maps 

superimposed on the original CXRs; (d) Automatically segmented lung masks; (e) Grad-

CAM showing heat maps superimposed on the cropped lungs.
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Figure 13. 
Visual explanations through average-CAM: (a) Bacterial and viral CXR (top and bottom); 

(b) Average-CAM localizing class-specific ROI with bounding boxes highlighting the 

regions of maximum activation; (c) Automatically segmented lung masks; (d) Average-

CAM localizing class-specific ROI with the extracted lung regions.
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Figure 14. 
Visual explanations through average-grad-CAM: (a) Bacterial and viral CXR (top and 

bottom); (b) Average-grad-CAM localizing class-specific ROI with bounding boxes 

highlighting the regions of maximum activation; (c) Automatically segmented lung masks; 

(d) Average-grad-CAM localizing class-specific ROI with the extracted lung regions.
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Figure 15. 
Visual explanations through LIME: (a) Input CXRs; (b) Automatically segmented lung 

masks; (c) Copped lung regions; (d) Superpixels with the highest positive weights with the 

others greyed out; (e) Superpixels with the highest positive weights are superimposed on the 

cropped lungs.
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Table 1.

Dataset and its characteristics.

Category Training Samples Test Samples File Type

Normal 1349 234 JPG

Bacterial 2538 242 JPG

Viral 1345 148 JPG
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Table 2.

Optimal values for the hyperparameters of the customized residual and inception CNNs obtained through a 

randomized grid search.

Model Learning Rate Momentum L2 Regularization

Residual CNN 1 × 10−3 0.9 1 × 10−6

Inception CNN 1 × 10−2 0.95 1 × 10−4

Customized VGG16 1 × 10−4 0.99 1 × 10−6
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Table 3.

Performance of customized CNNs with baseline and cropped ROI data.

Task Data Models Accuracy AUC Precision Recall Specificity F-Score MCC

Normal vs. Pneumonia

Baseline

Customized 
VGG16 0.957 0.990 0.951 0.983 0.915 0.967 0.908

Sequential 0.943 0.983 0.920 0.980 0.855 0.957 0.878

Residual 0.910 0.967 0.908 0.954 0.838 0.931 0.806

Inception 0.886 0.922 0.887 0.939 0.800 0.913 0.755

Cropped ROI

Customized 
VGG16 0.962 0.993 0.977 0.962 0.962 0.970 0.918

Sequential 0.941 0.984 0.930 0.995 0.877 0.955 0.873

Residual 0.917 0.971 0.913 0.959 0.847 0.936 0.820

Inception 0.897 0.932 0.896 0.947 0.817 0.921 0.778

Bacterial vs. Viral 
Pneumonia

Baseline

Customized 
VGG16 0.936 0.962 0.920 0.984 0.860 0.951 0.862

Sequential 0.928 0.954 0.909 0.984 0.838 0.946 0.848

Residual 0.897 0.921 0.880 0.967 0.784 0.922 0.780

Inception 0.854 0.901 0.841 0.934 0.714 0.886 0.675

Cropped ROI

Customized 
VGG16 0.936 0.962 0.920 0.984 0.860 0.951 0.862

Sequential 0.928 0.956 0.909 0.984 0.838 0.946 0.848

Residual 0.908 0.933 0.888 0.976 0.798 0.930 0.802

Inception 0.872 0.919 0.853 0.959 0.730 0.903 0.725

Normal vs. Bacterial vs. 
Viral Pneumonia

Baseline

Customized 
VGG16 0.917 0.938 0.917 0.905 0.958 0.911 0.873

Sequential 0.896 0.922 0.888 0.885 0.948 0.887 0.841

Residual 0.861 0.887 0.868 0.882 0.933 0.875 0.809

Inception 0.809 0.846 0.753 0.848 0.861 0.798 0.688

Cropped ROI

Customized 
VGG16 0.918 0.939 0.920 0.900 0.960 0.910 0.876

Sequential 0.897 0.923 0.898 0.898 0.949 0.898 0.844

Residual 0.879 0.909 0.883 0.890 0.941 0.887 0.825

Inception 0.821 0.865 0.778 0.855 0.878 0.815 0.714

*
Bold numbers indicate superior performance.
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Table 4.

Comparing the performance of the customized VGG16 model with the state-of-the-art.

Task Model Accuracy AUC Precision Recall Specificity F-Score MCC

Normal v. Pneumonia
Customized VGG16 0.962 0.993 0.977 0.962 0.962 0.970 0.918

Kermany et al. 0.928 0.968 - 0.932 0.901 - -

Bacterial v. Viral Pneumonia
Customized VGG16 0.936 0.962 0.920 0.984 0.860 0.951 0.862

Kermany et al. 0.907 0.940 - 0.886 0.909 - -

Normal v. Bacterial v. Viral Pneumonia
Customized VGG16 0.918 0.939 0.920 0.900 0.960 0.910 0.876

Kermany et al. - - - - - - -

*
Bold numbers indicate superior performance.
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