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Realizing rich topological elements in topological materials has attracted increasing

attention in the fields of chemistry, physics, and materials science. Topological

semimetals/metals are classified into three main types: nodal-point, nodal-line, and

nodal-surface types with zero-, one-, and two-dimensional topological elements,

respectively. This study reports that XPt (X = Sc, Y, La) intermetallic compounds are

topological metals with opened and closed nodal lines, and triply degenerate nodal

points (TNPs) when the spin–orbit coupling (SOC) is ignored. Based on the calculated

phonon dispersions, one can find that ScPt and YPt are dynamically stable whereas

LaPt is not. When SOC is added, the one-dimensional nodal line and zero-dimensional

TNPs disappear. Interestingly, a new zero-dimensional topological element, that is,

Dirac points with 4-fold degenerate isolated band crossings with linear band dispersion

appear. The proposed materials can be considered a good platform to realize zero- and

one-dimensional topological elements in a single compound and to study the relationship

between zero- and one-dimensional topological elements.

Keywords: 4-fold degenerate nodal point, triply degenerate nodal point (TNP), spin-orbit coupling (SOC),
topological element, phonon dispersion

INTRODUCTION

In the last decade, with the discovery of topological insulators (Cava et al., 2013; Kou et al., 2013;
Zhao et al., 2013; Shen and Cha, 2014;Wang et al., 2014; Luo et al., 2015; Zhou et al., 2015; Liu et al.,
2016; Chen et al., 2017a; Loïc and Izmaylov, 2017; Pan et al., 2017; Pielnhofer et al., 2017; Politano
et al., 2017; Andrey et al., 2018; Hu et al., 2018, 2019; Gao et al., 2019; Mal et al., 2019; Qiao et al.,
2019; Narimani et al., 2020), topologically non-trivial materials have attracted significant interest
in the chemistry, physics, and materials science communities. Recently, studies have increasingly
focused on topological semimetals/metals (Bin et al., 2018; Chenguang et al., 2018; Zhou et al.,
2018; He et al., 2019, 2020; Jin et al., 2019a, 2020b; Li et al., 2019; Qie et al., 2019; Xie et al., 2019; Yi
et al., 2019; Zhong et al., 2019; Ma and Sun, 2020; Meng et al., 2020b; Wang et al., 2020a,c,d; Yang
and Zhang, 2020; Zhang et al., 2020; Zhao et al., 2020) with non-trivial band topology. For example,
in 2018, Schoop et al. (2018) described the key features of the electronic structures of topological
semimetals/metals and how these structures can be realized based on chemical principles.
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Topological semimetals/metals can be roughly classified into
three main parts: nodal-point (Chen et al., 2015; Yuan et al.,
2017; Zhang et al., 2017a,c, 2018c; Jing and Heine, 2018; Ma et al.,
2018; Tsipas et al., 2018; Khoury et al., 2019), nodal-line (Chang
et al., 2016; Liu et al., 2018b; Guo et al., 2019; Sankar et al., 2019;
Tang et al., 2019; Xu et al., 2019; Zhang et al., 2019; Jin et al.,
2020a; Kirby et al., 2020; Zhou et al., 2020), and nodal-surface
(Türker and Sergej, 2018; Wu et al., 2018; Zhang et al., 2018b,d;
Fu et al., 2019; Yang et al., 2019b, 2020; Chen et al., 2020; Wang
et al., 2020e; Xiao et al., 2020) semimetals/metals enjoying zero-,
one-, and two-dimensional topological elements, respectively.
The main examples of nodal-point semimetals/metals are Weyl
and Dirac semimetals/metals with 2- and 4-fold degenerate
band-crossing points with linear dispersion. In addition, 3-, 6-,
and 8-fold (Cano and Vergniory, 2016; Lu et al., 2016; Weng
et al., 2016b) band degenerates also exist. Among them, nodal-
point semimetals/metals with 3-fold band degenerates [i.e., triply
degenerate nodal point (TNP)] are of importance owing to their
special properties. Many investigations have been conducted to
predict and confirm new TNP semimetals/metals (Weng et al.,
2016a; Xia and Li, 2017; Zhang et al., 2017b,d; Guo et al., 2018;
Owerre, 2018; Jin et al., 2019b; Yang et al., 2019a). For example,
in 2019, Jin et al. (2019b) reported that centrosymmetric Li2NaN
is a topological material with critical-type TNPs. A critical-type
TNP is an interesting topological metal phase that lies between
type-I and type-II TNPs. In 2018, Guo et al. (2018) proposed
that YRh6Ge4, LaRh6Ge4, and LuRh6Ge4 are TNP materials,
and what is more, Zhu et al. (2020) performed transport
measurements and confirmed TNP fermions in YRh6Ge4. In
2019, Yang et al. (2019a) experimentally demonstrated TNP as
well as double Fermi arc surface states in a three-dimensional
phononic crystal.

Nodal-line semimetals/metals with one-dimensional
topological elements may show various forms according to
the shape of the nodal lines, such as nodal link (Yan et al., 2017),
nodal chain (Yan et al., 2018), nodal box (Sheng et al., 2017),
nodal ring (Zhang et al., 2018a; Wang et al., 2020b), nodal knot
(Bi et al., 2017; Lee et al., 2018), and nodal net (Feng et al.,
2018). For example, in 2018, Zhou et al. (2018) proposed that
two-dimensional B2C hosts opened and closed nodal-line states
based on first-principles calculation. In 2020, Yi et al. (2019)
predicted that NaAlGe and NaAlSi nodal-line materials would
be good cathode materials for sodium ion batteries. In 2020,
Wang et al. (2020d) proposed that a two-dimensional Nb3GeTe6
monolayer is a topological nodal-line material with a nearly flat
nodal line around the Fermi level and that it led to a remarkable
thermoelectric power factor platform. In 2018, Liu et al. (2018a)
proposed that graphene monolith, a three-dimensional nodal-
line semimetal, is a candidate lithium ion battery anode material.
In 2019, Yan et al. (2019) proposed that the Cu2Si monolayer
is a topological material with possible superconductivity and
nodal-line fermions.

The electronic structure, dynamical stability, and topological
signatures of ScPt, YPt, and LaPt, a cubic-type family of materials
with Pm3̄m space group are investigated in the present study.
This study shows that opened and closed nodal lines and 3-
fold degenerate nodal-point states can be realized in ScPt, LaPt,

and LuPt when the spin-orbit coupling is ignored. Moreover,
the effect of spin-orbit coupling on the topological signatures of
these systems is also considered. A 3- to 4-fold degenerate nodal-
point transition can be found in these systems when spin-orbit
coupling is added.

MATERIALS

The topological signatures of cubic-type ScPt, YPt, and LaPt
are investigated. As an example, Figure 1A shows the structural
model of cubic ScPt. This primitive ScPt cell contains one Sc
atom and one Pt atom at the (0.5, 0.5, 0.5) and (0, 0, 0) sites,
respectively. Using first-principles calculation, the structural
models of ScPt, YPt, and LaPt are fully optimized; Table 1 lists
the calculated results.

The phonon dispersions of cubic-type ScPt, YPt, and LaPt are
calculated using the force-constants method with Phonopy code
(Togo and Tanaka, 2015). For these three compounds, 2 × 2 ×

2 supercells are built to calculate the phonon dispersions. The
considered high-symmetry points are Γ -X-M-Γ -R-X, as shown
in Figure 1B. Figures 1C, 2A exhibit the calculated phonon
dispersions of ScPt and YPt; one can find that ScPt and YPt
are dynamically stable owing to the absence of the imaginary
frequency (Han et al., 2019; Wu et al., 2019). However, the
obtained phonon dispersion shown in Figure 2B indicates that
LaPt is not dynamically stable.

COMPUTATIONAL METHODS

In this study, first-principles calculations are used, and the
generalized gradient approximation (GGA) (Perdew et al., 1996)
of the Perdew–Burke–Ernzerhof (PBE) (Perdew et al., 1998)
functional is adopted for the exchange-correlation potential. In
the calculations, the cutoff energy is set as 600 eV, and the
Brillouin zone is sampled using a Monkhorst-Pack k-mesh with
a size of 9× 9× 9. To ensure good convergence, the calculations
continue until the energy deviation is <10−6 eV/atom. The
atomic positions and lattice constants of the structures were
totally relaxed until all the force components were smaller than
10−3 eV/Å.

RESULTS AND DISCUSSION

First, the physical natures of ScPt, YPt, and LaPt are determined.
Figures 1D, 3A,C, respectively, show the band structures of
ScPt, YPt, and LaPt along the R-X-M-R-Γ paths. The spin–orbit
coupling (SOC) is not added for the band structures in these
figures; the effect of SOC on the electronic structures of these
compounds will be discussed later in this paper. These three
figures show that the bands and the Fermi level overlap each
other, indicating common metallic behaviors.

Moreover, some obvious band crossings are seen around
the Fermi level, namely, point A along the R-X path, point
B along the X-M path, and point C along the M-R path. A
careful study of these three band-crossing points indicates that
points A and B are doubly degenerate band-crossing points,
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FIGURE 1 | (A) Crystal structures of cubic ScPt; (B) Brillouin zone and the considered high-symmetry points Γ -X-M-Γ -R-X; (C) calculated phonon dispersion of

cubic ScPt at its optimized lattice constant; (D) calculated band structure of cubic ScPt with PBE method, where (A–C) indicate the band-crossing points around the

Fermi level; and (E) calculated band structure of ScPt with Heyd–Scuseria–Ernzerhof (HSE) screened hybrid functional.

TABLE 1 | Optimized lattice constants for ScPt, YPt, and LaPt.

Compounds a (Å) b (Å) c (Å)

ScPt 3.283 3.283 3.283

YPt 3.488 3.488 3.488

LaPt 3.659 3.659 3.659

whereas point C is a 3-fold degenerate band-crossing point
formed by a doubly degenerate band and a non-degenerate
band. Apart from these three clear band-crossing points, the
band structure near the Fermi level is very clean; therefore,
these three points dominate the topological signatures of these
compounds. For clarity, hereafter, ScPt is used as an example
to investigate the band topology considering that the band
structures of ScPt, YPt, and LaPt are almost the same near the
Fermi level.

Figure 1E shows the band structure of ScPt with the revised
Heyd–Scuseria–Ernzerhof (HSE) (Heyd and Scuseria, 2004)
screened hybrid functional. The HSE method is well-known to
be accurate for describing the band gap of topological materials.
In particular, for some d-orbital-dominated systems, the GGA

method cannot provide a fair evaluation of the band gap around
the Fermi level. Figures 1D,E show that the band-crossing points
A, B, and C are still maintained under the HSE method; this
confirms that the GGA method is suitable for investigating the
electronic structure of the ScPt system.

In addition to SOC, the ScPt system enjoys time reversal
(T) and spatial inversion (P) symmetries. Basically, doubly
degenerate band crossings like points A and B should not be
isolated (Weng et al., 2016b; Zhang et al., 2018b). Instead,
they should belong to one type of nodal structure; they
most commonly belong to a nodal-line structure. As shown
in Figures 1D, 3A,C, two bands cross each other and form
two band-crossing points A and B along the R-X and X-
M paths. Symmetry analysis shows that these two bands
belong to irreducible representations A1g and A2u of D4h
symmetry, respectively.

Figure 4A shows the X-centered 3D band dispersion of the kz
= π plane. The two above-mentioned bands form a closed nodal
line in the kz = π plane (highlighted by a white line), and points
A and B belong to this closed nodal line. The crystal symmetry
of the ScPt cubic system implies three closed nodal lines in the
kx/y/z = π planes. The nodal lines are located in the mirror-
invariant plane, and they protect the mirror symmetry Mx,y,z. As
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FIGURE 2 | (A,B) Calculated phonon dispersion of cubic YPt and LaPt, respectively, at their optimized lattice constants. The phonon dispersions of both intermetallic

compounds are obtained using the force-constants method with Phonopy code.

FIGURE 3 | (A–D) Calculated band structures of cubic YPt and LaPt with their optimized lattice constants. The spin–orbit coupling effect is neglected for (A,C) and
added for (B,D).

an example, Figure 4B shows the shape of the X-centered closed
nodal line in the kz = π plane.

Figure 4C shows the R-centered 3D band dispersion in the kz
= π plane; here, TNPs are indicated by green balls. As shown in

Figures 1D, 3A,C, the band-crossing point C is formed by a 2-
fold degenerate band and a non-degenerate band along the M-R
path. This 2-fold degenerate band can be seen as two independent
bands that are completely degenerated along the wholeM-R path.
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FIGURE 4 | (A) X-centered 3D band dispersion in the kz = π plane; (B) shape of closed X-nodal line in the kz = π plane (nodal line is indicated by white lines and

marked by arrows); (C) R-centered 3D band dispersion in the kz = π plane, where TNPs and bands 1, 2, and 3 are marked by arrows; (D) top view of (C); and (E)
bottom view of (C). The TNPs and the opened nodal lines (formed by degenerate bands 1 and 2) are indicated by green balls and white lines, respectively.

Therefore, this 2-fold degenerate band (named as band 1 and
band 2) should contain a series of band-crossing points along
the whole M-R path and form an opened nodal line along the
M-R path. To clearly present the opened nodal lines and the
TNPs in ScPt, Figures 4D,E, respectively, show top and bottom
views of Figure 4C. These figures clearly show the opened nodal
lines formed from bands 1 and 2 along the R-M path as well as

the TNPs. Therefore, ScPt, YPt, and LaPt are topological metals
that co-exhibit opened and closed nodal lines when the spin-
orbit coupling is ignored. Based on the above-mentioned results,
the ScPt family of materials is a good platform to study the
relationship of closed and opened nodal lines.

Moreover, band-crossing point C along the M-R path is a
TNP. Normally, TNP can not only occur in isolation but also
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FIGURE 5 | (A) Band structure of ScPt with spin–orbit coupling; the insets show schematics of types I and II nodal points, indicated by blue and red lines,

respectively; for type I nodal points, they are conventional type band dispersion, however, for type II nodal points, they enjoy a tilted band dispersion; (B) enlarged
band structure of ScPt along the M-R path slightly above the Fermi level.

be linked by nodal lines in the momentum space. One pair of
TNPs exists in ScPt, YPt, and LaPt. Figure 1B shows a schematic
of the pair of TNPs (indicated by yellow balls) along the R-M-
R

′

path. As shown in Figure 4C, the TNPs are located at the
crossing of band 3 (non-degenerate band) and bands 1 and 2 (2-
fold degenerate band). Therefore, ScPt is concluded to have one-
dimensional topological elements, namely, opened and closed
nodal lines (in the kx/y/z = π plane) and a zero-dimensional

topological element, namely, TNP, along the R-M-R
′

path when
the spin-orbit coupling is ignored. Therefore, ScPt, LaPt, and
YPt are excellent target materials for studying the entanglement
between nodal-line and nodal-point fermions.

Finally, the effect of SOC on the band structures of ScPt, YPt,
and LaPt is investigated. The corresponding results are shown
in Figures 5A, 3B,D, respectively. The gaps induced by SOC for
band-crossing points A and B are 53.9 and 83.2 meV, 68 and 152
meV, and 182 and 190 meV for ScPt, YPt, and LaPt, respectively.
In comparison, the gaps induced by SOC in the well-known
nodal-line materials Cu2NPd (Yu et al., 2015), CaAgBi (Chen
et al., 2017b), and BaSn2 (Huang et al., 2016) are 60–100 meV,
80–140 meV, and 60–160 meV, respectively. Therefore, ScPt and
YPt are comparable to these reference materials.

Moreover, Figures 5B, 3B,D show that the TNPs disappear
in ScPt, YPt, and LaPt systems. However, a new topological
signature reveals a nodal point with linear band dispersion
around the Fermi level. When the SOC effect was considered,
each band was doubly degenerate. Therefore, the newly occurring
nodal point along the along R-M path should be a Dirac
nodal point (DP) with 4-fold degeneracy. Specifically, a pair of
DPs with 4-fold degeneracy is found along the R-M-R

′

path.
Notably, similar SOC-induced TNP–DP transitions have also
been reported in ErAs (Meng et al., 2020a), TiB2 (Zhang et al.,
2017d), and Li2NaN (Jin et al., 2019b) topological materials.

However, unlike the type-I DP predicted for ErAs, this is a type-II
DP that may show strong anisotropy (Zhang et al., 2018b).

SUMMARY

In summary, cubic-type ScPt, YPt, and LaPt are shown to be
newly designed topological materials through the use of density
functional theory. ScPt and YPt are dynamically stable whereas
LaPt is not. Without SOC, XPt (X= Sc, Y, La) metals show closed
and opened nodal-line states and one pair of TNPs. With SOC,
the TNPs (along the R-M-R

′

path) change to type-II DPs and
the nodal-line states in kx/y/z = π planes are gapped. A series
of interesting topological signatures has been predicted in XPt
(X = Sc, Y, La), and it is hoped that these proposed topological
elements can be confirmed through experiments in the future.
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