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Abstract: Bone remodeling is a lifelong process, due to the balanced activity of the osteoblasts (OBs),
the bone-forming cells, and osteoclasts (OCs), the bone-resorbing cells. This equilibrium is mainly
regulated by the WNT-ß-cathenin pathway and the RANK-RANKL/OPG system, respectively. Bone
ageing is a process which normally occurs during life due to the imbalance between bone formation
and bone resorption, potentially leading to osteoporosis. Bone loss associated with bone ageing is
determined by oxidative stress, the result of the increasing production of reactive oxygen species
(ROS). The promotion of physical exercise during growth increases the chances of accruing bone and
delaying the onset of osteoporosis. Several studies demonstrate that physical exercise is associated
with higher bone mineral density and lower fracture incidence, and the resulting bone mineral gain is
maintained with ageing, despite a reduction of physical activity in adulthood. The benefits of exercise
are widely recognized, thus physical activity is considered the best non-pharmacologic treatment
for pathologies such as osteoporosis, obesity, diabetes and cardiovascular disease. We reviewed the
physiological mechanisms which control bone remodeling, the effects of physical activity on bone
health, and studies on the impact of exercise in reducing bone ageing.
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1. Introduction

Bone remodeling is a dynamic process which occurs throughout life, to replace old and damaged
bone with the new one [1,2]. It takes place in the “basic multicellular units” (BMUs) consisting of
cluster of osteoclasts (OCs), the bone-resorbing cells, and osteoblasts (OBs), the bone forming cells,
which work sequentially [3]. Bone modeling is responsible for the shape and mechanically induced
adaption of bones, and OBs and OCs can act independently at distinct anatomical sites [1,3]. In healthy
subjects, bone formation mainly occurs in the first two decades of life, until the achievement of peak
bone mass. Thereafter, bone mass remains stable for approximately 20 years, until resorption begins
to outweigh bone formation with subsequent age-related bone loss [1]. Sixty percent of the risk of
osteoporosis depends on what happens in the first two decades of life, while the remaining 40% on
what happens after [1].

In this review, we focus on physiological mechanisms which control bone remodeling, the effects
of physical activity on bone health, and we update studies on the impact of exercise in reducing bone
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ageing. We performed a systematic literature search in PubMed and EMBASE, reviewed and selected
articles, based on the following key words: ‘physical activity’, ‘bone health’, ‘childhood’, ‘ageing’.

2. Physiological Mechanisms of Bone Remodeling

Osteoblast differentiation is controlled by the master transcription factor RUNX2 (runt-related
transcription factor 2), and is characterized by four stages: the preosteoblast, osteoblast, osteocyte and
bone-lining cell. These cells contribute differently to bone remodeling, according to their differentiation
stage. In particular, immature OBs direct osteoclastogenesis, whereas only mature OBs have the
ability to produce mineralized tissue [2,3]. The canonical Wnt/β-catenin pathway is critical for bone
development. When Wnt signaling is activated, Wnt proteins bind to Frizzled receptor and low-density
lipoprotein receptor-related proteins five and six (LRP5, LRP6). The consequent hypophosphorylated
state of β-catenin prevents its degradation, and it results in the upregulation of transcription factors
crucial for osteoblast differentiation [4,5]. The Wnt signal is modulated by different antagonists,
including sclerostin (SOST), Dickkopf-1 (Dkk-1), and secreted frizzled-related proteins (sFRP), which
inhibit osteoblastogenesis [5].

Osteoclastogenesis is under the control of two factors: the macrophage-colony stimulating
factor (M-CSF), and the receptor activator of nuclear factor kappa-B ligand (RANKL). The binding
of these factors to their respective receptors, c-fms (colony-stimulating factor-1 receptor) and RANK
(receptor activator of nuclear factor kappa-B), on osteoclast precursors, starts osteoclastogenesis. The
RANKL-RANK binding can be antagonized by osteoprotegerin (OPG), a soluble decoy receptor secreted
by OBs and bone marrow stromal cells, which binds to RANK and prevents the osteoclastogenic
effect of RANKL [1]. RANKL and OPG are also produced by activated T-cells, which represent a key
paracrine link between bone metabolism and the immune system [6].

Under physiological conditions, a balance between bone resorption and bone formation ensures
the strength and integrity of the human skeleton. Several pediatric disorders can lead to an altered
peak bone mass (PBM) and therefore bone loss, thus resulting in an increased risk for osteoporosis
and fractures [7]. In particular, literature data have demonstrated an involvement of RANKL, OPG,
sclerostin and DKK-1, both in inherited and acquired pediatric diseases [8–12].

Among the risk factors for osteoporosis, it is possible to identify modifiable factors, including diet
and lifestyle factors, and non-modifiable factors such as gender, age, genetic factors, history of prior
fractures, diseases and pharmacological treatments [13,14]. The modifiable factors, such as a balanced
diet and exercise, have an important role already in childhood. In particular, regular physical activity
has a key role in bone strengthening, not only in healthy children, but also in those suffering from
chronic diseases [15–17].

3. Physical Activity and Bone Health: The Metabolic, Inflammatory and Immune Response

Bone metabolism is significantly affected by exercise, resulting in an adaptation of bones in
terms of shape, mass, and strength to the mechanical loading. During physical activity, bone tissue
deforms, and the mechanosensors located through the cells, such as ion channels and integrins, change
their original conformation triggering several signals, including calcium, mitogen-activated protein
kinase (MAPK), Wnt, and RhoA/ROCK pathways [18]. In particular, the mechanical loading activates
the Wnt/β-catenin signaling pathway, either by direct stimulation of the bone transcription factor
RUNX2, or by a cross-talking with parathyroid hormone (PTH) or morphogenetic proteins (BMPs)
signaling pathways [19]. By regulating the OPG and RANKL expression in OBs, Wnt signaling
also downregulates osteoclastogenesis and osteoclast activity [20]. Furthermore, loading activates
a molecular response that inhibits sclerostin and allows the activation of Wnt signaling, thereby
osteoblastogenesis and bone formation. Finally, exercise shifts the adipogenic-to-osteogenic balance
toward the osteoblast formation [21].

Exercise duration, type, and intensity are the factors which determine the exercise-induced
inflammatory response. Physical activity activates an inflammatory cascade involving cells of the
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innate and adaptive immunity, as cytokines, and mediators of inflammation, as myokines and
adipokines, which create an environment adapt for the recovery, regeneration, and adaptation of bone
(Figure 1) [22]. Among the myokines, irisin is involved in both glucose and bone homeostasis [23]. It is
secreted by skeletal muscle during physical activity, and it induces osteogenesis at the bone–muscle
interface [24]. Regular and moderate physical activity seems to maintain higher irisin levels in
normal-weight adolescents compared with their sedentary counterparts [25]. Irisin appears positively
correlated with bone mineral density (BMD) and bone strength in young athletes and in soccer players,
supporting the idea that irisin could have a protective role on bone health [23]. In healthy children,
irisin levels are positively correlated with bone mineral status and circulating osteocalcin [26]. High
irisin levels have also been observed in children and adolescents with type 1 diabetes mellitus (T1DM),
as they are associated with a better metabolic control and improved bone mass [27]. These evidences
suggest that irisin might be considered as one of the bone formation markers during childhood.
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Figure 1. The impact of physical activity on bone health. Physical activity positively affects bone
metabolism via different mechanisms: 1. activation of an inflammatory cascade involving cells of
the innate and adaptive immunity and mediators of inflammation; 2. triggering an immunological
response due to the increase of IL-6 by skeletal muscle; 3. stimulation of the Wnt signaling pathway.

Physical activity is also able to modify bone functions by modulating the immune system,
thus, in the last 15 years, the “osteoimmunology” has become central in studying the metabolic
diseases of bone [28]. Furthermore, primary and secondary osteoporosis have been treated with fully
human monoclonal antibodies which act as inhibitors of the osteoimmunological signaling pathway,
the RANK/RANKL [29]. Exercise also activates the inflammasome complexes, and increases IL-6
levels, which in turn plays an anti-inflammatory effect by inhibiting the release of pro-inflammatory
cytokines (TNFα and IL-1β), and triggering the release of IL-10, a potent anti-inflammatory molecule
(Figure 1) [18,30,31]. In particular, acute physical activity increases pro-inflammatory cytokines,
whereas regular exercise results in an enhancement of anti-inflammatory molecules [30,32].

4. Impact of Physical Activity in Reducing Bone Ageing

Bone ageing is a process normally occurring over time, which leads to imbalance between
osteoclast resorption and osteoblast bone formation. Genetic factors and epigenetic modifications
triggered by lifestyle affect this process [33]. The bone loss associated with bone ageing is determined
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by oxidative stress that negatively affects the signaling pathways implicated in bone cell survival and
osteogenesis [34]. The production of mitochondrial superoxide anion in elderly osteocytes increases
bone resorption [35], while the reactive oxygen species (ROS) reduces the β-catenin signaling, with
activation of peroxisome proliferator-activated receptor (PPAR) γ supporting adipogenesis at the
expense of osteoblastogenesis [36]. Moreover, the activation of oxidative defense Forkhead box O
(FOXO) transcription signaling involved in ageing and longevity triggers the apoptosis of OBs and
osteocytes (Figure 2) [37]. On the contrary, physical activity positively affects bone metabolism via
different mechanisms: 1. activation of inflammatory cascade involving cells of the innate and adaptive
immunity and mediators of inflammation; 2. triggering a metabolic response due to the increase of
IL-6 by skeletal muscle; 3. stimulation of the Wnt signaling pathway (Figure 1).
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Figure 2. Oxidative stress determines the bone loss associated with bone ageing. The reactive oxygen
species (ROS)-activated FOXO (Forkhead box O) transcription divertβ-catenin away from Wnt signaling
pathway, leading to decreased osteoblastogenesis.

Mechanical loading also reduces the adipogenic differentiation of mesenchymal stem cells by
rescuing ß-catenin-FOXO mediated transcription [38]. Furthermore, exercise decreases osteocyte
apoptosis, as demonstrated in ovariectomized mice [39], and preserving telomere from progressive
shortening [40].

Physical Activity during the Lifespan

The promotion of physical exercise during growth increases the chances of accruing bone and
delaying the onset of osteoporosis. To date, there are several evidence that physical exercise is associated
with higher BMD and lower fracture incidence, and the resulting bone mineral gain is maintained
with ageing, despite a reduction of physical activity in adulthood [41]. However, while during growth
physical exercise increases the PBM, during adulthood weight-bearing exercises should be performed
to maintain bone mass and increase bone strength [42]. Indeed, although it is known that exercise may
improve BMD in postmenopausal women and adult men, the type of activity, its intensity, duration
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and frequency, are still unclear. Further studies are needed to determine the precise training protocol,
the dose-response relationship and whether any associations persist into adulthood [43,44].

Infancy, childhood and adolescence are critical periods for the development of the skeleton.
During these periods, mechanical load is one of the best stimuli to enhance bone mass and structural
skeletal adaptations, both contributing to bone strength [41]. It is known that both genetics and physical
activity contribute to BMD. However, it is unknown if the benefits of exercise on childhood bone
accretion are influenced by genetic factors. Mitchell et al. observed the beneficial effects of exercise in
children genetically predisposed to a lower BMD in adulthood [45]. However, the timing of beginning
of physical activity would seem to be important. Indeed, the age at which children start walking
might influence their bone strength later in life [46]. Modifications in bone structure and strength
related to exercise are most often observed in prepubertal and peripubertal age, and although some
changes are sex related, physical activity is generally associated with improved bone strength, both in
boys and girls [47,48]. It is known that the time period just prior to puberty represents a “window of
opportunity”, when the skeleton is most sensitive to mechanical loading [49]. However, it is possible
that the window of opportunity may occur at different maturity levels for males and females, and may
be shorter for females than males [49]. Extending the “window of opportunity” concept to include
an earlier time period has been suggested. In fact, the increase of physical activity since infancy and
childhood may improve compliance to regular exercise. Systematic sporting activity during childhood
is associated with increased BMD when comparing active to inactive groups. However, the degree to
which different sport activities influence bone development is not fully understood [50]. In fact, there
is no consensus on the best kind of exercise to improve bone mass during childhood and adolescence
and to keep bone health into adulthood.

There are many studies on the effects of physical activity in children and adolescents.
In a randomized, controlled study on children selected between first and fifth grade classes,

Meyer et al. showed that the positive effects of nine months’ daily physical education program on
bone mineral content (BMC) of total body, femoral neck and hip were moderately conserved over three
years, regardless of the pubertal stage [51]. Jumping activities in the prepubertal years may increase
PBM at the hip and lumbar spine [52]. Moderate physical activities supporting by body weight, such
as running and jumping, have a more positive effect on bone accrual than activities that do not require
support from weight, such as swimming [53]. Children who practice running, gymnastics and dance,
show a significant increase of BMD of the neck of femur when compared to children who practice
swimming. Similarly, a significant increase in BMD of lumbar spine and proximal femur is observed
in boys who practice impact sports such as basketball, gymnastics and athletics, when compared to
a group of adolescents who practice active load sports such as water polo and swimming [53]. The
“mechanostat” concept assumes that changes in bone strength development result from the increasing
loads imposed by greater muscle forces, which stimulate bone mineral acquisition. Physical activities
that produce ground reaction forces are classified as impact load sports, such as gymnastics and
running, while activities involving non-gravitational mechanical load are classified as active load
sports, such as swimming. High-impact activities, particularly running, cheerleading, and gymnastics,
appear to be more at risk for developing stress fractures than other sports [54]. Prepubertal girls who
practice recreational gymnastics initiated during childhood have better bone mineral gain at the total
body, lumbar spine, and forearm over 24 months. Higher-level training promotes additional gains
in the forearm bone area [55]. Femoral head strength increases more with active load sport, such as
swimming, with greater increase occurring during puberty. Thus, pursuing an exercise program for
only a few minutes each day enhances bone mass at the proximal femur in early pubertal children [56].

There is a strong association between bone and muscle development in children, suggesting
that increasing muscle mass during growth stimulates bone accrual [57]. Tennis players showed a
marked increase in bone thickness on the site of muscles in the playing limb [53,57]. Similarly, racquet
sport athletes demonstrated an enhanced bone mass and strength in the playing arm compared with
the non-playing arm [58]. The model of “racquet sport” players explains the skeletal advantage
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of practicing exercise in adolescence. Racquet sport, like tennis, before puberty is associated with
increased lean mass and bone mass, due to an enhanced bone size and areal BMD in the playing
arm [59]. Osteogenic sports, such as football, augment BMC at the loaded sites of the skeleton,
whereas the “non-osteogenic sports”, such as swimming and cycling, seem to have lower impact
on BMC respect to sedentary controls [60]. This observation suggests that adolescents engaged in
non-osteogenic sports should combine their exercise with weight-bearing activities in order to optimize
bone development [60,61]. Individuals who practice high-impact physical activities had enhanced bone
stiffness index (SI) values compared to those who practice low-impact activities or did not regularly
practice exercise [62]. Thus, starting a regular physical activity, particularly during adolescence, is
the key to achieving healthy bones and reducing the incidence of osteoporosis and future risk of
fracture [63].

5. Conclusions

Bone remodeling is an essential physiological process that renews the skeleton in response to
mechanical stimuli. Childhood and adolescence are critical periods in which the skeleton is most
responsive to exercise. Several evidences demonstrated that the promotion of physical exercise
during bone development maximizes the chances of accruing bone, potentially delaying the onset
of osteoporosis in later life. The response of bone tissue to mechanical stimuli is influenced by age,
hormone levels, and other metabolic factors; furthermore, it depends on the age at start, magnitude,
duration and frequency of stimuli. Since the benefits of exercise are widely recognized, physical activity
is considered the best non-pharmacological treatment for pathologies such as osteoporosis, obesity,
diabetes and cardiovascular disease. Thus, encouraging people to be active throughout their lifespan
may offer many benefits over and above bone health.
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