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Abstract: Inteins are prevalent among extremophiles. Mini-inteins with robust splicing properties are
of particular interest for biotechnological applications due to their small size. However, biochemical
and structural characterization has still been limited to a small number of inteins, and only a few
serve as widely used tools in protein engineering. We determined the crystal structure of a naturally
occurring Pol-II mini-intein from Pyrococcus horikoshii and compared all three mini-inteins found in
the genome of P. horikoshii. Despite their similar sizes, the comparison revealed distinct differences in
the insertions and deletions, implying specific evolutionary pathways from distinct ancestral origins.
Our studies suggest that sporadically distributed mini-inteins might be more promising for further
protein engineering applications than highly conserved mini-inteins. Structural investigations of
additional inteins could guide the shortest path to finding novel robust mini-inteins suitable for
various protein engineering purposes.

Keywords: protein splicing; intein; crystal structure; hyperthermophile; protein engineering

1. Introduction

Self-splicing protein introns (inteins) are genetic elements that are translated with their
host proteins [1,2]. After translation, the inteins catalyze their own excision and re-ligation
of flanking protein regions (called exteins) with a peptide bond, resulting in active mature
host proteins [1,3]. Inteins are often considered selfish genetic elements, found within
coding DNA regions, because their removal generally does not affect the fitness of the host
organisms [3]. However, specific regulatory functions of inteins have been proposed for
some inteins [4,5].

Inteins are found in all three domains of life and are often considered to have ancient
origins that predate the separation of prokaryotes and eukaryotes [4–8]. A recent analysis
of an annotated genome database revealed that up to 16 protein hosts with inteins were
found for nearly half of all archaea analyzed, whereas only one percent of eukaryotes
contain inteins [6,7]. Inteins are also found among various extremophiles, such as ther-
mophiles, halophiles, and acidophiles. Inteins reside in various host proteins with diverse
functions [6,7]. However, there is a bias towards proteins involved in DNA metabolisms,
such as DNA polymerases, topoisomerases, and ribonucleotide reductases [6,7]. The biased
distribution of inteins to specific proteins, and their insertions at active sites, has led to
the hypothesis that some inteins have adapted to become environmental sensors that play
regulatory roles by protein splicing conditionally under certain conditions, such as high
temperature, salinity, and redox states [4–7].

The closely related thermophiles P. abyssi (Pab) and P. horikoshii (Pho) both contain
14 inteins in their genome, while the halophile Haloquadratum walsbyi contains 15 inteins
(Table S1) [6]. These three extremophiles are intein-rich because up to 19 inteins have
been identified (Table S1) [6,7]. However, the distribution and size of these inteins are not
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highly conserved, even among thermophilic archaea of the same genus. Presumably, hori-
zontal gene transfers (HGT) that occurred during evolution contributed to this variation,
counterbalanced by the degeneration events of the nested homing endonuclease domains
(HENs) [3]. Due to these evolutionary events, the structure and protein-splicing activities
of inteins might represent the evolutionary history of each intein [9].

Despite the obscure biological/physiological roles of inteins, their enzymatic mecha-
nisms catalyzing protein-splicing reactions have opened a new horizon in protein chem-
istry. Utilizing the protein splicing activities of inteins bears a repertoire of potential
applications in several areas, including in vivo protein engineering, protein purification,
and modification. Indeed, intein-mediated chemical reactions have increasingly been
incorporated as practical tools in the fields of protein engineering, synthetic biology, and
biotechnology [10,11]. For example, inteins from extremely halophilic archaea have been
demonstrated to control protein-splicing reactions with salt concentrations, which has
enabled the engineering of a salt-inducible self-cleaving tag for protein purification [12].
Thus, inteins from extremophiles might have great potential for the development of unique
biotechnological tools.

Inteins often contain a nested active or inactive HEN, which presumably plays an
essential role in the HGT of intein genes [3,6,13]. There is a class of inteins lacking the
HEN domain, so-called mini-inteins. Due to their reduced complexity, naturally-occurring
mini-inteins lacking HEN domains have been of particular interest for protein engineering
to develop biotechnological applications [14,15]. Although the protein-splicing HINT
(Hedgehog/INTein) and DNA-processing HEN domains likely function independently
of each other [1], attempts to engineer mini-inteins by removing the HEN have revealed
a more complicated relationship between the two domains [9,15–17]. Some engineered
mini-inteins retain their splicing activity, while others lose it completely [9,14–16].

Currently, inteins have not been systematically selected and tested biochemically for
the robustness of their protein splicing activity, because their splicing activities are not
predictable without experimental assessments. Thus, strategies for choosing promising
inteins from sequence databases would be highly desirable in order to best advance future
protein engineering.

As the first step towards a rational approach to identify robust inteins for protein en-
gineering, we turned our attention to the 14 inteins identified in the genome of P. horikoshii.
Three of these inteins can be classified as mini-inteins (≤200 residues). These are the
PhoRadA, PhoCDC21-1, and PhoPol-II inteins, consisting of 172, 170, and 166 residues, re-
spectively. The structural and biochemical characterizations of the PhoRadA and PhoCDC21-
1 inteins have been previously reported [17,18]. In this work, we determined the 1.48-Å
resolution structure of the PhoPol-II intein, the smallest intein found in P. horikoshii, and
compared the selected inteins of the Pyrococcus genus with two other mini-inteins in P.
horikoshii. The structural comparison and accumulated biochemical data might serve as a
practical compass in the quest for robust mini-inteins from genomic sequence data.

2. Materials and Methods
2.1. Cloning and Production of PhoPol-II Intein

The gene encoding the PhoPol-II intein with Cys1Ala (C1A) mutation to inhibit self-
cleavages during the purification was amplified from pSKDuet23 [19] using the following
two oligonucleotides HK941: 5′-AGGATCCGGTAATGCCTTCCCGGGAGATACAAG and
HK942: 5′-TGAAAGCTTACTGATGCGTCACAATATTTTC. The PCR product was cloned
between BamHI/HindIII of pHYRSF53 (Addgene #64696) to make a fusion protein with the
H6-SUMO domain, resulting in plasmid pCARSF55D [19]. The plasmid pCARSF55D en-
codes the N-terminal H6-SUMO domain (yeast SMT3) fused with the PhoPol-II intein with
C1A mutation. The C-terminal residue was kept as the original glutamine (Gln), followed
by the stop codon, resulting in no C-extein residue. The PhoPol-II intein was produced
in Escherichia coli strain T7 Express (New England Biolabs) using plasmids pCARSF55D
and pRARE encoding for rare tRNAs to minimize the effect of codon bias in thermophilic
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organisms [18,20]. The transformed cells were grown at 37 ◦C in 2-L LB expression cultures
supplemented with 25 µg mL−1 kanamycin and 5 µg mL−1 chloramphenicol. The cultures
were induced with a final concentration of 1 mM isopropyl-β-D-thiogalactoside (IPTG)
for 3 h when OD600 reached 0.6. The induced cells were harvested by centrifugation at
4700× g for 10 min, 4 ◦C and lyzed in 20-mL buffer A (50 mM sodium phosphate, pH 8.0,
300 mM NaCl) using an EmulsiFlex-C3 homogenizer (Avestin Inc, Ottawa, ON, Canada)
at 15,000 psi for 10 min, 4 ◦C. Lysates were cleared by centrifugation at 38,000× g for
60 min, 4 ◦C. The PhoPol-II intein (C1A) was purified using a 5-mL HisTrap HP column
(GE Healthcare Life Sciences) as previously described, including the removal of the N-
terminal H6-SUMO fusion domain [19]. The protein was dialyzed against deionized water
and concentrated for crystallization using Macrosep® Advance Centrifugal Devices 10K
MWCO (PALL Corporation, New York, NY, USA).

2.2. Cis-Splicing of PhoPol-II Intein

For the cis-splicing test of PhoPol-II intein, the gene of the active PhoPol-II intein, in-
cluding sequence encoding two residues of “GN” and “CD” at the N- and C-terminal
splicing junction, was amplified from pCARSF55D as the template using the follow-
ing two oligonucleotides, J603: 5′-AAGGATCCGGTAATTGCTTCCCGGGAGATACAA
and J618: 5′-TAGGTACCATCGCACTGATGCGTCACAATATTTTC. The expression vec-
tor for the cis-splicing precursor with the two B1 domains of Staphylococcus protein A
(GB1) was created by cloning the PCR product between BamHI/KpnI of SKDuet16, re-
sulting in pLKRDuet30. The expression plasmid for the cis-splicing precursor protein
with SUMO and chitin-binding domain (CBD) as N- and C-exteins was constructed
by amplifying the intein gene using the following three oligonucleotides, M083: 5′-
GAACAGATTGGTGGATCCAAACGTAATTGCTTCCCGGGAGATACAAGA, M084: 5′-
GAACAGATTGGTGGATCCGCTAAGAAACGTAATTGCTTCCCGGGAGATACA, and
M085: 5′-CACCAGGATTTGTGGTACCGTCGCACTGATGCGTCAC, followed by Gib-
son Assembly with pHYRSF53 using the following two additional oligonucleotides, J508:
5′-CGGTACCACAAATCCTGGTG and HB030: 5′-GGATCCACCAATCTGTTCTCTG, re-
sulting in plasmid pJEJRSF294. The cis-splicing precursor protein with two GB1 domains as
exteins or with SUMO and CBD were produced in E. coli strain T7 Express (New England
Biolabs) using either plasmid pLKRDuet30 or pJEJDuet294 as described above. The precur-
sor protein was purified using a 5-mL HisTrap HP column (GE Healthcare Life Sciences)
or a Ni-NTA spin column and dialyzed against PBS. The purified precursor protein was
incubated in the presence of 0.5 mM TCEP at either room temperature, 37, 50, or 60 ◦C. The
samples were taken at 0, 1, and 3 h, and overnight (ON), and were analyzed by SDS-PAGE
on 16.5% acrylamide gels and visualized using Coomassie blue staining.

2.3. Crystallization of PhoPol-II Inteins

PhoPol-II intein (C1A) (23.4 mg/mL) was used for crystallization trials. Drops of
200 nL (100 nL concentrated protein and 100 nL of reservoir solution) were set up in
96-well MRC (Molecular Dimensions) crystallization plates using a Mosquito LCP® (TTP
Labtech). Diffracting crystals were obtained with the reservoir solution containing 100 mM
MES pH 6, 15% (w/v) PEG 550 MME, and 30 mM zinc sulfate. PEG MME 550 (25%) was
added as a cryoprotectant for flash-freezing crystals in liquid nitrogen. The PhoPol-II intein
diffraction data were collected on beamline I03 at the diamond light source with Eiger2 XE
16M detector (Oxfordshire, UK) and were subsequently indexed, integrated, and scaled to
a 1.48-Å resolution using the program XDS [21].

2.4. Structure Determination and Refinement

The crystal structure of PhoPol-II intein was solved by molecular replacement. The
search model was modeled using SWISS-MODEL based on the primary structure [22]. The
initial solution obtained from Phaser using the search model was used for auto-building
by ARP/WARP [23]. The initial coordinates obtained from ARP/WARP were rebuilt with
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Coot, followed by rounds of refinement using the Phenix software [24,25]. The polypeptide
chain of PhoPol-II intein was fully traced into the electron density map without breaks for
168 residues, 166 of which belong to the intein. We used the comprehensive validation tool
in the Phenix GUI for validating the quality of the final structure (Table 1) [25].

Table 1. Data collection and structure refinement.

Intein PhoPol-II Intein (C1A)
PDB ID
Data collection

7OEC
DIAMOND I03

Space group P 41 21 2
Cell dimensions

a, b, c, Å 70.82, 70.82, 70.66

α, β, γ, ◦ 90.00, 90.00, 90.00

Wavelength, Å 0.9763

Resolution, Å 35.41−1.48 (1.53–1.48)

Total reflections 776,435 (76,171)
Unique reflections 30,544 (2978)
Completeness, % 99.87 (99.77)
I/σ 16.35 (4.23)

Rmeas
a 0.1939 (7.025)

CC1/2
c 0.998 (0.572)

Multiplicity 25.4 (25.5)
Refinement

Molecules/au 1

Resolution, Å 35.41−1.48 (1.533–1.480)

Reflections (refinement/Rfree) 30,543/2978

Rwork/Rfree
b 0.1539/0.1869

Number of atoms
Protein 1382
Water 76
Ligand 34

RMS deviations

Bond length, Å 0.017

Bond angles, ◦ 1.44

Ramachandran plot, %
Most favored regions 97.55

Outliers 0.00

Average B-factors, Å2 29.71

Protein 28.21
Water 37.29

Clash score 2.12

MolProbity score 0.97
Numbers in parentheses represent the highest resolution shell. au, asymmetric unit. a Rmeas = Σh[n/(n−1)]1/2

Σi |Ii−〈I〉|/ΣhΣi Ii, where Ii is the observed intensity of the ith measurement of reflection h, 〈I〉 is the average
intensity of that reflection obtained from multiple observations, and n is the multiplicity of the reflection.
b R = Σ|| Fo|−|Fc||/Σ|Fo|, where Fo and Fc are the observed and calculated structure factors, respectively,
calculated for all data. Rfree was defined by Brünger [26]. c CC1/2 was defined by Karplus et al. [27].
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3. Results
3.1. Crystal Structure of PhoPol-II Intein

The DNA polymerase II large subunit (Uniprot: O57861) of P. horikoshii contains a
166 residue intein (PhoPol-II intein). Previously, the Pol-II intein from P. abyssi (PabPol-II
intein) has been solved by NMR spectroscopy [28]. Whereas PabPol-II consists of 185
residues, the PhoPol-II intein only has 166 residues, which makes the latter more attractive
for protein engineering due to its smaller size. The sequence identity between them is 64%
(119/185 residues). We solved the three-dimensional structure of the PhoPol-II intein at a
1.48-Å resolution by molecular replacement (Figure 1a,b). The crystal structure revealed
the typical HINT fold with the β-strand insertion commonly observed among inteins from
thermophilic organisms (Figure 1a) [29]. In line with the loop minimization often observed
for proteins from thermophiles [30], we could trace the electron densities for all of the
168 residues without detecting any flexible linker sequences, which were present in the
structure of the PabPol-II intein (Figures 1–3) [28].
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Figure 1. (a) A cartoon presentation of PhoPol-II intein. The β-strand insertion common for ther-
mophilic inteins is colored in orchard. N and C indicate the N- and C-termini, respectively. (b) A
stereo view of the close-up of the active site showing Cys1Ala (C1A), Thr90 (T90), His93 (H93),
His165(H165), and Gln166 (Q166). The electron densities are shown for H154 and Q166. (c) A
sequence alignment of PhoPol-II and PabPol-II inteins with secondary structure elements (arrows for
b-strand and gray rectangles for helices). Red rectangles indicate the β-strand insertion. The flexible
linker found in PabPol-II intein is colored in blue. Regions for blocks B, F, and G are marked by lines.
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Figure 2. (a) Cartoon representations of the structures of PhoPol-II (7OEC), PhoRadA (4E2T), and
PhoCDC21-1 (6RPQ) inteins. The views are from the dorsal side [18]. Chain A from the coordinate
(4E2T) was shown for PhoRadA intein [17]. N and C indicate N- and C-termini, respectively. The
color codes represent the B-factor. The arrows indicate the insertion sites commonly observed for the
homing endonuclease (HEN) domain. Red rectangles indicate the β-strand insertion common for
thermophilic inteins. The length of helices is indicated by helical turns (t) (t: 3.6 residues per helical
turn). (b) A sequence alignment of all three mini-inteins in P. horikoshii with secondary structure
elements by arrows for β-strand and gray rectangles for helices. Deletions are shown by red hyphens.
N- and C-extein residues are shown in red.
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Figure 3. Cartoon models of the three-dimensional structures of the following mini-inteins from other
thermophilic organisms: PabPol-II intein (left), MjaKlbA intein (middle), and TvoVMA intein (left). PDB
coordinates of 2LCJ (PabPol-II), 2JNQ (MjaKlbA), and 4O1S (TvoVMA) were used. β-strands and helices
are colored in magenta and cyan, respectively. The lengths of helices are indicated by the number of helical
turns (t: 3.6 residues per helical turn). The flexible loop of PabPol-II is colored in blue. The location of the
loop in TvoVMA intein, of which 21 residues were removed for the crystallization, is indicated by an arrow.
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3.2. Comparison with Other Mini-Inteins from P. horikoshii

Although the three mini-inteins in P. horikoshii have similar sizes, between 166 and
172 residues, their three-dimensional structures show distinct differences (Figure 2). All
three structures have the extended β-strand insertion (extβ) that is commonly observed
among thermophilic inteins [29]. The helical lengths preceding extβ vary among the three
structures, with 1.9, 3.6, and 4.2 helical turns for PhoPol-II, PhoRadA, and PhoCDC21-1
inteins, respectively. The PhoRadA intein has a 10-residue insertion at the highly conserved
HEN insertion site, which could be removed without affecting the splicing activity [17]. In
contrast, the PhoPol-II and PhoCDC21-1 inteins lack such insertions at the HEN insertion
site (Figure 2). The relatively short helix of the PhoPol-II intein is rather reminiscent of a
canonical mesophilic intein. Despite their similar sizes, the structural comparison suggests
that the three inteins are unlikely to have directly evolved from the same ancestral intein,
due to the distributed short insertions and deletions over the entire sequence (Figure 2b).

3.3. Comparison with Naturally-Occurring Mini-Intein Structures from Other Thermophiles

We subjected the coordinates of the PhoPol-II intein to the DALI protein structure
comparison server in order to identify the closest three-dimensional structures. Not sur-
prisingly, the server returned the PabPol-II intein (2LCJ) as the closest structure, with a
Z-score of 22.7, covering 164 residues with 1.5 Å-RMSD for Cα atoms (Figure 3) [28]. The
PabPol-II intein shares 70% sequence identity with the PhoPol-II intein (Figure 1c). The
largest difference between the two inteins lies in the flexible 19-residue sequence at the
HEN insertion site for the PabPol-II intein (Figure 3), which is likely to be a remnant of
HEN degradation during evolution. The structures of the CDC21-1 inteins from P. horikoshii
and P. abyssi have Z-scores of 22.0 and 22.2, respectively [18]. These two inteins are closely
related to the same insertion site in the CDC21 protein. However, the longer helices in
the CDC21-1 inteins are very different from the Pol-II inteins. The observed variation in
the helix length within the thermophilic insertion might be caused by differences in the
evolutionary origins of the different inteins. The VMA mini-intein from Thermoplasma
volcanium (TvoVMA) has the same Z-score of 22.2. However, it resembles the PhoRadA
intein because both structures share a prominent extension of the helix [14]. The KlbA
intein from Methanococcus jannaschii (MjaKlbA) is another naturally-occurring mini-intein
and has a Z-score of 19.1 with the PhoPol-II intein [31]. All three-dimensional structures
mentioned show the typical HINT fold, including the additional β-strand insertion (extβ)
preceded by a helix of variable length, even though the growth temperatures of their hosts
vary drastically between 33 and 104 ◦C (Table 2).

Table 2. Summary of naturally-occurring mini-inteins from thermophiles and their growth temperatures.

Organism Growth Temperature Gene PDB

Pyrococcus horikoshii 88–104 ◦C (98 ◦C) [32]

radA 2LQM, 4E2U, 4E2T

cdc21 6RPQ

pol-c 7OEC

Pyrococcus abyssi 68–102 ◦C (96 ◦C) [33]
pol-c 2LCJ

cdc21 6RPP

Thermoplasma volcanium 33–67 ◦C (60 ◦C) [34] vma 4O1S

Methanococcus jannaschii 48–94 ◦C (85 ◦C) [35] klbA 2JMZ, 2JNQ

3.4. Protein Splicing Activity of PhoPol-II Intein

While the hyperthermophilic archaeon Pyrococcus horikoshii grows at a temperature
between 88 and 104 ◦C (Table 2) [32], the PhoRadA intein is capable of efficiently catalyzing
protein splicing at ambient (20–30 ◦C) temperatures in vitro and in E. coli cells [17]. This
observation suggests that the protein splicing reaction is unlikely a rate limitation during
the biosynthesis of the active RadA protein. At ambient temperatures (20–30 ◦C), the
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PhoCDC21-1 intein retains protein splicing activity with foreign exteins to a lesser extent
than the PhoRadA intein in E. coli, but its splicing activity could be improved by increasing
the temperature [19].

Conversely, the PhoPol-II intein was found inactive without increasing the temper-
ature [19]. At a higher temperature and longer incubation, the PhoPol-II intein showed
weak protein splicing activity as well as side reactions such as cleavages (Figure 4a–e).
When we tested two different combinations of N- and C-exteins with the same junction
sequences, the splicing activity and side-reaction profile were dissimilar (Figure 4d,e). The
precursor proteins with a SUMO domain and chitin-binding domain (CBD) as exteins were
less reactive than the precursor with two GB1 domains, even though the splicing junction
sequences were identical. This observation indicates the extein dependency by inteins,
presumably due to the mutualism between the intein and the host protein.

Microorganisms 2021, 9, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 4. In vitro protein splicing in cis by PhoPol-II intein with different exteins. (a) Precursor 
protein with two GB1 as exteins. (b) Precursor protein with SUMO domain and chitin-binding 
domain (CBD) as N- and C-exteins, respectively. Arrows indicate expected migrations of different 
products in SDS-PAGE gels. (c) The precursor protein (Pre) was purified and incubated at room 
temperature, 37 °C, and 50 °C. The two precursor proteins with different inteins were incubated at 
60 °C and (d) pH 5 or (e) pH 7. The samples were taken at 0, 1, 3 h and overnight for SDS-PAGE 
analysis. 

4. Discussion 
Currently, there is a very limited number of inteins suitable for biotechnological 

applications because such inteins require (i) a most robust splicing activity in vivo and in 
vitro, (ii) fast reaction kinetics, (iii) a high tolerance of foreign extein contexts, and (iv) 
functional reconstruction of their catalytically active structures from split fragments in 
order to enable a versatile use of protein splicing [10,14,15]. Extremophiles could be good 
sources for hunting for new robust inteins because of the prevalence of inteins: nearly half 
of all archaea contain inteins [4,6,7]. Although more than 1,500 inteins have been 
identified, only a dozen mini-inteins have been biochemically characterized [7]. In the 
past, biochemical as well as structural studies of diversely or arbitrarily selected inteins 
were performed and resulted in serendipitously identifying robust inteins, which could 
be suitable for protein engineering [15,19]. We questioned whether there would be a good 
strategy for identifying mini-inteins with robust splicing activity from the fast-increasing 
genome sequence data prior to the extensive experimental assessment.  

Here, we determined the three-dimensional structure of a naturally-occurring mini-
intein, PhoPol-II intein, enabling us to compare the structures of all mini-inteins in the 
genome of P. horikoshii. Even though all three mini-inteins share the same HINT fold, with 
an extended β-strand insertion characteristic for inteins from thermophilic organisms [29], 
the three inteins show distinct differences in helical lengths and loop insertions. The 
distributed insertion and deletion differences for the entire sequences support the view of 
specific evolutionary pathways originating from unique ancestors. Among the three mini-

Figure 4. In vitro protein splicing in cis by PhoPol-II intein with different exteins. (a) Precursor protein
with two GB1 as exteins. (b) Precursor protein with SUMO domain and chitin-binding domain (CBD)
as N- and C-exteins, respectively. Arrows indicate expected migrations of different products in
SDS-PAGE gels. (c) The precursor protein (Pre) was purified and incubated at room temperature,
37 ◦C, and 50 ◦C. The two precursor proteins with different inteins were incubated at 60 ◦C and
(d) pH 5 or (e) pH 7. The samples were taken at 0, 1, 3 h and overnight for SDS-PAGE analysis.

Due to this delicate activity profile, it appears plausible that the PhoPol-II intein might
contribute to the physiological regulation of active DNA polymerase II production. In
other words, the production of active DNA polymerase might be dependent on the protein
splicing activity of the PhoPol-II intein, which could be a survival strategy of mini-inteins
lacking the HEN domain to protect themselves from elimination.

Both the Pho and Pab Pol-II inteins have an atypical C-terminal Gln residue instead
of the canonical Asn responsible for the cleavage of a branched intermediate during
the protein splicing reaction (Figure 1c) [28,36]. The 1H-15N correlation peak for the C-
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terminal Gln was not visible for the PabPol-II intein in the HSQC spectrum, suggesting
slow conformational exchanges rather than a fixed conformation [28]. The sidechain of
the C-terminal Gln166 in the PhoPol-II intein shows clear electron density, allowing the
measurement of precise distances with other key residues (Figure 1b). His154 in block
F presumably plays a crucial role in activating Gln cyclization for the cleavage of the
branched intermediate. The distance between His154 and the carbonyl group of Q166 is
3.4 Å, which is shorter than the distance (4.6 Å) between the corresponding atoms of His160
in block F and the last residue, Asn172, in the PhoRadA intein structure (Figure 1b) [17]. It
appears that His154 stabilizes the side-chain conformation of Q166, making it less reactive
towards the side-chain cyclization of Q166.

4. Discussion

Currently, there is a very limited number of inteins suitable for biotechnological
applications because such inteins require (i) a most robust splicing activity in vivo and
in vitro, (ii) fast reaction kinetics, (iii) a high tolerance of foreign extein contexts, and (iv)
functional reconstruction of their catalytically active structures from split fragments in
order to enable a versatile use of protein splicing [10,14,15]. Extremophiles could be good
sources for hunting for new robust inteins because of the prevalence of inteins: nearly
half of all archaea contain inteins [4,6,7]. Although more than 1,500 inteins have been
identified, only a dozen mini-inteins have been biochemically characterized [7]. In the
past, biochemical as well as structural studies of diversely or arbitrarily selected inteins
were performed and resulted in serendipitously identifying robust inteins, which could be
suitable for protein engineering [15,19]. We questioned whether there would be a good
strategy for identifying mini-inteins with robust splicing activity from the fast-increasing
genome sequence data prior to the extensive experimental assessment.

Here, we determined the three-dimensional structure of a naturally-occurring mini-
intein, PhoPol-II intein, enabling us to compare the structures of all mini-inteins in the
genome of P. horikoshii. Even though all three mini-inteins share the same HINT fold, with
an extended β-strand insertion characteristic for inteins from thermophilic organisms [29],
the three inteins show distinct differences in helical lengths and loop insertions. The
distributed insertion and deletion differences for the entire sequences support the view of
specific evolutionary pathways originating from unique ancestors. Among the three mini-
inteins of P. horikoshii, only the PhoPol-II intein requires an elevated temperature for some
protein splicing activity in vitro, similarly to the PabPol-II intein [36]. The dependence of
active DNA polymerase II production on protein splicing activity implies that the PhoPol-II
intein could play a critical role in regulating the fitness of the organism in response to
environmental stimuli, such as temperature changes, because DNA polymerase II is an
essential enzyme. With this strategy, mini-inteins like PhoPol-II intein could avoid their
removal under certain conditions [5]. The activity of the PhoPol-II intein was also sensitive
to the extein sequences in the same context of the N- and C-terminal junction sequences,
suggesting that the mutualism with the host protein has been established so that the
PhoPol-II intein is more difficult to be eliminated during evolution.

Mini-inteins lack HEN domains, either because they have been lost during evolution
and/or because they have not yet been invaded by a homing endonuclease [13]. The closely
related archaea P. horikoshii and P. abyssi contain 14 inteins in their genomes (Table S1).
Interestingly, the RadA intein with high splicing activity at room temperature is absent in
P. abyssi, whereas both the CDC21 and Pol-II mini-inteins are present in both P. horikoshii
and P. abyssi. The PhoRadA intein, which is highly capable of splicing at room temperature,
might face a higher elimination pressure in hyperthermophilic organisms than the other
mini-inteins requiring elevated temperatures for efficient splicing activity.

Most mini-inteins from extreme halophiles are not halo-tolerant but halo-obligatory
inteins, meaning they require high salinity for protein splicing activity [12]. Mini-inteins
must acquire a certain mutualism during evolution to become persistent, by providing
certain post-translational benefits to the host to ensure survival under specific cellular
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and environmental conditions [5]. Indeed, salt-dependent inteins seem to give some
advantages to the host organism [37]. Because of the established mutualisms with the host
proteins, highly conserved inteins across a wide phylogenetic distribution might not be
the most promising candidates for robust mini-inteins suitable for wider biotechnological
applications. Such highly conserved mini-inteins residing at conserved insertion sites are
likely to have developed a significant degree of mutualism in physiological conditions,
eventually avoiding their removal under certain environmental or cellular conditions.
Demonstrated examples include an elevated temperature for hyperthermophiles and a
high salinity for extreme halophiles. Uncharacterized mini-inteins might provide some
benefits to the host with other unknown regulatory functions, as found in the RadA
intein [38]. Natural mini-inteins that are poorly conserved among different species and
exist sporadically in the genome might be better candidates for further biochemical and
structural characterizations. However, they might have already developed unknown
reasons/regulatory functions to be persistent in their host organisms in physiological
conditions, such as the mutualisms between mini-inteins and host proteins [39].

Alternatively, mini-inteins with efficient splicing activity could be obtained by artifi-
cially engineering mini-inteins by removing the HEN domains. More inteins bearing HEN
domains than mini-inteins are found in genomic sequence databases, judging from their
sizes [7,39]. Whereas some engineered inteins are fully capable of catalyzing protein splic-
ing without the HEN domain, others have developed a mutualism with the HEN domain,
requiring it for efficient protein splicing activity [9,14–16]. Unfortunately, it is unknown
what makes their protein splicing activities dependent on the presence of a HEN domain.
Thus, this approach still requires tedious experimental trials, including constructing several
deletion variants [9,14–16]. Furthermore, only a few three-dimensional structures of inteins
with HEN domains currently exist, imposing additional constraints on the rational design
of HEN-free mini-inteins. Structural elucidation of inteins, particularly those with HEN
domains, is awaited to better understand the structural basis of the mutualistic relationship
between the HINT and HEN domains. Unveiling the structural basis of mutualism could
help to expand the repertoire of promising mini-inteins by protein engineering in a rational
and predictive way.

In conclusion, we believe that it is vital to have a rational strategy for effectively
selecting mini-intein candidates from the rapidly increasing genomic sequence data for
experimental characterizations. Having a strategic approach to navigate the intein sequence
space could efficiently increase the repertoires of mini-inteins with robust splicing activity,
suitable for biotechnological applications. Our study suggests that sporadically distributed
mini-inteins might be better candidates than conserved mini-inteins inserted in highly
conserved proteins and locations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9061226/s1, Table S1: A list of protein hosts containing inteins in the
four thermophiles.
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