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Abstract: Species of Scedosporium and Fusarium are considered emerging opportunistic pathogens,
causing invasive fungal diseases in humans that are known as scedosporiosis and fusariosis,
respectively. These mold infections typically affect patients with immune impairment; however,
cases have been reported in otherwise healthy individuals. Clinical manifestations vary considerably,
ranging from isolated superficial infection to deep-seated invasive infection—affecting multiple
organs—which is often lethal. While there have been a number of advances in the detection of these
infections, including the use of polymerase chain reaction (PCR) and matrix-assisted laser desorption
ionization/time-of-flight mass spectrometry (MALDI-TOF MS), diagnosis is often delayed, leading
to substantial morbidity and mortality. Although the optimal therapy is controversial, there have
also been notable advances in the treatment of these diseases, which often depend on a combination
of antifungal therapy, reversal of immunosuppression, and in some cases, surgical resection. In this
paper, we review these advances and examine how the management of scedosporiosis and fusariosis
may change in the near future.
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1. Introduction

The past few decades have witnessed a remarkable increase in the prevalence and severity of
invasive fungal infections (IFI) in children and adults with immune impairment, including patients
with hematologic malignancies, stem cell and solid organ transplantations, and primary and acquired
immunodeficiencies and preterm neonates [1–3]. The majority of these infections are due to Candida spp.
and Aspergillus spp., while less common fungal pathogens, such as mucormycetes, Scedosporium spp.,
and Fusarium spp. are reported with increasing frequency [4,5]. Diagnostic and therapeutic options
against IFI have evolved considerably over the past several years, and in this paper, we will review
how these advances affect the management of scedosporiosis and fusariosis in children and adults.
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2. Scedosporiosis

2.1. Diagnosis

The timely diagnosis of mycotic disease is an enduring challenge in clinical practice. A diagnosis
of Scedosporium spp. usually relies on the detection of fungi from clinical samples by direct microscopic
examination or histological analysis of the clinical specimen and culture on appropriate culture
media [6]. However, it may be difficult to distinguish Scedosporium spp. from species of Fusarium
or Aspergillus, as all of them present dichotomous branching, hyaline hyphae, and regular hyphal
septation [4,7]. Given this difficulty, newer approaches have been pursued, including non-culture-based
molecular methods that utilize nucleic acid sequencing and mass spectroscopy.

Nucleotide sequence-based analysis is the current gold standard for fungal identification;
rDNA internal transcribed spacer (ITS) sequencing appropriately identifies the main species in
Scedosporium, but the partial β-tubulin gene (BT2) is required to differentiate closely related species [8,9].
Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS) has
become available for the first-line identification of filamentous fungi, as its accuracy is comparable to
that of DNA sequencing, but it is not routinely available at many medical centers [10].

Polymerase chain reaction (PCR)/electrospray ionization time-of-flight mass spectrometry
(ESI-TOF-MS) combines 16 PCR assays using broad-range primers targeting nuclear or mitochondrial
genes and T2 magnetic resonance (T2MR), which enables rapid determination of molecular
weight and base composition in the amplicons after electrospray ionization and chromatographic
separation [11–13]. This information may be compared to a database to identify fungal species,
including Scedosporium, without the need for purification or extraction. However, this platform is
expensive and is not routinely used at most centers; moreover, the database of filamentous fungi is
relatively small, and the process of specimen preparation may be cumbersome [14–16]. These platforms
highlight novel strategies to hasten the identification of Scedosporium spp., as a delay in diagnosis is
often associated with substandard treatment and poor outcomes.

2.2. Clinical Manifestations

Species of the pathogenic mold Scedosporium, including Lomentospora prolificans (formerly
S. prolificans), cause a wide range of clinical manifestations in humans from superficial infection
to severe invasive disease, as well as colonization of the respiratory tract and allergic reactions [6,17].
Scedosporiosis is classically associated with hematological malignancies (HM), although patients
with other forms of immune impairment may also contract the disease [18]. Given the variety of
symptoms, clinicians should have a high index of suspicion in susceptible patients. Individuals
suffering from near-drowning events in water are also at risk of disease, which may be associated
with central nervous system (CNS) involvement [19]. Species of Scedosporium, including S. boydii,
S. apiospermum, and S. aurantiacum are among the most commonly recovered molds from respiratory
secretions of patients with chronic pulmonary diseases such as cystic fibrosis (CF) and may lead to
invasive disease [4,7,20,21].

2.3. Treatment

There are three major classes of antifungal agents approved for use in humans: (1) triazoles
(fluconazole, voriconazole, isavuconazole, itracontazole); (2) polyenes (various formulations of
amphotericin B); and (3) echinocandins (casprofungin, micafungin, anidulafungin) [22–27]. The triazoles
and polyenes have varying levels of activity against species of Scedosporium, with the azoles (such
as itraconazole and voriconazole) typically having the lowest mean inhibitory concentration (MIC)
among the antifungal drugs [28]. Scedosporium species are typically resistant to polyenes, as well as
to fluconazole and demonstrate reduced susceptibility to echinocandins [29,30]. The high degrees of
intrinsic antifungal resistance among species of Scedosporium make these infections difficult to manage
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and susceptibility testing of isolates from patients with scedosporiosis is highly recommended [21,31].
Reversal of immunosuppression is often crucial for successful management of infection [19].

Although the optimal choice and duration of therapy for scedosporiosis is controversial and may
depend on the immune status of the patient, a large retrospective study provides support for the use
of voriconazole [32]. In that study by Troke and colleagues, the most common underlying conditions
were solid organ transplant (SOT, 22%), hematologic malignancy (HM, 21%), and trauma or surgery
(15%) [29]. Two-thirds of patients with S. apiospermum infection had successful responses. Patients
with malignancy and hematopoietic cell transplant (HSCT) recipients had the worst outcomes [29].

Most international guidelines recommend voriconazole as first-line therapy; however, antifungal
combination therapy (ACT) has emerged as a promising option, because therapeutic effect can
be achieved at lower concentrations thereby reducing toxic side effects, improving safety and
tolerability, and shortening the therapeutic effect while potentially preventing treatment failure [33–36].
The combination of voriconazole with a polyene or an echinocandin has shown synergistic effects
against both S. apiospermum and L. prolificans; however, these combinations have demonstrated variable
outcome in the treatment of these infections in humans [18,37]. Combinations of three antifungal
agents (voriconazole plus a polyene plus an echinocandin) have been tested against L. prolificans and
showed synergy in vitro, but the data in humans with scedosporiosis is exceedingly limited.

In March 2015, the FDA approved the extended-spectrum triazole isavuconazole for the treatment
of invasive aspergillosis and mucormycosis [38,39]. The advantages of this new antifungal drug
include the availability of a water-soluble intravenous formulation, excellent bioavailability of the oral
formulation, and predictable pharmacokinetics in adults [40,41]. Although this agent has not been
approved for the treatment of scedosporiosis, in vitro data suggests that it may have good activity [42].

Guinea and collaborators examined the activity of isavuconazole against more than
1000 opportunistic fungi collected from 1986 to 2007, including 22 isolated of Scedosporium spp. [43].
The two species of Scedosporium tested (S. prolificans and S. apiospermum) showed marked differences in
susceptibility: isavuconazole showed good activity against Scedosporium apiospermum, with a MIC90

very similar to those for Aspergillus spp., whereas S. prolificans (L. prolificans) was relatively
resistant. Subsequent work by Pfaller and colleagues has reinforced this finding [44]. Indeed,
isavuconazole demonstrates broad-spectrum activity against a global collection of opportunistic
fungi; however, clinical experience with isavuconazole to treat scedosporiosis is limited, and its use is
not routinely recommended.

The novel compound F901318 represents a new class of antifungal drug called the orotomides,
which inhibits dihydroorotate dehydrogenase, a key enzyme in pyrimidine biosynthesis [45]. This drug
has been evaluated for activity against 50 clinical Scedosporium and Lomentospora isolates [27]. F901318
displayed activity against all isolates S. apiospermum, S. boydii, and S. aurantiacum, with the MIC
decrease ranging from 0.125 to 0.5 mg/L. Similarly, Wiederhold and collaborators had similar results
with F901318 against S. apiospermum, S. aurantiacum, S. dehoogii, and S. boydii, with the MIC ranging
from ≤0.008 to 0.25 [46]. Clinical trials are currently underway.

3. Fusariosis

3.1. Diagnosis

Although diagnosis may be suspected based on clinical phenomenon in high-risk patients, such as
characteristic skin lesions in patients with acute myelogenous leukemia (AML), confirmatory diagnosis
of fusariosis by histopathology and culture is strongly recommended by the European Confederation
of Medical Mycology and the European Society of Clinical Microbiology and Infectious Diseases
(ECMM/ESCMID) guidelines [47,48]. However, given the time and labor associated with these
endeavors, other methods have been pursued.

Immunohistochemistry uses antibodies directed at cell antigens to identify fungal organisms
visualized in situ. However, this approach is not widely used. Recently, DNA-based assays have
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emerged as a promising new approach to diagnosing fusariosis. A PCR platform based on the intergenic
spacer (IGS) region has been developed for different Fusarium species that can also distinguish clinical
species complexes, such as Fusarium equiseti and F. sporotrichioides [49]. A fluorescent PCR fragment
length analysis based on the internally transcribed spacer 2 (ITS2) region is available to distinguish
between Aspergillus, Candida, and F. oxysporum, but this method cannot distinguish between the
Fusarium spp. that have closely-related ITS amplicons [50–52].

Multi-locus sequence typing (MLST) is currently viewed as the best option for the identification of
Fusarium isolates on the species level, and enzyme-linked immunosorbent assay (ELISA) is the preferred
method in Fusarium to identify specific mycotoxins [51,53–55]. As noted above, MALDI-TOF MS is
a promising new tool for rapid identification and classification of cultured microorganisms based on
their protein spectra [56–58]. However, the platform is not widely available and requires the recovery of
the organism for processing. We anticipate that in the coming years, this methodology will become the
preferred method for identification of fusariosis, especially at tertiary-care and academic medical centers.

3.2. Clinical Manifestations

Fusarium species cause a variety of diseases in humans, including superficial skin infections,
keratitis, blood stream infections, and life-threatening end organ damage [59,60]. Infection may be
fatal, as there is often a delay in diagnosis and many organisms exhibit high-levels of resistance to
existing antifungal agents [61,62]. Fusarium spp. are a frequent cause of corneal damage and may lead
to endophthalmitis [62]. Although onychomycosis as a result of fusariosis usually causes localized
infection in immunocompetent patients, it may also represent the portal of entry for disseminated
disease in patients with immune impairment [48,63].

Less commonly, Fusarium spp. may cause peritonitis, bloodstream infection, osteomyelitis (often
after trauma), arthritis, otitis, sinusitis, and brain abscess [19,48]. As we will discuss below, treatment often
involves antifungal therapy in conjunction with surgical resection and reversal of immunosuppression
when possible.

3.3. Treatment

Fusarium spp. often display high levels of resistance to existing antifungal agents and are
some of the more difficult fungi to treat [62,64,65]. Data on their in-vitro susceptibility to various
antifungal agents indicate variable susceptibility amphotericin B and extended-spectrum triazoles,
such as itraconazole, voriconazole, isavuconazole and posaconazole [51,53,54,66,67]. For this reason,
we typically initiate empirical therapy with an antifungal triazole and a poleyene, such as voriconazole
and liposomal amphotericin B, while awaiting antifungal susceptibilities. One notable exception to
this approach may be for F. solani, which is somewhat more susceptible to amphotericin B but less
susceptible to voriconazole than other species, such as F. oxysporum [68,69]. However, the optimal
treatment for disseminated fusariosis has not been established. While polyenes and itraconazole have
been associated with some success, voriconazole is the only agent with an indication for treating
refractory fusariosis in the United States [19].

Essential for successful therapeutic outcome is the restoration of innate host defenses, particularly
with recovery from neutropenia. GCSF may accelerate recovery from neutropenia. Granulocyte
transfusions from GCSF-mobilized donors may stabilize infection until recovery from neutropenia in
persistently neutropenic patients with hematological malignancies or in those with aplastic anemia.

There are currently a number of novel antifungal agents in the pre-clinical pipeline that may have
activity against human fusariosis [70]. These include E1210, a novel isoxazolyl bis-pyridine wall-active
antifungal compound (discovered by the Eisai Company in Japan) that inhibits an early step in the
GPI-dependent anchoring cell wall proteins and has in vitro activity against Fusarium spp. [71–73].
The pyrimidine salvage pathway offers another potential target (as noted above). F901318 is highly
active in vitro against triazole-resistant mold pathogens, including Scedosporium and Fusarium
species [70,74]. Genetic and biochemical analyses indicate that hemofungin may serve as yet another
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potential treatment option, as it inhibits ferrochelatase—the last enzyme in the heme biosynthetic
pathway—and inhibits in vitro growth of pathogenic Fusarium species [70]. We are encouraged by this
early work and are eager to see if these promising results may have utility in humans.

4. Strategies for Augmentation of Host Defenses against Scedosporiosis and Fusariosis

Host defenses against filamentous non-Aspergillus filamentous fungi are less well understood
than those against aspergilli. However, limited data with Fusarium spp. and Scedosporium spp. show
certain similarities in pathogenesis and host defenses with Aspergillus fumigatus, with which most
studies have been performed.

The predominant line of host defenses against filamentous fungi is circulating polymorphonuclear
(PMNs) and mononuclear leukocytes (MNCs), as well as monocyte-derived macrophages (MDMs) [75].
MDMs in the lungs and elsewhere phagocytize and destroy spores of difficult-to-treat filamentous fungi,
such as S. apiospermun and S. prolificans [76,77], comparably to A. fumigatus. If the immune response of
the host is compromised, spores can germinate to hyphae and invade to adjacent tissues. PMNs are the
main immune cells causing damage to hyphae using oxygen-dependent (O2

−, H2O2, hypohalides,
and chloramines) and oxygen-independent (cationic peptides such as defensins and cathelicidins)
mechanisms [78]. Phagocytes are capable of exhibiting sufficient oxidative burst to control S. prolificans [77].

A variety of growth factors, cytokines, and chemokines play an important role in the interface
of innate and adaptive immunities against filamentous fungal infections [79]. However, very little is
known about how fungal elements are recognized by macrophages and how the signal is transduced
to the nucleus for gene expression and release of cytokines in response to Fusarium or Scedosporium spp.
Of note, S. prolificans has been shown to induce significantly more TNF-α and IL-6 release by human
MNCs as compared to Aspergillus spp., which could be associated with the virulence of the specific
fungus [80]. Differences in immune response and damage of different genera of filamentous fungi and
indeed of different species of Fusarium and Scedosporium are likely linked to the frequency and severity
of infections by some of these fungi.

A number of studies have assessed the immunomodulatory utility of cytokines in confronting
fungal pathogens. Th1- and Th17-type cytokines have exhibited certain enhancing activities on
antifungal phagocytic responses. For example, IL-15 increased interleukin-8 (IL-8) release from PMNs
challenged by F. solani hyphae, but not by F. oxysporum hyphae. In contrast, the release of TNF-α was
not affected by the use of IL-15 [81]. Similarly, IL-15 increased IL-8 release from PMNs challenged by
S. prolificans, whereas release of TNF-α was not affected. In addition, the presence of IL-15 significantly
enhanced PMN-induced hyphal damage and oxidative respiratory burst of S. prolificans but not
S. apiospermum. This inability of IL-15 to exhibit enhanced damage of S. apiospermum hyphae is in
concordance with this fungus’ greatest intrinsic virulence in humans. IL-15 may have species-specific
enhancing effects on antifungal activities of PMNs against Scedosporium spp. and Fusarium spp. [81].

Among other cytokines studied that enhance PMN antifungal activity against Scedosporium spp.
are interferon-γ (IFN-γ) and granulocyte-macrophage colony-stimulation factor (GM-CSF) [82].
These cytokines induce the Th1 response, which favors resistance to fungal disease, regulates the
gene expression of NADPH oxidase subunits at the transcriptional level, and potentiates the synthesis
of antimicrobial peptides in macrophages [83]. GM-CSF acts on early as well as on late stages of
haematopoiesis and increases the number of cells of the macrophage–monocyte system. It has been
found to enhance phagocytosis, oxidative burst, increase the number and membrane binding of several
classes of surface receptors on PMNs, and inhibit PMN apoptosis [84,85]. Treatment of PMNs with
the combination of IFN-γ and GM-CSF had broader effects on Scedosporium spp., enhancing PMN
functions including oxidative burst in response to S. apiospermum hyphae [82].

Antifungal agents may also have differential immunomodulatory effects against Fusarium and
Scedosporium spp. In vitro studies have shown that MDM activity against Fusarium spores [86],
oxidative antifungal activities of human MNCs and PMNs against F. solani hyphae [87], and PMN
activity against S. prolificans and S. apiospermum [88] can be modulated by the presence of different
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amphotericin B formulations. Similarly, triazoles have caused significant additive increase in PMN
hyphal damage of S. prolificans and S. apiospermum [89]. Regardless of the mechanisms behind these
collaborative effects, these findings support the concomitant administration of antifungals and PMN
transfusions to persistently neutropenic patients with invasive fusariosis or scedosporiosis.

No animal model studies have reported on the effects of cytokines, such as granulocyte
colony stimulating factor (G-CSF), on the outcome of experimental fusariosis to date. Ortoneda et al.,
in an immunosuppressed murine model of invasive infection by S. prolificans, demonstrated a modest
efficacy of liposomal amphotericin B (LAMB) at 10 mg/kg/day combined with G-CSF [90]. Subsequent
studies showed that LAMB at very high doses (40 mg/kg/day) combined with G-CSF did not
significantly improve survival [91]. Interestingly, the administration of G-CSF alone was not more
effective as compared to the control group [90,91]. In an immunocompetent murine model of
disseminated S. prolificans infection, posaconazole and GM-CSF had a combined effect in damaging
S. prolificans hyphae. However, when posaconazole and GM-CSF were administered to mice with
invasive infection due to S. prolificans, they had selective beneficial effects on the burdens in certain
organs but offered no additional benefit to survival [92].

The principal therapy in fusariosis is early aggressive antifungal therapy. Immunomodulation
with G-CSF or GM-CSF potentially combined with IFN-γ can be adjuvant therapeutic strategies
together with source control. Over the last decades, efforts to reconstitute host defenses with
granulocyte transfusion therapy have increased after the advances of the availability of recombinant
hematopoietic growth factors and modern transfusion practices. In severely neutropenic patients
suffering from fusariosis, treatment with G-CSF or GM-CSF and granulocyte transfusions may be
considered [93–97]. The beneficial effect of the granulocyte transfusions seems to be enhanced when
they are collected after stimulation of donors with G-CSF and dexamethazone and are administered
to patients with good performance status, as well as early during neutropenia and soon after the
onset of fungal infection [98]. In a systematic review of 23 cases with invasive fusariosis, including
eight patients aged less than 18 years, granulocyte transfusion using traditional collection protocols
failed to augment the efficacy of appropriate antifungal treatment. In contrast, in a case series of 11
invasive fusariosis from a single center, remarkably high response and survival rates were found when
antifungal agents were combined with granulocyte transfusions, which were collected using a specific
donor collection protocol (donors were stimulated by G-CSF and dexamethasone).

The clinical evidence on the role of immunomodulation on the host response against
scedosporiosis is limited, involving mainly haematopoietic growth factors (G-CSF or GM-CSF) and
IFN-γ [99]. Of note, of 39 cases reported with disseminated Scedosporium spp. infection, a favorable
outcome was reported only in four of them [100]. In these four cases, the positive outcome was
attributed to the immunomodulatory factors administered in addition to antifungal drugs, whereas the
true role of antifungals was difficult to establish [101,102]. Without doubt, the outcome of antifungal
drug therapy alone in scedosporiosis is poor with high overall mortality. A crucial point in the
management of this difficult-to-treat infection is immune function reconstitution. Characteristically,
only 2 out of 16 patients infected with S. prolificans survived, and their survival coincided with
hematologic recovery [103]. Similarly, in another review, disseminated S. prolificans infection was fatal
in all neutropenic patients [104].

5. Management of Scedosporium and Fusarium Infections in Children

Pediatric pharmacokinetic, safety, and efficacy data are sparser than those in adult patients.
As a consequence, the pace of guideline development for pediatric patients has been much slower than
that for adults, and indeed, dedicated guidelines for treating infants and children with IFI do not exist.
Extrapolating adult recommendations to pediatric practice should be done cautiously, as differences
pertaining to epidemiological factors and pharmacokinetics of many antifungal agents exist between
adults and children.
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5.1. Pediatric Scedosporiosis

Scedosporium spp. infections in children have been associated with brain abscess formation after near
drowning in immunocompetent individuals [19]. These infections are inherently difficult to treat given
the delayed diagnosis, the histologic similarities of spedosporium infection with other more frequently
encountered filamentous fungi, the cross reactivity of immune reactions with other fungi, and the false
negative immune reaction results due to the high genetic variability of Pseudallescheria spp. [105]. The most
recent reports with favorable outcomes indicate that voriconazole may be an effective antifungal agent,
as salvage treatment options, parenteral administration of terbinafine and voriconazole in addition
to intraventricular caspofungin, and neurosurgical interventions have been used but with mixed
results [106]. Among adjunctive therapeutic modalities, the administration of certain cytokines interferon
(IFN-γ) and granulocyte-macrophage colony-stimulation factor (GM-CSF), which induce an augmentation
of neutrophil antifungal activity against Scedosporium spp., has been proposed [82].

5.2. Pediatric Fusariosis

Fusarium spp. infections are between the third and fourth most common cause of IFI in children; F. solani
and F. oxysporum species complex are the most commonly implicated in pediatric disease [107–109].
Clinical presentation of Fusarium spp. infections depends on the portal of entry, as well as the host’s
immune status. In immunocompetent patients, infections are usually superficial (onychomycosis,
keratitis, or mycetoma) or limited to a single organ (lungs or paranasal sinuses), whereas in
immunosuppressed hosts, such as allogeneic hematopoietic stem cell recipients, patients with severe
or prolonged neutropenia, or acute leukemia, fusariosis may be invasive and disseminated [63,110].

Given the rarity of these infections, treatment guidelines are not based on randomized controlled
clinical trials but on large uncontrolled case series mainly in adult patients [111]. Especially in the
pediatric population, treatment of scedosporiosis and fusariosis is challenging, with all-cause mortality
in pediatric case series as high as 50% [108,112]. Evidence-based data for guiding treatment are scant,
and usually treatment recommendations are inferred from adult experience. On many occasions,
salvage treatment options are required, which include the use of newer antifungal agents and practices
aiming to reduce immunosuppression [111,112].

The FungiScope registry, a global fungal infection registry, found 10 children with invasive
fusariosis between 2006 and 2015 [113]. All these patients were immunosuppressed and neutropenic,
and among these, 80% received combination therapy with voriconazole and either a lipid formulation
of amphotericin B (50%) or an echinocandin (30%), and only 20% received voriconazole monotherapy.
Surgery was performed in 30%, granulocyte transfusion and granulocyte colony stimulating factor
(G-CSF) were used in 40% of the patients each.

A recent literature review of invasive Fusarium infections in immunocompromised children
(including five new cases, summarizing 33 cases in total) showed considerable variation in the
treatment regimens used: Amphotericin B was used in most cases (76%); combination treatment
with (amphotericin B and voriconazole; amphotericin B and caspofungin; amphotericin B, fluconazole,
and rifampin; amphotericin B and ketoconazole; amphotericin B, 5-FC, and rifampin) was used in 33%;
G-CSF was used in 18%; granulocyte transfusion in 12%; and surgery was performed in 12% of the
cases [108]. In both of the above studies, a favorable outcome was noted in 50% of the patients [108,112].

Posaconazole has been recommended as a salvage treatment option for invasive fusariosis in high-risk
patients with hematologic malignancies [111]. Data for posaconazole use for fusariosis treatment come
from three open label clinical trials [114] and a retrospective single institution analysis [115], which hardly
included any children (<18 years of age). The limited use of posaconazole in children could be due to
limited experience in patients less than 12 years of age [111,112] (Table 1). Similarly, there is no experience
with isavuconazole use in children with fusariosis [116]. The two clinical trials (SECURE and VITAL),
which evaluate the use of isavuconazole in the treatment of fungal infections, including rare fungi, enrolled
patients who were more than 18 years old. Thus far, they have reported only seven patients with fusariosis
treated with isavuconazole, resulting in a 44% survival rate [117].
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Table 1. Pediatric doses of systemic antifungal agents.

Agent
Daily Dosage Per Age Group

>18 Years 13–18 Years 2–12 Years 1–24 Months Neonates

Amphotericin B deoxycholate 1–1.5 mg/kg QD 1–1.5 mg/kg QD 1–1.5 mg/kg QD 1–1.5 mg/kg QD 1–1.5 mg/kg QD

Liposomal amphotericin B 3–5 mg/kg QD 3–5 mg/kg QD 3–5 mg/kg QD 3–5 mg/kg QD 3–5 mg/kg QD

Amphotericin B lipid complex 5 mg/kg QD 5 mg/kg QD 5 mg/kg QD 5 mg/kg QD 5 mg/kg QD

Amphotericin B
colloidal dispersion 3–4 mg/kg QD 3–4 mg/kg QD 3–4 mg/kg QD 3–4 mg/kg QD n/a

Itraconazole IV 200 mg BID (for 2 days), followed
by 200 mg QD n/a n/a n/a n/a

Itraconazole oral
suspension/capsules*

600 mg QD (for 3 days), followed
400 mg QD 2.5 mg/kg BID 2.5 mg/kg BID n/a n/a

Voriconazole IV* 6 mg/kg Q12h on day 1 then
4 mg/kg BID 4 mg/kg BID 8 mg/kg BID n/a n/a

Voriconazole oral
suspension/capsules* 200 mg BID 200 mg BID 9 mg/kg BID (max: 350 mg BID) n/a n/a

Posaconazole* 200 mg QID or 400 mg BID 200 mg QID or 400 mg BID n/a n/a n/a

Caspofungin 50 mg/day (day 1: 70 mg) 50 mg/m2 (day 1: 70, max 70 mg) 50 mg/m2 (day 1: 70, max 70 mg) 50 mg/m2 (day 1: 70,
max 70 mg) 25 mg/m2

Anidulafungin 100 mg/day (day 1: 200 mg)

Micafungin 100 mg/day 100 mg/ m2 >40 kg: 100 mg/day
<40 kg: 2–4 mg/kg/day

>40 kg: 100 mg/day
<40 kg: –4 mg/kg/day

>40 kg: 100 mg/day
<40 kg: –4 mg/kg/day

QD: once per day; BID: twice per day; QID: four times per day; IV: intravenous; PO: oral; n/a: not sufficient data. * Therapeutic drug monitoring is recommended. Adapted from [111].
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Data for combination antifungal therapy in children with IFI, including invasive fusariosis,
are scant; however, it is frequently used in pediatrics as evidenced by recent pediatric cohort
studies [107,109,118]. Of note, the association between the receipt of combination therapy and
an improved outcome has not been found. The predilection for clinicians to use combination antifungal
treatment for invasive fusariosis is probably due to high concern for high or intrinsic resistance of
Fusarium spp., the severity of the infection, high mortality—especially in patients with multiple
comorbidities requiring salvage treatments—and their uncertainty about the effectiveness and options
in treating this serious infection.

A promising approach for the fungal strains that are resistant to currently used antifungal agents
or for patients with compromised host immunity is immune based treatments. While, until now,
most immunotherapeutic approaches have aimed to augment the number of granulocytes through
granulocyte transfusions, the infusion of growth factors (G-CSF, GM-CSF), the administration of
cytokines such as IFN-γ, and most recently, the use of adoptive T cell therapy, which was initiated
for the treatment of cancer, seems to be a promising approach for the treatment of patients suffering
from drug-resistant IFI [119]. Even though there is growing evidence supporting the role of T cell
adoptive therapy in antifungal immunity, the clinical development of fungus-specific T cells is in the
early stages of development, and there is a paucity of data regarding adoptive T cell therapy using
Scedosporium- or Fusarium-specific T cells [120].

In summary, the optimal treatment for scedosporiosis and fusariosis in children is unknown.
Voriconazole demonstrates strong in vitro activity against Scedosporium spp and is considered first-line
treatment. For fusariosis treatment, voriconazole, lipid formulations of amphotericin B, and various
combinations should be considered as the optimal alternatives. Duration of treatment is usually
individualized based on the site, the extent of the infection, and the immune status of the patient [63].
In addition, the optimal management should include surgical debridement of infected tissues and
reinforcement of immune response either by reducing immunosuppression or augmenting immune
response with the use of various growth factors or adoptive T cell therapies. However, the latter
strategy is in its infant state of clinical development with unknown safety and efficacy outcomes.

6. Conclusions

Human scedosporiosis and fusariosis are emerging opportunistic infections that are difficult to
diagnose and may be even more challenging to treat. In this paper, we have reviewed the challenges
associated with diagnosis, which typically relies on labor-intensive histopathology, as well as recent
advances in non-culture-based systems. We have also reviewed novel antifungal compounds, such as
E1210, F901318, and hemafungin, which may one day play a role in treatment. However, these agents
are still in development. For now, treatment of these two potentially-lethal conditions relies on early
diagnosis, effective antifungal therapy, possible surgical excision, and reversal of immunosuppression
when possible. In the coming years, the mycology community must make it a priority to design
non-inferiority trials to evaluate these new agents to meet the needs of vulnerable patients.
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