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Abstract: Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) and ozone
(O3) often use outdoor concentrations as exposure surrogates. Failure to account for the variability
of the indoor infiltration of ambient PM2.5 and O3, and time indoors, can induce exposure errors.
We developed an exposure model called TracMyAir, which is an iPhone application (“app”) that
determines seven tiers of individual-level exposure metrics in real-time for ambient PM2.5 and O3 using
outdoor concentrations, weather, home building characteristics, time-locations, and time-activities.
We linked a mechanistic air exchange rate (AER) model, a mass-balance PM2.5 and O3 building
infiltration model, and an inhaled ventilation model to determine outdoor concentrations (Tier 1),
residential AER (Tier 2), infiltration factors (Tier 3), indoor concentrations (Tier 4), personal exposure
factors (Tier 5), personal exposures (Tier 6), and inhaled doses (Tier 7). Using the application in
central North Carolina, we demonstrated its ability to automatically obtain real-time input data
from the nearest air monitors and weather stations, and predict the exposure metrics. A sensitivity
analysis showed that the modeled exposure metrics can vary substantially with changes in seasonal
indoor-outdoor temperature differences, daily home operating conditions (i.e., opening windows
and operating air cleaners), and time spent outdoors. The capability of TracMyAir could help reduce
uncertainty of ambient PM2.5 and O3 exposure metrics used in epidemiology studies.

Keywords: mobile application; exposure model; inhaled dose; particulate matter; ozone

1. Introduction

Epidemiological studies have found associations between exposure to ambient (i.e.,
outdoor-generated) fine particulate matter (PM2.5; particulate matter≤2.5 µm in aerodynamic diameter)
or ozone (O3) and indices of acute cardiopulmonary morbidity and mortality [1,2]. Most of these studies
used outdoor PM2.5 or O3 concentrations as exposure surrogates due to the financial cost and participant
burden from wearing personal air pollution measuring devices. However, these exposure surrogates
do not account for building-to-building and temporal variations in indoor infiltration (i.e., attenuation)
of ambient PM2.5 and O3, and variations in time spent in different indoor locations. Differences between
exposure surrogates, such as outdoor concentrations, and true exposures, contribute to exposure
measurement errors. Depending on the epidemiological study design, these errors can add bias or
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uncertainty to health effect estimates [3,4], which was highlighted in multiple reports by the National
Research Council [5,6] and the National Academies of Sciences [7,8]. To address the recommendations
in these reports, we developed an exposure model called TracMyAir, which is an iPhone application
(“app”) that estimates near real-time individual-level exposures and inhaled doses to ambient PM2.5

and O3.
For TracMyAir, we extended a previously developed and evaluated exposure model called the

Exposure Model for Individuals (EMI) [9–12]. The EMI predicts multiple tiers of individual-level
exposure metrics for ambient PM2.5 using outdoor concentrations, questionnaires, weather, and
time-location information. We used a mechanistic air exchange rate (AER) model, the mass-balance
PM2.5 infiltration model, and a microenvironment-based exposure model to predict residential AER,
infiltration factors, indoor concentrations, personal exposure factors, and personal exposures for
ambient PM2.5. Using a cross-validation, individual predictions were previously compared to 591
daily measurements from 31 homes and participants in central North Carolina (NC). Median absolute
differences were 39% (0.17 h−1) for AER, 18% (0.10) for infiltration factors, 20% (2.0 µg/m3) for indoor
concentrations, 18% (0.10) for exposure factors, and 20% (1.8 µg/m3) for personal exposures [9,10].

The extended EMI for TracMyAir includes six additional capabilities. First, the TracMyAir
exposure model includes both PM2.5 and O3, whereas EMI includes only PM2.5. Second, the residential
AER model was extended to account for mechanical ventilation from window fans. Third, the
residential infiltration model was extended to account for indoor PM2.5 removal from home air cleaners.
Fourth, a ventilation model was added to predict inhaled dose from physical activity information.
Fifth, an automated data retrieval capability was added that obtains real-time input data (i.e., ambient
PM2.5 and O3 concentrations, temperature, and wind speed) to predict real-time exposure metrics for
rapid, cost-effective exposure assessments. Finally, the exposure model was implemented as an iPhone
application to facilitate and broaden the use of exposure metrics for epidemiological studies.

This manuscript demonstrates the capabilities of TracMyAir for use in future epidemiology
studies. We will first describe the application’s model algorithms, inputs, and operating procedure;
and then the method used to evaluate the application’s automated input functionality, and to perform
a sensitivity analysis.

2. Materials and Methods

2.1. Overview of iPhone Application (TracMyAir)

We developed an iOS application for the iPhone smartphone (Apple Inc., Cupertino, CA, USA)
to determine seven tiers of exposure metrics for ambient PM2.5 and O3 (Figure 1), which include
measured outdoor concentrations at nearby monitors (Tier 1), three exposure metrics related to PM2.5

and O3 infiltration into homes, (Tier 2: AER; Tier 3: infiltration factors; Tier 4: indoor concentrations),
two exposure metrics that account for time spent in different indoor and outdoor locations (Tier 5:
personal exposure factors; Tier 6: exposures), and a metric that accounts for time spent at different
intensity levels of physical activity (Tier 7: inhaled dose). The application determines individual-level
exposure metrics from ambient air pollutant concentrations, weather, home building characteristics and
operating conditions, time-location, and time-activity information. The application uses a residential
AER model, infiltration model, a microenvironment-based exposure model, and an activity-based
ventilation model. The application was written using Swift programming language (version 4.2.1;
Apple Inc., Cupertino, CA, USA) and the XCode Integrated Development Environment (version 10.1;
Apple Inc., Cupertino, CA, USA). Below, we describe the tiers of exposure metrics, and the method to
operate the application.
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Figure 1. Conceptual model of TracMyAir to predict seven tiers of individual-level exposure 
metrics for ambient fine particulate matter (PM2.5) and O3. Tier 1 consists of measured outdoor 
concentrations, Tiers 2–4 are related to homes, and Tiers 5–7 are related to personal exposures 
and dose. Model input needs and complexity increase from Tier 1 to Tier 7. 

2.2. Tiers of Exposure Metrics 

For the application, we developed seven tiers of 24-h average exposure metrics for PM2.5 and O3 
(Figure 1). The tiers have increasing levels of complexity and information needs. Tier 1 is a measured 
exposure metric, whereas Tier 2–7 are modeled. The application calculates 24-h average exposure 
metrics for the previous four consecutive 24-h time periods (previous 96 h), which will allow future 
epidemiological studies to perform a lag analysis. 

2.3. Measured Exposure Metric (Tier 1) 

For Tier 1, TracMyAir uses the U.S. Environmental Protection Agency’s (EPA) AirNow 
application programming interface (API) to automatically obtain 1-h average PM2.5 and O3 
concentrations from the closest official network air monitors based on the user’s location, and then 
calculates 24-h averages based on the past 96 h [13]. First, the application determines the user’s 
current geolocation (latitude, longitude) from the iOS Core Location API (Apple Inc., Cupertino, CA, 
USA). The Core Location can use all the geolocation methods available for iPhones (e.g., global 
positioning system (GPS), cell towers, and Wi-Fi), and automatically selects the most appropriate 
method to achieve the best level of accuracy available. For example, when GPS signal is unavailable 
(e.g., inside concrete and steel-framed buildings), the Core Location may use the geolocations of 
accessible Wi-Fi routers, or use triangulation based on signal strength of nearby cell towers. 
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Figure 1. Conceptual model of TracMyAir to predict seven tiers of individual-level exposure metrics
for ambient fine particulate matter (PM2.5) and O3. Tier 1 consists of measured outdoor concentrations,
Tiers 2–4 are related to homes, and Tiers 5–7 are related to personal exposures and dose. Model input
needs and complexity increase from Tier 1 to Tier 7.

Input data for the application are obtained for ambient PM2.5 and O3 concentrations, weather,
home building characteristics and operating conditions, time-locations, and time-activities (Table 1).
For the ambient air pollutant concentrations, and outdoor temperature and wind speed, the application
automatically obtains these measurements from local air monitors and weather stations, respectively.
The other inputs are provided by the user.

2.2. Tiers of Exposure Metrics

For the application, we developed seven tiers of 24-h average exposure metrics for PM2.5 and O3

(Figure 1). The tiers have increasing levels of complexity and information needs. Tier 1 is a measured
exposure metric, whereas Tier 2–7 are modeled. The application calculates 24-h average exposure
metrics for the previous four consecutive 24-h time periods (previous 96 h), which will allow future
epidemiological studies to perform a lag analysis.

2.3. Measured Exposure Metric (Tier 1)

For Tier 1, TracMyAir uses the U.S. Environmental Protection Agency’s (EPA) AirNow application
programming interface (API) to automatically obtain 1-h average PM2.5 and O3 concentrations from
the closest official network air monitors based on the user’s location, and then calculates 24-h averages
based on the past 96 h [13]. First, the application determines the user’s current geolocation (latitude,
longitude) from the iOS Core Location API (Apple Inc., Cupertino, CA, USA). The Core Location
can use all the geolocation methods available for iPhones (e.g., global positioning system (GPS), cell
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towers, and Wi-Fi), and automatically selects the most appropriate method to achieve the best level of
accuracy available. For example, when GPS signal is unavailable (e.g., inside concrete and steel-framed
buildings), the Core Location may use the geolocations of accessible Wi-Fi routers, or use triangulation
based on signal strength of nearby cell towers.

Table 1. TracMyAir inputs.

Categories and Model Inputs Models Tiers of Exposure
Metrics Method (Frequency)

Home characteristics
Floor area, year built,
number of floors,
type of house (single family,
multi-family), wind
sheltering

Air exchange rate
model Tier 2 User-provided

(one-time)

Home operating conditions

Indoor temperature Air exchange rate
model Tier 2 User-provided (daily)

Open windows
Number of windows open,
opening height, duration

Air exchange rate
model Tier 2 User-provided (daily)

Window fans
Number of window fans,
duration, airflow

Air exchange rate
model Tier 2 User-provided (daily)

PM2.5 air cleaners
Number of air cleaners,
duration,
clean air delivery rate

Infiltration model Tier 3 User-provided (daily)

Weather
Temperature, wind speed

Air exchange rate
model Tier 2 Automated (daily)

Outdoor air pollution
PM2.5, O3 concentrations

Infiltration,
exposure models Tiers 1, 4, 6 Automated (daily)

Microenvironments
Time spent in 6
microenvironments

Exposure model Tiers 5, 6 User-provided (daily)

Physical activity levels
Time spent at 4 activity levels in 5
microenvironments

Activity-based
ventilation model Tier 7 User-provided (daily)

Demographics
Sex, age, body weight, height

Activity-based
ventilation model Tier 7 User-provided

(one-time)

Second, TracMyAir uses the AirNow API to determine the geolocations (latitude and longitude) of
all PM2.5 and O3 monitors within a user-specified search radius (default = 60 km), and then calculates
the distance to each monitor. The application then determines the closest monitor with a valid 24-h
average. A 24-h average is considered valid if 1-h average measurements are available (i.e., value
> 0) for at least 75 percent (i.e., 18 h or more) of the hours during the 24-h period, as defined in the
EPA guidelines for the PM2.5 and O3 National Ambient Air Quality Standards [14,15]. If no valid
monitors are found within the user-specified radius, TracMyAir displays a detailed error message and
recommends the user to increase the radius and run the application’s test function for getting the air
pollution monitoring data, as described below. Since some monitor sites do not measure both PM2.5

and O3, the closest monitor site for PM2.5 may be different than the one for O3. Additionally, if no
valid monitors are found within a maximum search radius set to 75 km, TracMyAir displays a detailed
message that the maximum search radius for the closest air pollution monitor has been exceeded and
the estimated exposures may not be reliable from monitors beyond this distance.



Int. J. Environ. Res. Public Health 2019, 16, 3468 5 of 17

2.4. Modeled Exposure Metrics (Tiers 2–7)

For Tier 2, residential AER are predicted from home building characteristics, home operating
conditions, and weather (see Table 1) using a modeling approach that accounts for three types of
airflows across building envelopes: (1) leakage from uncontrollable openings (e.g., cracks around
windows and doors), (2) natural ventilation from open windows, and (3) mechanical ventilation from
window fans.

For leakage and natural ventilation, we used the extended Lawrence Berkeley Laboratory model
(LBLX), which is mechanistic in nature, accounting for the physical driving forces of the airflows (i.e.,
pressure differences across building envelopes from wind speed and indoor-outdoor temperature
differences) [9,10]. The LBLX model was previously described and evaluated for homes in central NC
and Detroit, Michigan [10,12]. Briefly, the leakage airflow is defined as

Qleak = Aleak

√
ks|Tin − Tout|+ kwU2 (1)

where Aleak is the effective air leakage area; ks is the stack coefficient; kw is the wind coefficient; Tin and
Tout are the 24-h average indoor and outdoor temperatures, respectively; and U is the 24-h average
wind speed (see Supplementary Material). The model has six user-provided inputs for home building
characteristics (floor area, year built, number of floors, type of house, wind sheltering, and indoor
temperature), and two automated inputs for weather (temperature and wind speed), as shown in
Table 1.

For the outdoor temperature and wind speed, the application uses the National Weather Service
API to automatically obtain 1-h average outdoor temperatures and wind speeds from the closest
weather station based on the user’s location, and then calculates a 24-h average based on the previous
24 h [16]. This API automatically determines the nearby weather stations and ranks them from closest
to furthest. The application then determines the closest monitor with a valid 24-h average. A 24-h
average is considered valid if 1-h average measurements are available for at least 75 percent (18 or
more) of the hours during the 24-h period. If the 24-h average is invalid, the next closest weather
station is used. If no valid weather stations are found, the application displays an error message and
recommends the user to run the test function for getting weather station data, as described below.

The LBLX model also accounts for natural ventilation airflow (Qnat) on days with open windows.
The model has three user-provided inputs from window opening information (number of windows
open, opening height, and opening duration), as shown in Table 1. The combined airflow for the
leakage and natural ventilation airflows is defined as:

QLBLX =
√

Q2
leak + Q2

nat (2)

The details are described in the supplementary material.
The application also accounts for mechanical ventilation airflow (Qmech) on days with residential

window fans operating. The model has three user-provided inputs (operating duration, number of
fans, and fan airflow), as shown in Table 1. The 24-h average airflow is defined as:

Qmech = (Dfan/24) Nfan Qfan (3)

where Dfan is the operating duration for the previous 24 h (h), Nfan is the number of window fans, and
Qfan is the airflow for a window fan (ft3/min). The default value for Qfan is set to 600 ft3/min (1020
m3/h), which is the mid-range value for medium-size window fans (range: 300–900 ft3/min) [17].

The total airflow is defined as [18,19]

Qtotal =
√

Q2
LBLX + Q2

mech (4)

The AER is calculated as Qtotal divided by the house volume V.
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For Tier 3, residential infiltration factors (Finf_home) for PM2.5 and O3 were predicted with a
steady-state mass balance infiltration model described by

Finf_home = P AER/(AER + kr + kc) (5)

where P is the penetration coefficient (dimensionless), kr is the removal rate by indoor surfaces (h−1),
and kc is the removal rate of particles by air cleaners [20,21]. For PM2.5, P and kr were previously
estimated from homes in central NC (P = 0.84, kr = 0.21 h−1) [9]. The parameter kc is defined as

kc = (Dc/24) CADR/V (6)

where Dc is the air cleaner operating duration (h) for the previous 24 h, and CADR is the clean air
delivery rate of the air cleaner (m3/h) [20,21]. The default value for CADR is set to 300 ft3/min (510
m3/h), which is the mid-range value for the top-rated portable air cleaners (range: 250–350 ft3/min) [22].
For O3, P and kr were obtained from literature-reported values (P = 0.79, kr = 2.80 h−1), and kc was set
to 0, since air cleaners are designed to improve air quality by removal of particulates, and no removal
of indoor O3 is considered [23,24].

For Tier 4, residential indoor concentrations of ambient PM2.5 and O3 (Cin_home) were predicted
from measured outdoor concentrations from the nearest official monitor (Cout) based on the steady-state
equations [9,25]

Cin_home = Finf_home Cout (7)

For Tier 5, personal exposure factors of ambient PM2.5 and O3 were predicted as defined by

Fpex = f in_home Finf_home + (f in_work + f in_school + f in_other)Finf_other_bldg + f in_vehicle Finf_vehicle + f out (8)

where f are the user-provided inputs for the fraction of time spent across the previous 24 h in the six
microenvironments (MEs: indoors at home, work, school, other; inside vehicles; outdoors). When
the application is used to predict exposure metrics for the previous 4 days (96 h), the time spent
in the six microenvironments is set to the same value for each 24 h interval. The Finf_other_bldg and
Finf_vehicle are the infiltration factors for buildings other than homes and for vehicles, respectively. For
PM2.5, we set Finf_other_bldg to 0.64 based on the average of three literature-reported PM2.5 infiltration
factors for offices, stores, and restaurants [26]. We set Finf_vehicle to 0.44 based on literature-reported
PM2.5 infiltration factor for cars [27]. For O3, we set Finf_other_bldg to 0.12 based on the average of three
reported O3 infiltration factors for offices, stores, and restaurants in central NC [28]. We set Finf_vehicle

to 0.23 based on reported O3 infiltration factor for cars [28].
For Tier 6, the total exposure to ambient PM2.5 and O3 is defined by [9,25]

E = Fpex Cout (9)

The exposure from each ME is defined as

E1 = f in_home Finf_home Cout (10)

E2 = f in_work Finf_other_bldg Cout (11)

E3 = f in_school Finf_other_bldg Cout (12)

E4 = f in_other Finf_other_bldg Cout (13)

E5 = f in_vehicle Finf_vehicle Cout (14)

E6 = f out Cout (15)
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where Ei is the exposure from each ME i where i = 1, 2, 3, 4, 5, or 6, corresponding to indoors at home,
work, school, or other; inside vehicles; and outdoors, respectively. The percentage of exposure from
ME i is defined by

PEi = 100 (Ei/E) (16)

For Tier 7, the inhaled dose to ambient PM2.5 and O3 is defined as

Dij = Ei MVj ATij/BSA (17)

where Dij is the inhaled dose (µg/m2 body surface area) in ME i performing physical activity intensity
level (PAL) j, where j = 1, 2, 3, and 4 correspond to sedentary (e.g., sleeping, sitting, or standing), light
(e.g., walking <3 km/h, light cleaning, and cooking), moderate (e.g., walking >3 km/h or vacuuming),
and vigorous (e.g., running), respectively [29,30]. The MVj is the minute ventilation (L/min), ATij is the
activity time spent (min) in ME i performing PAL j, and BSA is the body surface area (m2).

We determined age and sex-specific MV for each PAL j based on literature-reported normalized
minute ventilations (NMV) (L/min/kg body weight; Tables S4–S11) [31]. The NMV were determined
from oxygen consumption rates and basal metabolic rates based on data from the National Health and
Nutrition Examination Survey and EPA’s Consolidated Human Activity Database. The NMV were
reported for: (1) each PAL based on metabolic equivalent (METS) thresholds (sedentary: METS ≤ 1.5,
light: 1.5 < METS ≤ 3.0, moderate: 3.0 < METS ≤ 6.0, and vigorous: METS > 6.0), (2) 14 separate age
categories, and (3) both males and females. For the application, we used the reported median NMV for
each PAL based on the user-provided age and sex. The MV is calculated as NMV multiplied by the
user-provided body weight (kg).

The BSA is defined as
BSA = 0.007184 BH0.725 BW0.425 (18)

where BH is body height (cm) and BW is body weight (kg) [32].
The total dose is calculated as

D =
6∑

i=1

4∑
j=1

Dij (19)

The percentage of dose from each ME i and PAL j (PDij) is defined by

PDij = 100 (Dij/D) (20)

2.5. Operation of TracMyAir

First, the application user selects either metric or English units, and then enters the user-provided
inputs, which are automatically saved. Next, the user runs the exposure model and the application
automatically determines and displays the seven tiers of exposure metrics for PM2.5 and O3 (Table 2;
Figures S1 and S2). The application also outputs the geolocation and distance to the PM2.5 and O3 air
monitors and weather station used by the exposure model (Figures S3 and S4). For subsequent analyses,
such as for epidemiology studies, the application allows the user to save the model inputs and outputs
in a text file and email the file to a user-specified address. It should be noted that the application also
collects and outputs relative humidity from the weather station. The relative humidity is not used by
the exposure model, but is often used for epidemiological analyses that examine short-term health
effects from air pollution exposures.
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Table 2. TracMyAir outputs.

Output Description

Time period of exposure metrics Start and end times for 24 h average exposure metrics

Weather
Source (current location, user-provided),
weather station ID, location, distance from user,
temperature, wind speed

Closest weather station information

Ambient air pollution
Source (current location, user-provided),
PM2.5 and O3 monitor locations,
distances from user, concentrations

Closest air monitor information, Tier 1 exposure
metric

Home air exchange rate Tier 2 exposure metric

Home infiltration factors for PM2.5 and O3 Tier 3 exposure metric

Home indoor concentrations for PM2.5 and O3 Tier 4 exposure metric

Personal exposure factors for PM2.5 and O3 Tier 5 exposure metric

Exposures for PM2.5 and O3
Total exposure, percentage from 6
microenvironments

Tier 6 exposure metric

Inhaled dose for PM2.5 and O3
Total dose, percentage from 6 microenvironments,
4 activity levels

Tier 7 exposure metric, microenvironment- and
activity-specific doses

Ventilation rates
Minute ventilation for 4 activity levels Activity-specific minute ventilations

The application allows the user to test the functionality and view the types of automated model
input data: current user location, air pollution monitor data, and weather station data. For the user
location, the application determines the phone’s current location, and displays the location on a map.
For the air pollution monitoring data, the application determines the nearest PM2.5 and O3 monitors
with valid 24-h averages, displays the monitor locations on a map, and shows the 1-h averages and
24-h averages. Similarly, for the weather station data, the application determines the nearest weather
station with valid 24-h averages, displays the station location on a map, and shows the 1-h averages
and the 24-h average.

The application has several user features. First, for the automatically-obtained model input
data (air pollution and weather), the application allows the user to run the exposure model with
user-provided values. With user-provided values, the exposure model can be run for specific scenarios,
and tested without internet access. Second, the application also allows the user to modify parameter
values for the residential infiltration model and ventilation model, and to set the distance to search
for PM2.5 and O3 monitors. Thus, the application could support a broad range of studies that require
different parameters and settings. Third, the application allows the user to set daily notifications that
automatically prompt the user to run the application with new input data that changed in the past 24 h.

2.6. Evaluation of Automated Input Collection

We evaluated the ability of the application to automatically obtain real-time input data from the
nearest PM2.5 monitor, O3 monitor, and weather station. The application was run at six different test
locations across central NC. We used the application’s testing functions: “Get Air Pollution Monitor
Data” and “Get Weather Station Data,” which display a map with a marker overlaid at the location of
the nearest O3 monitor, PM2.5 monitor, and weather station. The application also calculates and saves
the distances to the nearest air pollutant monitors and weather station. To determine the application’s
accuracy, we used Google Earth (version 6.1.0.5001; Google, Mountain View, CA, USA) to determine
the true distances from each of the six test locations to each of the four PM2.5 monitors, three O3
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monitors, and two weather stations in central NC. Using a cursor, we selected the known locations of
the user, PM2.5 and O3 monitors, and weather stations, and then the software automatically calculated
the distances.

2.7. Sensitivity Analysis

To determine the effect on the exposure metrics to changes in six different model inputs (weather,
window opening, window fan operation, home air cleaner operation, time-locations, and time-activities),
we performed a sensitivity analysis. For the residential AER and infiltration models (Tier 2–3), we
changed the indoor and outdoor temperatures and wind speeds (summer versus winter), windows
(closed versus open), and air cleaners (none versus operating). For the exposure model (Tier 4), we
changed the fraction of day spent outdoors. For the inhaled dose model (Tier 5), we changed the
fraction of day spent at higher physical activity intensities.

The values for the sensitivity analysis are shown in Tables 3 and 4. The default values for the
various model inputs and the high and low values were set to reasonable values observed in previously
reported field studies [9,10,33] and epidemiological studies [11,34] in central NC. The default values
for Qfan and CADR were set to the application default values.

Table 3. Sensitivity analysis: inputs for outdoor air pollution, weather, home characteristics, and home
operating conditions.

Model Inputs Values [References]

Outdoor air pollution (24-h averages)
PM2.5 concentration (µg/m3) 12.4 µg/m3 [11]
Ozone concentration (ppb) 26.0 ppb [34]

Weather (24-h averages)
Temperature (◦C) 18.4 ◦C (summer = 25.4 ◦C, winter = 7.3 ◦C [9,10]
Wind speed (km/h) 4.9 km/h (summer = 5.0 km/h, winter = 4.8 km/h) [9,10]

Home Characteristics
Floor area (m2) 162 m2 [11]
Year built 1987 [11]
Number of floors 1 [11]
Type of house Single family building [11]
Wind sheltering of house Other buildings across street [11]

Home operating conditions (across 24 h)
Average indoor temperature (◦C) 23.8 ◦C (summer = 24.9 ◦C, winter = 22.5 ◦C) [9,10]
Open windows

Number of open windows 0 (open windows = 4) [9–11]
Average opening height (cm) 0 (open windows = 15 cm) [9–11]
Duration windows open (h) 0 (open windows = 12 h) [9–11]

Window fans
Number of window fans operating 0 (operating fan = 1) [34]
Duration fans operating (h) 0 (operating fan = 12 h) [34]
Airflow of window fans (ft3/min) 0 (operating fan = 600 ft3/min) [17]

Air cleaners
Number of air cleaners operating 0 (operating air cleaner = 1) [34]
Duration air cleaners operating (h) 0 (operating air cleaner = 24 h) [34]
Clean air delivery rate (ft3/min) 0 (operating air cleaner = 300 ft3/min) [22]
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Table 4. Sensitivity analysis: inputs for microenvironments, physical activities, and demographics.

Model Inputs Values [References]

Microenvironments (duration across 24 h;
hours:minutes) 1

Default (short time outdoors, long time outdoors)
[9–11,33,34]

Outdoors 01:30 (00:15, 05:00)
Inside vehicles 01:00 (00:30, 00:30)
Indoors at work 07:45 (00:00, 00:00)
Indoors at other 00:30 (00:15, 00:15)
Indoors at home 13:15 (23:00, 18:15)

Physical activities (duration across 24 h;
hours:minutes) 1 Default (low activity, high activity) [9,10,34]

Light intensity
Outdoors 01:30 (00:30, 00:00)
Indoors at work 00:30 (00:15, 01:45)
Indoors at other 00:30 (00:00, 00:00)
Indoors at home 01:00 (00:15, 02:45)

Moderate intensity
Outdoors 00:00 (00:00, 01:00)
Indoors at work 00:00
Indoors at other 00:00 (00:00, 00:30)
Indoors at home 00:00

Vigorous intensity
Outdoors 00:00 (00:00, 00:30)
Indoors at work 00:00
Indoors at other 00:00
Indoors at home 00:00

Sedentary intensity
Outdoors 00:00 (01:00, 00:00)
Indoors at work 07:15 (07:30, 06:00)
Indoors at other 00:00 (00:30, 00:00)
Indoors at home 12:15 (13:00, 10:30)
Inside vehicles 01:00

Demographics
Sex Male [11]
Age 64 [11]
Body weight (kg) 94 kg [11]
Height (cm) 175 cm [11]

1 Indoors at school (hours:minute) = 00:00.

3. Results

The TracMyAir inputs are provided in Table 1 for the automated inputs (outdoor PM2.5 and O3

concentrations, outdoor temperature, and wind speed) and user-provided inputs (home building
characteristics and operating conditions, time-locations, time-activities, and demographics). For each
input, the associated model and tier of exposure metric are provided. The application outputs are
shown in Table 2 for the seven tiers of exposure metrics; as are statistics for the closest PM2.5 and
O3 monitors and the nearest weather station; and the inhaled ventilations that were determined by
the application.

For the evaluation of the application’s ability to automatically obtain real-time measurements from
the nearest air pollution monitors and weather station, Table 5 shows the six different user locations
and the distance to the four PM2.5 monitors, three O3 monitors, and two weather stations. For each
user location, TracMyAir always correctly determined the closest air pollutant monitor and the closest
weather station. Additionally, the distances to the closest monitors and weather station, automatically
calculated by the application, matched those measured manually using Google Earth.

For the sensitivity analysis, we varied six different inputs and examined their effect on the different
tiers of exposure metrics (Table 6). Details of the application input settings are provided in Tables 3
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and 4. We examined three types of inputs: weather, home operating conditions, and time-activities.
For weather, we examined the sensitivity of the AER to changes in the indoor-outdoor temperature and
the differences and wind speeds during the winter and summer. The AER was higher in the winter, as
compared to the summer. This effect is due to a larger AER driving force from a higher indoor–outdoor
temperature difference in the winter (15.2 ◦C) compared to the summer (0.5 ◦C). The wind speeds, and
the resulting effect on the AER, were similar in the winter (4.8 km/h) and summer (5.0 km/h).

Table 5. Evaluation of TracMyAir automated inputs for nearest outdoor air pollution monitors and
weather stations.

User Test Location
(City, County)

TracMyAir: Nearest
PM2.5, O3 Monitors,

Weather Station
(Distance)

Google Earth: Measured Distance to PM2.5, O3
Monitors

Google Earth:
Measured Distance to

Weather Stations

Armory Millbrook RTP RDU (No
Ozone) KRDU KTDF

Hillsborough, Orange
County

PM2.5: Armory (19 km)
O3: Armory (19 km)

Weather: KTDF (23 km)
19 km * 52 km 29 km 34 km 35 km 23 km *

Central Durham,
Durham County

PM2.5: Armory (1 km)
O3: Armory (1 km)

Weather: KRDU (19 km)
1 km * 34 km 13 km 17 km 19 km * 33 km

South Durham,
Durham County

PM2.5: RTP (1 km)
O3: RTP (1 km)

Weather: KRDU (8 km)
13 km 27 km 1 km * 5 km 8 km * 46 km

Raleigh,
Wake County

PM2.5: Millbrook (6 km)
O3: Millbrook (6 km)

Weather: KRDU (17 km)
32 km 6 km * 24 km 19 km 17 km * 62 km

Morrisville, Wake County
PM2.5: RDU (6 km)

O3: RTP (10 km)
Weather: KRDU (7 km)

21 km 23 km 10 km ** 6 km * 7 km * 55 km

Chapel Hill, Orange
County

PM2.5: RTP (16 km)
O3: RTP (16 km)

Weather: KRDU (25 km)
17 km 44 km 16 km * 22 km 25 km * 43 km

* Indicates nearest air pollution monitors and weather stations for each user location; ** indicates second nearest air
pollution monitor to obtain ozone measurements; RTP = Research Triangle Park air monitor site, RDU = Raleigh
Durham Airport air monitor site, KRDU = Raleigh Durham Airport weather station, KTDF = Person County Airport
weather station.

Table 6. Sensitivity analysis of TracMyAir outputs for six different input scenarios.

Model Inputs Input Scenarios Model Outputs Effects on Exposure Metrics

Weather Summer vs. winter Summer: AER = 0.11 h−1,
Winter: AER = 0.28 h−1 Higher AER in winter

Home windows Closed vs. open
windows

Closed: AER = 0.19 h−1,
Finf_home = 0.39, 0.05 (PM2.5, O3)

Open: AER = 0.94 h−1,
Finf_home = 0.69, 0.20 (PM2.5, O3)

Higher AER, Finf_home when
opening windows

Home window fans None vs. operating
window fans

Closed: AER = 0.19 h−1,
Finf_home = 0.39, 0.05 (PM2.5, O3)

Open: AER =1.30 h−1,
Finf_home = 0.72, 0.25 (PM2.5, O3)

Higher AER, Finf_home when
operating window fans

Home air cleaners None vs. operating air
cleaners

None: Finf_home = 0.39, 0.05 (PM2.5, O3)
Operating: Finf_home = 0.09, 0.05 (PM2.5, O3)

Lower Finf_home for PM2.5 when
operating air cleaners

Microenvironments Short vs. long time spent
outdoor

Short time: Exposure = 5.0 µg/m3, 1.65 ppb
(PM2.5, O3)

Long time: Exposure = 6.5 µg/m3, 6.54 ppb
(PM2.5, O3)

Higher exposure when longer
time spent outdoors

Physical activity level Low vs. high level

Low level: Dose = 35.7 µg/m2, 43.5 µg/m2

(PM2.5, O3)
High level: Dose = 59.4 µg/m2, 115.5 µg/m2

(PM2.5, O3)

Higher dose when higher
physical activity level

AER = air exchange rate; Finf_home = home infiltration factor.
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For home operating conditions, we examined the sensitivity of AER and Finf_home to changes in
opening windows, operating window fans, and using air cleaners. For windows, the AER, Finf_home

for PM2.5 and O3 were all higher on days with open windows compared to days with windows closed.
This effect is due to the additional airflow from natural ventilation when windows are opened. For
window fans, similar results are shown due to the additional airflow from mechanical ventilation. For
air cleaners, the Finf_home for PM2.5 was lower on days when air cleaners were used, and the Finf_home

for O3 was not affected. This effect is due to the additional removal of PM2.5 from indoor air by the air
cleaners. Since air cleaners are designed to improve indoor air quality by the removal of particulates,
no removal of O3 is considered.

For time-activities, we examined the sensitivity of daily exposure and dose to changes in daily
time spent in different MEs and PALs, respectively. For ME, PM2.5, and O3, exposures are higher when
a greater fraction of the day is spent outdoors. This effect is due to less time spent indoors where
ambient levels are attenuated. Additionally, the percentage increase in exposure is greater for O3

than PM2.5. This effect is due to a higher percentage of O3 exposure occurring outdoors, since indoor
attenuation of O3 is much higher than PM2.5. For PAL, PM2.5 and O3 doses are higher when a larger
fraction of the day is spent doing higher intensity PAL with greater inhaled ventilations.

4. Discussion

Our goal was to develop a mobile application that can be used to predict multiple tiers of daily
ambient PM2.5 and O3 exposure metrics for use in cohort health effect studies. Using TracMyAir, we can
perform an individual-level exposure assessment for epidemiological studies that accounts for daily
variations in ambient PM2.5 exposures and intake dose based on a mechanistic house-specific AER model
linked to a mass-balance PM2.5 and O3 infiltration model, infiltration factors for nonresidential buildings
and vehicles, and daily time-location and time-activity data from each participant. We previously
demonstrated the ability to calibrate and evaluate the EMI for PM2.5 with extensive exposure data [9,10],
and then apply EMI for the DEPS epidemiology study [11]. The impact of applying TracMyAir for
epidemiological studies to improve health effect estimates will depend not only on the accuracy of the
exposure assessment, but also other factors, such as the epidemiology study design [35]. The application
calculates multiple tiers for exposure metrics with different levels of complexity and uncertainty, which
can be used in epidemiological analysis to determine the benefit of more sophisticated exposure metrics.

TracMyAir can be applied in both short-term and long-term epidemiological studies, and in
controlled human exposure studies. For short-term studies with daily health measurements across a
few weeks, the application can provide daily 24-h average exposure assessments across multiple weeks,
which will include the lag days that are often needed for the epidemiological analysis. Additionally, the
application can provide daily time-specific notifications such that the daily exposures are time-matched
with health measurements. In addition, the application could be used by the clinicians when collecting
the health data during the participant’s visit to a human studies facility. For long-term exposure
assessments, the application can provide daily reminders to users to enter any input data changes
in their time-activity behavior (i.e., home operating characteristics, time-microenvironment, and
time-activity), and to run the automated exposure calculation. Additionally, the application can
account for participants that move to a new home during the study based on changing the home
building characteristics, and the nearest weather station and air pollution monitors. For controlled
human exposure studies, the application can be used to determine the participant’s air pollution
exposure for the days prior to the controlled exposures at a laboratory.

There are several important features of TracMyAir. First, TracMyAir is based on the EMI, which
was previously evaluated in three studies [9–12]. We evaluated Tiers 2–6 with 591 daily measurements
of AER (Tier 2) and PM2.5 exposure metrics (Tiers 3–6) from 31 homes and participants across four
seasons in central NC, which is the same geographical location and housing stock as an epidemiological
study called PISCES conducted at EPA’s Human Studies Facility in Chapel Hill, NC. We are applying



Int. J. Environ. Res. Public Health 2019, 16, 3468 13 of 17

TracMyAir for PISCES, and upcoming EPA epidemiological and controlled clinical exposure studies in
central NC.

Second, the application calculates 24-h average exposure metrics for the previous four consecutive
24-h periods. This allows epidemiological studies to perform a lag analysis of varying duration, which
is a critical aspect of determining health effect estimates.

Third, the user can modify the model parameters. For example, this will allow a researcher to
adjust the PM2.5 and O3 infiltration model parameters for each ME, which may be vary for different
geographical locations and housing stock. Therefore, the application can be customized for specific
studies, and used for scenario analysis and sensitivity analysis.

Fourth, the application can be run in a manual mode that uses only user-provided values for
all model inputs. For example, for days with incorrect input data (e.g., housing characteristics), the
exposure metrics can be retrospectively re-estimated by manually entering the correct input data.
The automated input data, which was previously saved and emailed by the application, can be used to
manually set the 24-h average outdoor PM2.5 and O3 concentrations, temperature, and wind speed.

Finally, the application can determine exposures in each ME, and inhaled doses for each PAL.
For example, this allows a researcher to rank (e.g., highest to lowest) PM2.5 and O3 doses in each ME
and for each PAL. This information could then be used to help design pollutant-specific mitigation
strategies, such as modifying a building’s operation (e.g., open windows), time spent in different MEs,
or performing different PALs (e.g., lower level) to reduce minute ventilation and inhaled dose.

We can compare TracMyAir to other mobile or website applications that are available for use
in real-time exposure assessments in epidemiology studies. Most applications provide real-time
outdoor air quality data for cities based on nearby monitor measurements and forecasted model
predictions [36–41]. These applications are primarily designed to help the general public make
informed decisions about their exposure risk during daily activities, and are not designed for scientific
epidemiological studies. Unlike TracMyAir, these applications do not provide automated 24 h average
outdoor concentrations time-matched to health outcome data, and do not account for the temporal
variability and building-specific indoor attenuation of ambient PM2.5 and O3, time spent in different
indoor and outdoor MEs, and PALs performed in each ME.

There are multiple and significant benefits of using TracMyAir for epidemiological studies. First,
the application is simple to use, automatically obtains real-time outdoor ambient air pollution and
weather input data, calculates real-time exposures, and runs on ubiquitous iPhones. Thus, it will
broaden the range of applications for epidemiological studies. Second, the application determines
exposures and inhaled doses in near real-time. Therefore, TracMyAir can be automatically time-matched
with health data from epidemiological studies by running the application and sampling health effect
data simultaneously. Third, the modeled exposure metrics account for the building-to-building and
temporal variability of AER and the indoor attenuations of ambient PM2.5 and O3. Since people
spend most of their time indoors, the variability of indoor attenuation can be a substantial source
of variability in exposures between individuals, including studies across regions with small spatial
variations in outdoor PM2.5 and O3 concentrations. Furthermore, when the outdoor PM2.5 and O3

concentrations are used as an exposure surrogate in epidemiological studies, the estimated health effect
can be biased towards the null, since it is the product of the toxicity (i.e., true health effect) and the
indoor attenuations of ambient PM2.5 and O3 [4]. Fourth, the application captures daily user-specific
behavior (e.g., window opening, operating window fans, operating home air cleaners, time spent in
microenvironments, and time performing different physical activities), and thereby accounts for the
participant-to-participant and temporal variability of personal exposures and inhaled doses due to
these behaviors. Finally, the application saves detailed information (e.g., location and distance to user)
about the automated inputs (PM2.5 and O3 monitors, weather station), which are needed for reporting
epidemiological findings.

One limitation of the application for long-term exposure assessments is the need for daily
user-provided information. We designed the application to use input data from the past 24 h, instead
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of longer durations, to help reduce recall errors. Additionally, the time needed to enter daily data is
minimal, since the application saves the input settings, and only daily changes need to be entered. There
are three types of data (home operating characteristics, microenvironments, and physical activities)
that may change daily, whereas the other two types of data (home characteristics and demographics)
will typically not change.

Another possible limitation of the application is the 24-h average exposure assessment.
The temporal resolution of the exposure is limited by the 24-h average time-locations (i.e., duration
in each ME for past 24 h). For some epidemiological studies, such as DEPS, this temporal resolution
is sufficient. For studies that require higher temporal resolution, continuous GPS data linked with
a microenvironment classification model, such as MicroTrac, can be used to determine continuous
time-locations (i.e., time-of-day and duration in each ME) [33].

Another potential limitation is the use of measured PM2.5 and O3 concentrations from monitors
potentially several kilometers from the user as input for the application. For PM2.5, we previously
showed that for 31 homes in central NC, the modeled uncertainties for E and Cin_home were not
substantially different using a central-site monitor or outdoor residential monitors for PM2.5 [9]. This
is consistent with data from other cities in various U.S. regions that show PM2.5 mass concentrations
are spatially homogeneous within each city, and that point and mobile sources have only limited
influence [1]. This spatial homogeneity can be attributed to several factors, including slow settling
velocity that results in long atmospheric lifetimes for PM2.5, and the significant fraction of PM2.5 that
is from secondary origin [1]. Similar results have shown that O3 concentrations are also spatially
homogeneous within each city [2]. O3 is a secondary pollutant, and therefore, is generally more
regionally homogeneous than primary pollutants emitted from stationary or mobile point sources [2].
Furthermore, epidemiological studies often rely on ambient PM2.5 and O3 concentrations measured at
a central monitoring site as exposure metrics [1,2]. For studies that require high spatial resolution,
a fine-scale air quality model can be used [42]. We plan to investigate the feasibility of using an air
quality model with high spatial resolution in a future application.

An additional limitation is the use of measured temperatures and wind speeds from nearby
weather stations as inputs for the application. We previously showed that for 591 daily measurements
from 31 homes and participants in central NC, the uncertainty of the residential PM2.5 infiltration model
(Finf_home) was 18% (median absolute difference) using one central weather station for temperature
and wind speed. For higher spatial resolution, a fine-scale weather model can be used [43]. We plan to
investigate the feasibility of using a weather model with high spatial resolution in a future application.

5. Conclusions

This study demonstrates the ability of TracMyAir to predict multiple tiers of individual-level PM2.5

and O3 exposure metrics in near real-time. To improve exposure assessments, TracMyAir accounts for
(1) the daily, house-specific infiltration of ambient PM2.5 and O3; (2) the daily, user-specific time spent
outdoors, in-vehicles, and indoors at home and other buildings; and (3) the daily user-specific and
microenvironment-specific time spent performing sedentary, light, moderate, and vigorous levels of
physical activity. This capability can help provide more efficient and accurate exposure and inhaled
dose estimates for epidemiological studies in support of improving health risk estimation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/18/3468/s1,
Figure S1: Main screen for TracMyAir; Figure S2: TracMyAir output screen; Figure S3: TracMyAir map of the
nearest PM2.5 and O3 monitors, and 24-h average concentrations; Figure S4: TracMyAir map of nearest weather
station, and 24-h average temperature, and wind speed; Table S1: Stack coefficient ks ((L/s)2/(cm4 K)); Table S2:
Wind coefficient kw ((L/s)2/(cm4 (m/s)2)); Table S3: Local sheltering; Table S4: Male sedentary ventilation rates
(L/min/kg body weight); Table S5: Male light intensity ventilation rates (L/min/kg body weight); Table S6: Male
moderate intensity ventilation rates (L/min/kg body weight); Table S7: Male vigorous intensity ventilation rates
(L/min/kg body weight); Table S8: Female sedentary ventilation rates (L/min/kg body weight); Table S9: Female
light intensity ventilation rates (L/min/kg body weight); Table S10: Female moderate intensity ventilation rates
(L/min/kg body weight); Table S11: Female vigorous intensity ventilation rates (L/min/kg body weight).

http://www.mdpi.com/1660-4601/16/18/3468/s1


Int. J. Environ. Res. Public Health 2019, 16, 3468 15 of 17

Author Contributions: Conceptualization, M.B. (Michael Breen), C.S., V.I., and S.A.; methodology, M.B. (Michael
Breen), C.S., V.I., S.A., M.B. (Miyuki Breen), J.S., and H.T.; software, M.B. (Michael Breen), C.S.; validation, M.B.
(Michael Breen), C.S., S.A., and M.B. (Miyuki Breen); formal analysis, M.B. (Michael Breen), C.S., V.I., S.A., M.B.
(Miyuki Breen), J.S., and H.T.; investigation, M.B. (Miyuki Breen), C.S., V.I., S.A., M.B. (Miyuki Breen), J.S., and
H.T.; resources, M.B. (Miyuki Breen), V.I., S.A., M.B. (Miyuki Breen), J.S., and H.T.; data curation, M.B. (Michael
Breen), C.S., V.I., and S.A.; writing—original draft preparation, M.B. (Michael Breen); writing—review and editing,
C.S., V.I., S.A., M.B. (Miyuki Breen), J.S., and H.T.; visualization, M.B. (Michael Breen), C.S., V.I., S.A., M.B. (Miyuki
Breen), J.S., and H.T.; supervision, S.A.; project administration, M.B. (Michael Breen), V.I., and S.A.; funding
acquisition, M.B. (Michael Breen) and V.I.

Funding: This research received no external funding.

Acknowledgments: The authors thank Hao Chen, Steven Prince, and Claudia Salazar for their reviews and
helpful suggestions. The views expressed in this article are those of the authors and do not necessarily represent
the views or policies of the U.S. Environmental Protection Agency. Mentions of trade names or commercial
products does not constitute endorsement or recommendation for use.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. US Environmental Protection Agency. Integrated science assessment for particulate matter. In EPA
600/R-08/139F; Environmental Protection Agency: Washington, DC, USA, 2009.

2. US Environmental Protection Agency. Integrated science assessment for ozone and related photochemical
oxidants. In EPA 600/R-10/076F; Environmental Protection Agency: Washington, DC, USA, 2013.

3. Zeger, S.L.; Thomas, D.; Dominici, F.; Sarnet, J.M.; Schwartz, J.; Dockery, D.; Cohen, A. Exposure measurement
error in time-series studies of air pollution: Concepts and consequences. Environ. Health Perspect. 2000, 108,
419–426. [CrossRef] [PubMed]

4. Sheppard, L.; Burnett, R.T.; Szpiro, A.A.; Kim, S.Y.; Jerrett, M.; Pope, C.A., III; Brunekreef, B. Confounding
and exposure measurement error in air pollution epidemiology. Air Qual. Atmos. Health 2012, 5, 203–216.
[CrossRef] [PubMed]

5. National Research Council. Exposure Science in the 21st Century: A Vision and a Strategy; The National
Academies Press: Washington, DC, USA, 2012. [CrossRef]

6. National Research Council. Research Priorities for Airborne Particulate Matter: I. Immediate Priorities and a
Long-Range Research Portfolio; The National Academies Press: Washington, DC, USA, 2004. [CrossRef]

7. National Academies of Sciences, Engineering, and Medicine. Health Risks of Indoor Exposure to Particulate
Matter: Workshop Summary; The National Academies Press: Washington, DC, USA, 2016. [CrossRef]

8. National Academies of Sciences, Engineering, and Medicine. Using 21st Century Science to Improve Risk-Related
Evaluations; The National Academies Press: Washington, DC, USA, 2017. [CrossRef]

9. Breen, M.S.; Long, T.; Schultz, B.; Williams, R.; Richmond-Bryant, J.; Breen, M.; Langstaff, J.; Devlin, R.;
Schneider, A.; Burke, J.; et al. Air pollution exposure model for individuals (EMI) in health studies: Evaluation
for ambient PM in central North Carolina. Environ. Sci. Technol. 2015, 49, 14184–14194. [CrossRef] [PubMed]

10. Breen, M.S.; Breen, M.; Williams, R.W.; Schultz, B.D. Predicting residential air exchange rates from
questionnaires and meteorology: Model evaluation in central North Carolina. Environ. Sci. Technol.
2010, 44, 9349–9356. [CrossRef] [PubMed]

11. Breen, M.S.; Yadong, X.; Williams, R.; Schneider, A.; Devlin, R. Modeling Individual-level Exposures to
Ambient PM2.5 for the Diabetes and the Environment Panel Study (DEPS). Sci. Total Environ. 2018, 626,
807–816. [CrossRef] [PubMed]

12. Vette, A.; Burke, J.; Norris, G.; Landis, M.; Batterman, S.; Breen, M.; .Lewis, T.; Hammond, D.; Vedantham, R.;
Hammond, D. Modeling spatial and temporal variability of residential air exchange rates for the Near-Road
Exposures and Effects of Urban Air Pollutants Study (NEXUS). Int. J. Environ. Res. Public Health 2014, 11,
11481–11504.

13. AirNow API. Available online: Docs.airnowapi.org (accessed on 24 May 2019).
14. US Environmental Protection Agency. Guideline on Data Handling Conventions for the 8-h ozone NAAQS

EPA-454/R-98-017; Environmental Protection Agency: Washington, DC, USA, 1998.
15. US Environmental Protection Agency. Guideline on Data Handling Conventions for the PM NAAQS

EPA-454/R-99-009; Environmental Protection Agency: Washington, DC, USA, 1999.

http://dx.doi.org/10.1289/ehp.00108419
http://www.ncbi.nlm.nih.gov/pubmed/10811568
http://dx.doi.org/10.1007/s11869-011-0140-9
http://www.ncbi.nlm.nih.gov/pubmed/22662023
http://dx.doi.org/10.17226/13507
http://dx.doi.org/10.17226/6131
http://dx.doi.org/10.17226/23531
http://dx.doi.org/10.17226/24635
http://dx.doi.org/10.1021/acs.est.5b02765
http://www.ncbi.nlm.nih.gov/pubmed/26561729
http://dx.doi.org/10.1021/es101800k
http://www.ncbi.nlm.nih.gov/pubmed/21069949
http://dx.doi.org/10.1016/j.scitotenv.2018.01.139
http://www.ncbi.nlm.nih.gov/pubmed/29396342
Docs.airnowapi.org


Int. J. Environ. Res. Public Health 2019, 16, 3468 16 of 17

16. National Weather Service API. Available online: www.weather.gov/documentation/services-web-api
(accessed on 24 May 2019).

17. The Best Window Fans. Available online: www.bobvila.com/articles/best-window-fan (accessed on 24 May
2019).

18. American Society of Heating, Refrigerating, and Air Conditioning Engineers. The 2009 ASHRAE
Handbook-Fundamentals; American Society of Heating, Refrigerating, and Air Conditioning Engineers:
Atlanta, GA, USA, 2009.

19. Breen, M.S.; Schultz, B.; Sohn, M.; Long, T.; Langstaff, J.; Williams, R.; Isaacs, K.; Meng, Q.; Stallings, C.;
Smith, L. A Review of Air Exchange Rate Models for Air Pollution Exposure Assessments. J. Expo. Sci.
Environ. Epidemiol. 2014, 24, 555–563. [CrossRef]

20. Henderson, D.E.; Milford, J.B.; Miller, S.L. Prescribed burns and wildfires in Colorado: Impacts of mitigation
measures on indoor air particulate matter. J. Air Waste Manag. Assoc. 2005, 55, 1516–1526. [CrossRef]

21. Molgaard, B.; Koivisto, A.J.; Hussein, T.; Hameri, K. A new clean air delivery rate test applied to five portable
indoor air cleaners. Aerosol Sci. Technol. 2014, 48, 409–417. [CrossRef]

22. Consumer Reports. Air Purifiers; Consumers Union of US, Inc.: Yonkers, NY, USA, 2007; pp. 48–51.
23. Stephens, B.; Gall, E.T.; Siegel, J.A. Measuring the penetration of ambient ozone into residential buildings.

Environ. Sci. Technol. 2012, 46, 929–936. [CrossRef]
24. Lee, K.; Vallarino, J.; Dumyahn, T.; Ozkaynak, H.; Spengler, J. Ozone decay rates in residences. J. Air Waste

Manag. Assoc. 1999, 49, 1238–1244. [CrossRef] [PubMed]
25. Wallace, L.; Williams, R. Use of personal-indoor-outdoor sulfur concentrations to estimate the infiltration

factor and outdoor exposure factor for individual homes and persons. Environ. Sci. Technol. 2005, 39,
1707–1714. [CrossRef] [PubMed]

26. Burke, J.M.; Zufall, M.J.; Ozkaynak, H. A population exposure model for particulate matter: Case study
results for PM2.5 in Philadelphia, PA. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 470–489. [CrossRef]
[PubMed]

27. Ott, W.; Klepeis, N.; Switzer, P. Air change rates of motor vehicles and in-vehicle pollutant concentrations
from secondhand smoke. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 312–325. [CrossRef] [PubMed]

28. Johnson, T.; Capel, T.; Ollison, W. Measurement of microenvironmental ozone concentrations in Durham,
North Carolina, using a 2B Technologies 205 Federal Equivalent Method monitor and an interference-free 2B
Technologies 211 monitor. J. Air Waste Manag. Assoc. 2014, 64, 360–371. [CrossRef] [PubMed]

29. Colley, R.C.; Garriguet, D.; Janssen, I.; Craig, C.L.; Clarke, J.; Tremblay, M.S. Physical activity of Canadian
adults: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011, 22,
7. [PubMed]

30. Samet, J.M.; Hatch, G.E.; Horstman, D.; Steck-Scott, S.; Arab, L.; Bromberg, P.A.; Levine, M.; McDonnell, W.F.;
Devlin, R.B. Effect of antioxidant supplementation on ozone-induced lung injury in human subjects. Am. J.
Respir. Crit. Care Med. 2001, 164, 819–825. [CrossRef] [PubMed]

31. US Environmental Protection Agency. Metabolically Derived Human Ventilation Rates: A Revised Approach Based
Upon Oxygen Consumption Rates. EPA/600/R-06/129F; Environmental Protection Agency: Washington, DC,
USA, 2009.

32. DuBois, D.; DuBois, E.F. A formula to estimate the approximate surface area if height and weight be known.
Arch. Intern. Med. 1916, 17, 863–871. [CrossRef]

33. Breen, M.S.; Long, T.; Schultz, B.; Crooks, J.; Breen, M.; Langstaff, J.; Isaacs, K.; Tan, C.; Williams, R.; Cao, Y.;
et al. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air
pollution exposure assessments: Model evaluation in central North Carolina. J. Exp. Sci. Environ. Epidemiol.
2014, 24, 412–420. [CrossRef]

34. Mirowsky, J.E.; Devlin, R.B.; Diaz-Sanchez, D.; Cascio, W.; Grabich, S.C.; Haynes, C.; Blach, C.; Hauser, E.R.;
Shah, S.; Kraus, W.; et al. A novel approach for measuring residential socioeconomic factors associated with
cardiovascular and metabolic health. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 281–289. [CrossRef]

35. Szpiro, A.A.; Paciorek, C.J.; Sheppard, L. Does more accurate exposure prediction necessarily improve health
effect estimates? Epidemiology 2011, 22, 680–685. [CrossRef] [PubMed]

36. AirNow. Available online: http://aqicn.org (accessed on 24 May 2019).
37. Plume Labs. Available online: www.plumelabs.com (accessed on 24 May 2019).
38. Air Visual. Available online: www.airvisual.com (accessed on 24 May 2019).

www.weather.gov/documentation/services-web-api
www.bobvila.com/articles/best-window-fan
http://dx.doi.org/10.1038/jes.2013.30
http://dx.doi.org/10.1080/10473289.2005.10464746
http://dx.doi.org/10.1080/02786826.2014.883063
http://dx.doi.org/10.1021/es2028795
http://dx.doi.org/10.1080/10473289.1999.10463913
http://www.ncbi.nlm.nih.gov/pubmed/10616745
http://dx.doi.org/10.1021/es049547u
http://www.ncbi.nlm.nih.gov/pubmed/15819228
http://dx.doi.org/10.1038/sj.jea.7500188
http://www.ncbi.nlm.nih.gov/pubmed/11791164
http://dx.doi.org/10.1038/sj.jes.7500601
http://www.ncbi.nlm.nih.gov/pubmed/17637707
http://dx.doi.org/10.1080/10962247.2013.839968
http://www.ncbi.nlm.nih.gov/pubmed/24701694
http://www.ncbi.nlm.nih.gov/pubmed/21510585
http://dx.doi.org/10.1164/ajrccm.164.5.2008003
http://www.ncbi.nlm.nih.gov/pubmed/11549539
http://dx.doi.org/10.1001/archinte.1916.00080130010002
http://dx.doi.org/10.1038/jes.2014.13
http://dx.doi.org/10.1038/jes.2016.53
http://dx.doi.org/10.1097/EDE.0b013e3182254cc6
http://www.ncbi.nlm.nih.gov/pubmed/21716114
http://aqicn.org
www.plumelabs.com
www.airvisual.com


Int. J. Environ. Res. Public Health 2019, 16, 3468 17 of 17

39. Air Matters. Available online: www.air-matters.com (accessed on 24 May 2019).
40. Breezeometer. Available online: www.breezometer.com (accessed on 24 May 2019).
41. PRAISE-HK. Available online: Praise.ust.hk (accessed on 24 May 2019).
42. Chang, S.; Arunachalam, S.; Valencia, A.; Naess, B.; Isakov, V.; Palma, T.; Vizuete, W.; Breen, M. A Modeling

Framework for Characterizing Near-Road Air Pollutant Concentration at Community Scales. Sci. Total
Environ. 2015, 538, 905–921. [CrossRef] [PubMed]

43. Benjamin, S.G.; Weygandt, S.S.; Brown, J.M.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; Olson, J.B.; James, E.P.;
Dowell, D.C.; Grell, G.A.; et al. A North American Hourly assimilation and model forecast cycle: The rapid
refresh. Mon. Weather Rev. 2016, 144, 1669–1694. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

www.air-matters.com
www.breezometer.com
Praise.ust.hk
http://dx.doi.org/10.1016/j.scitotenv.2015.06.139
http://www.ncbi.nlm.nih.gov/pubmed/26363146
http://dx.doi.org/10.1175/MWR-D-15-0242.1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Overview of iPhone Application (TracMyAir) 
	Tiers of Exposure Metrics 
	Measured Exposure Metric (Tier 1) 
	Modeled Exposure Metrics (Tiers 2–7) 
	Operation of TracMyAir 
	Evaluation of Automated Input Collection 
	Sensitivity Analysis 

	Results 
	Discussion 
	Conclusions 
	References

