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Inhibition of casein kinase 2 blocks G2/M transition in early embryo 
mitosis but not in oocyte meiosis in mouse
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Abstract.  Casein kinase 2 (CK2) is a highly conserved, ubiquitously expressed serine/threonine protein kinase with hundreds 
of substrates. The role of CK2 in the G2/M transition of oocytes, zygotes, and 2-cell embryos was studied in mouse by enzyme 
activity inhibition using the specific inhibitor 4, 5, 6, 7-tetrabromobenzotriazole (TBB). Zygotes and 2-cell embryos were 
arrested at G2 phase by TBB treatment, and DNA damage was increased in the female pronucleus of arrested zygotes. Further 
developmental ability of arrested zygotes was reduced, but that of arrested 2-cell embryos was not affected after releasing 
from inhibition. By contrast, the G2/M transition in oocytes was not affected by TBB. These results indicate that CK2 activity 
is essential for mitotic G2/M transition in early embryos but not for meiotic G2/M transition in oocytes.
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Casein kinase 2 (CK2), a ubiquitous serine/threonine protein 
kinase, is a tetramer composed of two catalytic (α or α’) and 

two regulatory (β) subunits. CK2 is highly pleiotropic because of 
its broad cellular substrates. It is reported to be involved in cancer 
[1, 2], proliferation [3], apoptosis [4, 5], DNA damage repair [6, 
7], cell cycle progression [8, 9] and other cellular processes. Gene 
knockout analysis of each subunit shows that disruption of the α or β 
subunit leads to lethality after implantation [10, 11], while disruption 
of the α’ subunit is not lethal, but results in globozoospermia [12] 
in mouse. CK2 plays an important role in cell cycle regulation. 
CK2 phosphorylates p34cdc2 at Ser39 during G1 phase in Hela 
cells [13], and is demonstrated to be required for G0/G1, early G1, 
and G1/S transition in human primary fibroblasts [14]. CK2 is also 
involved in cell cycle progression during G1 and G2/M in yeast 
[15]. Subsequent research identified several substrates for CK2 in 
cell cycle regulation, such as Bdp1 [16], geminin [17], p27KIP1 
[18], and eIF5 [9]. A recent study indicated that inhibition of CK2 
activates p53 function and induces p53-dependent cell cycle arrest 
and apoptosis in cancer cells [8]. Despite these findings for CK2 
during cell cycle progression in somatic and tumor cells, its role in 
early embryo development or oocyte meiosis remains unknown.

The G2/M transition in cell cycle is mainly regulated by maturation 
promoting factor (MPF), which is composed of cyclin-dependent 
kinase 1 (Cdk1) and cyclin B. Cyclin B-Cdk1 activation results in 
nuclear envelope breakdown, which is a characteristic of the initiation 

of mitosis. DNA damage is checked before the transition to ensure 
that cells with DNA damage are arrested at the G2 phase until the 
damaged DNA is repaired.

In this work, we examined the effect of CK2 activity on the G2/M 
transition in oocytes and early embryos in mouse using a highly 
specific CK2 inhibitor tetrabromobenzotriazole (TBB) [19]. TBB acts 
in an ATP/GTP-competitive manner. It may adopt different modes of 
binding to the active site of CK2 (catalytic subunits)[20]; therefore, 
ATP/GTP binding is competitively blocked and CK2 activity is 
inhibited. We show that CK2 activity is essential for mitotic G2/M 
transition in zygotes and 2-cell embryos, but not for meiotic G2/M 
transition in oocytes.

Materials and Methods

ICR mice care and manipulations were handled according to the 
Ethics Committee of the Nanjing Drum Tower Hospital and Institute 
of Zoology, Chinese Academy of Sciences.

Oocyte collection and culture
Immature oocytes were collected from the ovaries of 8-week-old 

female ICR mice into M2 medium (Sigma, St. Louis, MO, USA) with 
2.5 μM milrinone (Sigma), which was used to maintain oocytes at the 
GV (germinal vesicle) stage. Only fully grown oocytes with a GV 
were further cultured in M2 medium in a humidified incubator of 5% 
CO2 at 37°C. The rate of GVBD (germinal vesicle break down) was 
measured after 2 h in culture, according to disappearance of the GV.

In vitro fertilization (IVF) and embryo culture
For IVF, spermatozoa were obtained from the epididymis of male 

ICR mice, and incubated at 37°C in HTF medium for 30 min to 
capacitate. Female ICR mice were superovulated via administration of 
5 IU PMSG and hCG. Mature oocytes were collected from ampullae 
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of the oviduct 14–15 h after hCG injection and inseminated with 
capacitated sperm in HTF medium. Two hours after insemination, 
embryos were washed and cultured in KSOM medium in a humidified 
incubator of 5% CO2 at 37°C. TBB (100 mM) dissolved in DMSO 
was diluted with KSOM and used to treat the embryos. Developmental 
rates of 2-cell embryos, 3/4-cell embryos, and morulae were measured 
24, 48, and 72 h after IVF, respectively.

DNA duplication examination by BrdU
DNA duplication in zygotes was determined by measuring the 

incorporation of BrdU into the duplicated DNA. Zygotes were 
transferred into KSOM medium containing 100 μM BrdU (Sigma) 
at 6 h after IVF with or without TBB (Tocris bioscience, Bristol, 
UK) treatment. Both groups of zygotes were fixed at 12 h after 
IVF, and BrdU incorporation was detected by immunostaining with 
an anti-BrdU antibody (Sigma), together with a FITC-conjugated 
secondary antibody.

DNA damage examination by immunocytochemistry
Embryos were fixed in 3.7% paraformaldehyde for 30 min, 

permeabilized in 0.5% Triton X-100 for 20 min and blocked in 1% 
BSA for 1 h in PBS at 25°C. Embryos were incubated overnight 
at 4°C with an antibody against phosphorylated H2A X, followed 
by a FITC-conjugated secondary antibody for 2 h at 25°C. Hoechst 
33342 was used to label the nucleus.

Statistical analysis
Statistical analysis was performed by an independent-sample 

t-test to compare two groups, and one-way analysis of variance 
(ANOVA) was applied to multi-groups. LSD test was used for multiple 
comparisons. P < 0.05 was considered statistically significant. All 
results were expressed as mean ± SE.

Results

TBB inhibited mouse zygotes at the pronuclear stage
CK2β gene expression in zygotes, 2-cell embryos, and GV oocytes 

was assayed using immunocytochemistry. It was shown to be expressed 
in these cells, and specifically located in the nuclei (Fig. 1). Mouse 
zygotes obtained by IVF developed normally to the 2-cell stage 24 
h after insemination. In this experiment, one-cell mouse embryos 
were treated with TBB at 6 h after IVF. Although 10 and 20 μM 
TBB did not reduce the developmental rate of 2-cell embryos, 40 μM 
did completely disrupt their development (Fig. 2A). Hoechst 33342 
staining confirmed this inhibitory effect. TBB-treated embryos were 
arrested at the pronuclear stage, while control embryos had reached 
the 2-cell stage 24 h after IVF (Fig. 2B).

TBB inhibited G2/M transition in mouse zygotes
To further determine the stage at which TBB is involved, we 

treated zygotes with 40 μM TBB at different time points: 2, 6, 12, 
and 17 h after IVF, corresponding to the pre-pronuclear stage, early 
pronuclear stage, late pronuclear stage, and pronuclear break down 
stage, respectively. Embryos treated with TBB at 2 h and 6 h did 
not develop into 2-cell embryos, and only a small number (27.5%) 
from the 12 h group developed to the 2-cell stage. However, the 

developmental rate of 2-cell embryos treated with TBB at 17 h was 
similar to that of controls (Figs. 3A and B). These results indicate 
that TBB plays a role before pronuclear break down and blocks 
progression of the cell cycle into M phase. The results also indicate that 
TBB did not inhibit formation of the pronucleus. To define the exact 
interphase stage at which TBB inhibits zygote development, BrdU 
was employed to determine whether the DNA had been duplicated. 
Results showed that DNA was duplicated in embryos (20/20) 12 h 
after IVF (Fig. 3C). This also showed that TBB had no affect on DNA 
duplication in the first mitosis and embryos were arrested at the G2 
phase. Thus, TBB inhibited the G2/M transition of the first mitosis.

TBB decreased the developmental potential of zygotes and 
increased DNA damage in female pronucleus

To observe the developmental potential of zygotes treated with 
TBB, the developmental rates of 2-cell embryos, 3/4-cell embryos, 
and morulae were measured at 24, 48, and 72 h after IVF, respectively. 
Zygotes treated with 40 μM TBB 6 h after IVF were washed and 
cultured in normal medium at 12, 17, and 24 h after IVF. Because 
of the fact that zygotes treated with TBB at 6 to 24 h remained at 
the pronuclear stage (G2 phase), an additional 24 h was allowed for 
embryo development; then, the developmental rate was measured in 
this group. It was found that development of zygotes in the groups 
washed at 12 and 17 h was indistinguishable that of controls, whereas 
the developmental ability of zygotes washed at 24 h was dramati-
cally reduced (Fig. 4A). To investigate the reason for this reduced 
developmental ability, DNA damage was assayed by immunostaining 
for phosphorylated H2A X, since DNA damage is the main event 
at the G2/M check point. Interestingly, these results indicate that 
DNA damage was increased only in the female pronucleus of these 
zygotes (Fig. 4B).

TBB inhibited G2/M transition in 2-cell embryos
In addition to the G2/M transition in zygotes, the effect of TBB 

on G2/M transition in 2-cell embryos was studied. Development of 
2-cell embryos treated with 40 μM TBB was blocked at the 2-cell 
stage 48 h after IVF, while the control group developed to the 3/4-cell 
stage (Figs. 5A and B). This result suggests that TBB may also affect 
the G2/M transition in 2-cell embryos. TBB-treated 2-cell embryos 
were washed 48 h after IVF, and their subsequent development was 
not affected. This is different from zygotes treated with TBB. The 
developmental rate of 3/4-cell embryos and morulae reached control 
levels 24 h later (Fig. 5C).

TBB had no effect on G2/M transition in oocytes
The effect of TBB on the G2/M transition in oocytes was examined. 

Oocytes usually undergo GVBD within 2 h of in vitro culture in M2 
medium (Fig. 6A). Contrary to the results for mitosis in zygotes and 
2-cell embryos, TBB did not block the G2/M transition in oocytes, 
since the rate of GVBD was not reduced as the concentration of 
TBB increased (Fig. 6B).

Discussion

CK2 exists as tetrameric complex consisting of three subunits 
(CK2α, CK2α’, and CK2β) that are encoded by independent genes. 
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Fig. 1. CK2β gene expression in the zygote, 2-cell embryo, and GV 
oocyte. CK2β was used to indicate CK2 expression. CK2β protein 
in zygotes, 2-cell embryos, and GV oocytes was assayed by 
immunocytochemistry. CK2β was expressed and located in the 
nuclei of these cells.

Fig. 2. Inhibition of zygotes at pronuclear phase by TBB. (A) Zygotes 
derived form IVF were cultured in KSOM medium and treated 
with 10, 20, or 40 μM TBB at 6 h. The developmental rate of 
2-cell embryos was measured 24 h after IVF. Approximately 60 
zygotes in 3 replicates were counted in each group. TBB (40 μM) 
completely abolished 2-cell development. Double asterisks show 
highly significant differences compared to the control (Mock) 
group (P < 0.01). (B) Embryos 24 h after IVF were stained with 
Hoechst 33342 to confirm existence of the pronucleus in the TBB 
group.

Fig. 3. Inhibition of the zygote at G2 phase by TBB treatment. (A) 
Zygotes were transferred into KSOM medium containing 40 μM 
TBB at specific time points, and the developmental rate of 2-cell 
embryos was measured 24 h after IVF. Approximately 90 zygotes 
in 3 replicates were counted in each group. Double asterisks 
show highly significant differences compared to the control 
(Mock) group (P < 0.01). (B) Embryos from each group were 
stained with Hoechst 33342. (C) DNA duplication was examined 
by BrdU incorporation. Zygotes treated with TBB at 6 h were 
fixed and immunostained with an anti-BrdU antibody at 12 h 
after IVF, while zygotes collected 12 h after IVF without TBB 
treatment were used as controls.
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Fig. 4. Decreased developmental potential and increased DNA damage 
in female pronucleus of the blocked zygotes. (A) Zygotes treated 
with 40 μM TBB 6 h after IVF were washed and cultured in 
normal medium at different time points, and developmental 
rates of 2-cell embryos, 3/4-cell embryos, and morulae were 
measured. Approximately 90 zygotes in 3 replicates were 
counted in each group. Double asterisks show highly significant 
differences compared to the control (Mock) group (P < 0.01). 
(B) DNA damage was examined by immunostaining for 
phosphorylated H2A X. Zygotes treated with TBB at 6 h were 
fixed and immunostained at 24 h after IVF, while zygotes 12 h 
after IVF without TBB treatment were used as controls.

Fig. 5. Effect of CK2 inhibition by TBB on 2-cell embryo development. 
(A) 2-cell embryos were treated with 40 μM TBB 24 h after IVF, 
and the developmental rate of 3/4-cell embryos was measured 48 
h after IVF. Double asterisks show highly significant differences 
compared to the control (Mock) group (P < 0.01). (B) Embryos 
were stained with Hoechst 33342. (C) 2-cell embryos treated 
with TBB at 24 h were washed and cultured in normal medium 
48 h after IVF, and developmental rates of 3/4-cell embryos and 
morulae were measured 24 h later than that of the control group. 
Approximately 90 2-cell embryos in 3 replicates were counted in 
each group for (A) and (C).

Fig. 6. Effect of CK2 inhibition by TBB on GVBD of oocytes. (A) 
Oocytes were cultured in vitro in M2 medium; GV oocytes 
undergo GVBD in 2 h. (B) TBB was added to M2 dedium in a 
series of concentrations, and the rate of GVBD was measured 
after 2 h. Approximately 150 oocytes in 3 replicates were counted 
in each group.
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Each subunit may exist both within the CK2 tetrameric complex and 
as a free subunit [21], and may function dependently or independently 
of CK2. For example, knockdown of CK2β by RNA interference 
results in delayed cell cycle progression at the onset of mitosis by 
regulating CDK1 activity through the PLK-Wee1 complex, and this is 
independent of its role as a CK2 regulatory subunit [22]. Consequently, 
TBB, a selective inhibitor of CK2, was used to investigate the role 
of CK2 in mitosis and meiosis. Three kinds of G2/M transitions were 
selected for the present study: zygotes, 2-cell embryos, and oocytes, 
which represent the G2/M transition of the first mitosis, general mitosis, 
and meiosis, respectively. Results show that CK2 plays different roles 
in these three kinds of G2/M transition. First, CK2 activity is essential 
for mitosis in early embryogenesis but not for meiosis of oocytes. 
This indicates different regulatory mechanisms between mitosis 
and meiosis. Since inhibition of CK2 can cause DNA damage, this 
could be explained in terms of the DNA damage checkpoint. Fully 
grown GV oocytes fail to launch a robust DNA damage checkpoint 
during the G2 phase [23]; therefore, DNA damage in oocytes does 
not prevent G2/M transition. However, DNA damage does cause 
cell cycle arrest at the G2 stage in mitotic cells. Another reasonable 
explanation is that accumulation of CK2 in the nucleus seems to be 
higher in zygotes and 2-cell stage embryos than in oocytes. On the 
other hand, CK2 inhibition reduces further development of zygotes 
but not of 2-cell embryos, indicating an important role during the 
first mitosis of embryo development.

Studies have demonstrated that CK2 is required for G0/G1 and 
G1/S transition during mitosis [14, 24]. However, in our studies, 
DNA duplication examination confirmed that the zygote is blocked 
at the G2 phase by CK2 inhibition, which indicates a mitosis entry 
defect. This observation is consistent with phenotypes observed in 
yeast [15] and 3T3 L1 cells [25]. Studies in human primary lung 
fibroblasts and plant cells revealed that destruction of CK2 activity 
at different phases of the cell cycle leads to different effects on cell 
cycle progression. Blocking CK2 activity before S phase results in 
significant inhibition of growth in human primary lung fibroblasts, 
but neither DNA synthesis nor cell division is affected if it is blocked 
during S phase [24]. Inhibition of CK2 at G1 phase in tobacco BY-2 
cells leads to premature chromatin condensation; however, the 
nuclear membrane does not undergo break down. On the other 
hand, inhibition of CK2 at S or G2 phase results in cell death with 
abolished DNA synthesis or a block in mitosis entry, respectively 
[26]. In our experiments, addition of TBB before nuclear envelope 
break down (NEBD) resulted in a mitosis entry block in the zygote, 
but TBB addition after NEBD did not affect cell cycle progression. 
Thus, NEBD seems to be a watershed in the mouse zygote for CK2 
function, and not S phase as in human primary lung fibroblasts. 
Restrained zygotes display a rounded, shrunken morphology, 
consistent with the phenomenon observed in other studies [25, 27], 
suggesting that CK2 is involved in normal cytoskeletal maintenance 
in the mouse zygote. This provides a possible explanation for the 
low developmental ability of these zygotes. DNA damage in the 
female pronucleus partially unveils the mechanism of inhibition of 
G2/M transition because it can activate the G2/M checkpoint. TBB 
also inhibits the G2/M transition in 2-cell embryos. Thus, our data 
indicate that CK2 is essential for early embryogenesis. Following 
the knockout assay of CK2α and CK2β that caused embryo death 

[10, 11], our results provide additional novel evidence for the role of 
CK2 in early embryogenesis in mouse. Although a 3–4 fold activity 
increase at day 12 of gestation has been reported for CK2 [28], our 
results show that CK2 functions as early as the zygote stage in mice.

During meiosis, CK2α’ is reported to be involved in spermatogen-
esis in mouse [12], while CK2β is involved in oogenesis in Xenopus 
[29]. It is well documented that CK2β binds to Mos and inhibits its 
activity directly, thus, repressing Mos-mediated mitogen-activated 
protein kinase (MAPK) activation [30, 31]. CK2β knock down by 
RNAi stimulates GVBD in Xenopus oocytes [29]. However, in our 
experiment, inhibition of CK2 by TBB did not affect GVBD in mouse 
oocytes. This difference could be owing to different animal species 
or different experimental methods. Another reasonable explanation 
is that CK2β may play a separate role, independent of CK2.

In conclusion, our results indicate that CK2 activity is essential 
for early embryogenesis in mouse, however, further research is 
required to elucidate the molecular mechanisms of the G2/M transition 
inhibition, the reason for DNA damage in only the female and not 
male pronucleus, and the reason for decrease in developmental ability 
in blocked zygotes but not in 2-cell embryos. The underlying reason 
for CK2 inhibition affecting G2/M transition in mitosis but not in 
meiosis also needs to be elucidated. 
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