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Objective: The purpose of this study was to explore the dynamics of incidence of hemor-

rhagic fever with renal syndrome (HFRS) from 2000 to 2017 in Anqiu City, a city located in

East China, and find the potential factors leading to the incidence of HFRS.

Methods: Monthly reported cases of HFRS and climatic data from 2000 to 2017 in the city

were obtained. Seasonal autoregressive integrated moving average (SARIMA) models were

used to fit the HFRS incidence and predict the epidemic trend in Anqiu City. Univariate and

multivariate generalized additive models were fit to identify and characterize the association

between the HFRS incidence and meteorological factors during the study period.

Results: Statistical analysis results indicate that the annualized average incidence at the town

level ranged from 1.68 to 6.31 per 100,000 population among 14 towns in the city, and the

western towns exhibit high endemic levels during the study periods. With high validity, the

optimal SARIMA(0,1,1,)(0,1,1)12 model may be used to predict the HFRS incidence.

Multivariate generalized additive model (GAM) results show that the HFRS incidence increases

as sunshine time and humidity increases and decreases as precipitation increases. In addition, the

HFRS incidence is associated with temperature, precipitation, atmospheric pressure, and wind

speed. Those are identified as the key climatic factors contributing to the transmission of HFRS.

Conclusion: This study provides evidence that the SARIMA models can be used to

characterize the fluctuations in HFRS incidence. Our findings add to the knowledge of the

role played by climate factors in HFRS transmission and can assist local health authorities in

the development and refinement of a better strategy to prevent HFRS transmission.

Keywords: hemorrhagic fever with renal syndrome, meteorological factors, autoregressive

integrated moving average model, generalized additive model, prediction

Introduction
Hemorrhagic fever with renal syndrome (HFRS) is an acute viral syndrome caused by

infection with one variety of hantavirus. Hantaviruses are transmitted by rodents and can

be exposed to humans through infected urine, droppings, or saliva. Patients with HFRS

aremainly treated through supportive therapy, with themanagement of the patient’s vitals

and treatment of secondary infections. A decrease in illness and death from HFRS has

been showed with the use of intravenous ribavirin, an antiviral drug. HFRS is a critical

infectious disease in developing countries, with major epidemics erupting in eastern

Asia.1,2
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In mainland China, HFRS remains a serious public

health problem, with approximately 20,000–50,000

human cases reported annually, approximately 90% of

the total cases worldwide.3,4 Currently, HFRS is endemic

in 28 of the 31 provinces in mainland China, and the

highest incidence was reported in the middle and eastern

part of China. Shandong Province, a developed coastal

province in East China, is one of the most severely

affected provinces in China.5,6 In order to effectively pre-

vent the spread of HFRS, the Chinese Center for Disease

Control and Prevention (CDC) established a surveillance

system for HFRS in 2004 and created educational pro-

grams for the general public. It is challenging to eliminate

HFRS completely because many factors, such as diverse

animal reservoirs and climate factors, may influence the

control effects.

Many studies have suggested that epidemic modelling

and forecasting can be essential and effective tools to pre-

vent and control HFRS.7–9 The development and applica-

tion of an HFRS incidence forecasting model are effective

for improving the understanding of the epidemic character-

istics of HFRS and can be helpful for the prevention and

control of HFRS. Currently, statistical models used to pre-

dict the epidemics of HFRS include linear regression

models,10,11 negative binomial multivariable regression,12

time series generalized additive models,13 generalized lin-

ear models (GLMs),14 autoregressive integrated moving

average (ARIMA) models,15,16 generalized additive models

(GAMs),17 and nonlinear autoregressive neural networks

(NARNNs) and ARIMA-NARNN models.8 Among those

methods, the ARIMA models are the most common and

useful method for modelling the temporal dependence

structure of the time series of HFRS. The ARIMA models

can take into account changing trends, periodic changes,

and random disturbances in a time series. In epidemiology,

ARIMA models have been successfully used to predict the

incidence of tuberculosis,18 dengue,19 as well as other

infectious diseases.20

Some studies predicted HFRS epidemics using ARIMA

models and obtained a basis for targeted prevention and

control measures.15,16 These studies showed that ARIMA

models had better predictive performance than other mod-

els. However, there was still inconsistency in how to use the

ARIMA models and apply them to a particular region,

making it difficult for researchers to choose the appropriate

model to predict an HFRS epidemic. This inconsistency

may be due to the fact that there are many influencing

factors, such as immunization, temperature, humidity,

elevation, and the local rat species.1,3,21,22 This prevents

the HFRS prediction model constructed from a particular

region from being universal. As a result, a specific predic-

tion model based on the actual data of the region needs to be

constructed to predict the epidemics of HFRS in a region

accurately.

Previous studies indicated that some areas in China

were moderate endemic areas with HFRS incidences

between 5.0 and 30.0 per 100,000 population from 1994

to 1998.16–18,20,21 However, few studies explored the

dynamics of HFRS incidence and investigated the poten-

tial factors leading to this disease.23 In the present study,

the key climatic drivers of HFRS transmission were iden-

tified by the GAMs, a descriptive analysis of HFRS with

a spatiotemporal distribution was explored, and the opti-

mal seasonal ARIMA (SARIMA) model for predicting

HFRS incidences was developed for Anqiu City, a major

administrative region in Shandong Providence in East

China. The results of this study can help predict the future

trends of HFRS to prevent and control HFRS more

accurately.

Methods
Study Data
The study area is the Anqiu City in Shandong Province, the

middle of the Shandong Peninsula. This city has a warm

temperate continental climate influenced by the monsoon,

with an annual mean temperature of 53.96°F and an average

annual rainfall of 25.45 inches. Consisting of 14 towns, the

study area’s total population is 0.95 million, among which

farmers account for 0.78 million. The main crops of the

study area are wheat, corn, and peanut, and most farmers

reside less than 55 yards from their farmlands. As tradi-

tional farming methods provide an opportunity for wild

rodent propagation, suitable living conditions and sufficient

food resources are created, which allow for an increase in

transmission of HFRS between rodents and from rodents to

humans.

The monthly HFRS cases recorded in the study area

from 2000 to 2017 were collected from the City Center for

Disease Control and Prevention (CDC). The National

Infectious Disease Reporting system reported all HFRS

cases to the City CDC, which verified all the HFRS

cases that were first diagnosed in hospitals or clinics.

The city’s population data from 2000 to 2017 were deter-

mined based on information from the City Bureau of

Statistics. Environmental factors for the city during the
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study periods, including monthly average temperature,

average air pressure, average sunshine, average wind

speed, monthly precipitation, and average moisture, were

collected from the City Meteorological Bureau. Over the

course of the 18-year study period, 794 cases were regis-

tered in the study area.

Statistical Analysis
The ARIMA models are one of the most commonly

applied time series prediction models,24 using the hybrid

modelling approach of autoregressive (AR) and moving

average (MA) methods. ARIMA models have abilities to

represent a non-seasonal time series and be used to pro-

duce an accurate forecast based on the historical data of

a single variable. It is usually expressed as ARIMA p; d; qð Þ,
where p is the number of AR lags, q is the number of MA

lags, and d is the number of different passes. ARIMA

models are also capable of modelling a wide range of

seasonal data. Seasonality in a time series refers to

a seasonal pattern of changes that repeats over s time

periods (s is the number of time periods until the pattern

repeats again). In a seasonal ARIMA (SARIMA) model,

seasonal AR and MA terms predict the time series using

data values and errors at times with lags that are multiples

of s.24 In a SARIMA model, the time series Yt is assumed

to be generated by a SARIMA p; d; qð Þ P;D;Qð Þs process

with mean μof the Box-Jenkins’s model24 if

φ Bð Þϕ Bsð Þð1� BÞdð1� BsÞD Yt � μð Þ ¼ θ Bð ÞΘ Bsð Þat;
where

φ Bð Þ ¼ 1� φ1B� φ2B
2 � . . .� φpB

p

ϕ Bsð Þ ¼ 1� ϕ1B
s � ϕ2B

2s � . . .� ϕPB
Ps;

and

Θ Bsð Þ ¼ 1� Θ1B
s � Θ2B

2s � . . .� ΘQB
Qs:

Here, p is the number of AR lags, q is the number of MA

lags, and d is the number of regular differences, and the

seasonal parameters include seasonal AR lags, seasonal

MA lags Q, seasonal differences D, and the length of the

seasonal periods or periodicity s.25 In a SARIMA model, B

is backward shift operator and others are unknown para-

meters. The SARIMA model formulation includes four

steps: identifying the SARIMA p; d; qð Þ P;D;Qð Þs structure,
estimating unknown parameters, performing goodness-of-

fit tests on the estimated residuals, and predicting future

outcomes.

In this study, the augmented Dickey-Fuller Unit Root

(ADF) test was applied to estimate the stationarity of the

time series.26,27 If the time series is not stationary, an

appropriate difference can be used to make the series

stationary. The Box and Jenkins method was used to con-

struct the SARIMA model in this study.28 The autocorrela-

tion functions (ACF) and partial autocorrelation functions

(PACF) of the transformed data were utilized to determine

the seasonal and non-seasonal orders and identify an

appropriate SARIMA model. The conditional least squares

method was applied to estimate the model parameters. In

model diagnosis, white-noise test methods were employed

to check whether the residuals were independent and nor-

mally distributed.29 Several models can be constructed,

and the selection of an optimal SARIMA model is neces-

sary. The model selection was conducted based on normal-

ized Bayesian information criterion (BIC) and Ljung-Box

Q test. In addition, coefficient of determination (R2), root-

mean-square error (RMSE), mean absolute error (MAE),

and maximum absolute error (MaxAE) were selected as

the measures to evaluate the SARIMA models.24

Univariate and multivariate generalized additive mod-

els (GAMs) with a logarithm link assuming that the HFRS

incidence conditionally follows a Poisson distribution

were fit to determine on how the meteorological factors

affect the monthly HFRS incidence. The meteorological

factors utilized in this study included monthly average

temperature, precipitation, sunshine time, humidity, atmo-

spheric pressure, and wind speed. Spatial distribution

maps were created for the study area across the 18-year

study period. All of these analyses were conducted by

statistical software SPSS (Version 17.0, SPSS, Chicago,

Illinois, USA) and R (Version 3.6.1, R Core Team, Vienna,

Austria). This study conformed to the provisions of the

Declaration of Helsinki and was approved by the Ethics

Committee of Weifang Medical University (No.

2019SL059). The data in this study were accessed from

the Anqiu City Center for Disease Control and Prevention

and are freely available upon request.

Results
Descriptive Analysis
A total of 794 cases were registered in the study area

during the 18-year period. The highest average incidence

rate was 15.05 per 100,000 population in 2000, and the

lowest average incidence rate was 1.15 per 100,000 popu-

lation in 2006, with an annual incidence rate of 4.36 per
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100,000 population. Among the total cases, 69.50% were

male, and 30.50% were female, with a gender ratio (male

vs female) of 2.28. Among those patients, about 1.26%

were children under 15 years old, 7.05% were older adults

over the age of 64 years, and others were between 15 and

64 years of age. Regarding occupation, 1.01% were out-

door workers that include migrant workers and construc-

tion workers, 5.67% were students, and farmers accounted

for 83.00%. The monthly HFRS cases for the 18 years

from 2000 to 2017 are shown in Figure 1, which indicates

that the incidence of HFRS presented apparent seasonal

character. There were two high peaks every year, the

smaller epidemic peak occurred in spring between March

and April, and the larger peak occurred in late fall and

early winter between October and November.

To visualize the spatial and temporal variations in the

HFRS incidence rates in the study area across the 18-year

study period, the annualized average incidence of HFRS

per 100,000 population was calculated for each town in the

City over the 18-year period. Then, the annualized average

incidences for each town were mapped in gradient colors

in spatial distributions maps (Figure 2). Figure 2(A-R)

show that the annual incidence of HFRS gradually

decreased from 2000 to 2006, and the lowest incidence

of 1.15 cases per 100,000 population occurred in 2006.

Since 2007, the annual incidence of HFRS has increased

gradually. Figure 2(S) shows the annualized average inci-

dence for 14 towns within the City from 2000 to 2017. The

annual average incidence at the town level ranged from

1.68 to 6.31 per 100 000 population.

Analysis Results from the SARIMA

Models
Monthly data of HFRS from 2000 to 2016 were used as the

training data set for fitting the SARIMAmodels, and those for

2017 were used as the test data set. Figure 1 shows that the

onset of HFRS has seasonal characteristics with a seasonal

cycle every 12 months and there was a non-stationary trend.

Therefore, a first-order trend difference and a first-order sea-

sonal difference were used to stabilize the average HFRS

incidence. The ADF test result showed that the converted

series improved stability after first-order difference (Dickey-

Fuller = � 5.071, p-value = 0.010). The diagnostic plots of

ACF and PACF for original time series, first-order difference

series, and residuals of the ARIMA 2; 1; 1ð Þ model were cre-

ated in Figure 3. Figure 3 suggests that the ARIMA 2; 1; 1ð Þ
model is sufficient to explain the information of the monthly

HFRS time series. Therefore, to fit the SARIMA models

with a maximum order of 2 in the AR terms, a maximum

order of 1 in the MA terms, and a first-order difference, we

created seven candidate models: SARIMA 0; 1; 1ð Þ 0; 1; 1ð Þ12,
SARIMA 0; 1; 2ð Þ 0; 1; 2ð Þ12, SARIMA 1; 1; 0ð Þ 1; 1; 0ð Þ12,
SARIMA 1; 1; 1ð Þ 1; 1; 1ð Þ12, SARIMA 1; 1; 2ð Þ 1; 1; 2ð Þ12,
SARIMA 2; 1; 0ð Þ 2; 1; 0ð Þ12, and SARIMA 2; 1; 1ð Þ 2; 1; 1ð Þ12
(see Table 1). According to the parameter estimation and

goodness of fit test results (see Tables 1 and 2), the

SARIMA 0; 1; 1ð Þ 0; 1; 1ð Þ12 model with the smallest

normalized BIC was selected as the final model. The good-

ness-of-fit analysis indicated that there was no significant

autocorrelation among residuals with different lags (Ljung-

Box Q ¼ 19:551, p-value ¼ 0:241). The monthly data were

taken to construct the SARIMA 0; 1; 1ð Þ 0; 1; 1ð Þ12 model (see

Table 3 and Figure 3), and the monthly data in 2017 were

taken to test the model. The predicted data, actual data and the

95% confidence limit for the predicted data for 2017 are

shown in Table 3 and Figure 3. The predicted numbers of

HFRS cases match the observed, and the observed fell within

the 95% confidence interval of the predicted incidence.

Analysis Results Given by the Generalized

Additive Models
The univariate GAM was applied to separately analyze the

influences of each meteorological factor on the monthly

cases of HFRS. The results are reported in Table 4. The

results show that all the six meteorological factors passed

the significance test with a p-value less than 0.001, sug-

gesting that each meteorological factor had a statistically

significant impact on the monthly incidence of HFRS. The

explained deviance of wind speed and temperature are

high (20.1% and 12.5%, respectively). The corresponding

adjusted coefficients of determination (adjusted R2) were

0.244 and 0.064 for wind speed and temperature,

respectively.

A multivariate GAM was fit to data, with the monthly

cases of HFRS as the response variable and the meteor-

ological factors, monthly average temperature, precipita-

tion, sunshine time, humidity, atmospheric pressure, and

wind speed, as the covariates. Table 5 reports the estimated

effects from fitting the multivariate GAM, in terms of

effective degrees of freedom (EDFs), reference degrees

of freedom (RDFs), chi-square statistics, the correspond-

ing p-values, explained deviance, and adjusted coefficients

of determination. The analysis results indicate that the six

Shi et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Infection and Drug Resistance 2020:132468

http://www.dovepress.com
http://www.dovepress.com


Year of 2000

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2001

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2002

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2003

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2004

Month
N

um
be

r o
f H

FR
S

 c
as

es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2005

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2006

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2007

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2008

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2009

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2010

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2011

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2012

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2013

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2014

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2015

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2016

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Year of 2017

Month

N
um

be
r o

f H
FR

S
 c

as
es

1 2 3 4 5 6 7 8 9 10 11 12

−10
−5

0
5

10
15
20
25

Figure 1 Observed (2000–2017), fitted (2001–2016), and predicted (2017) cases of hemorrhagic fever with renal syndrome (HFRS). Black solid line: observed cases; black

dashed line: SARIMA 0; 1; 1ð Þ 0; 1; 1ð Þ12 model fitted curve; red solid lines: upper bound of 95% confidence intervals for fitted values and 95% confidence limits for predicted

values; blue solid lines: lower bound of 95% confidence intervals for fitted values and 95% confidence limits for predicted values.
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meteorological factors are statistically significant factors to

influence the monthly HFRS incidence. Estimated smooth

functions of six meteorological factors on monthly HFRS

incidence are plotted in Figure 4. The fitted multivariate

GAM had an explained deviance of 52.8% and an adjusted

R2 of 0.504. The reported EDFs show that sunshine time is

linearly correlated with the HFRS incidence, but the other

five meteorological factors are nonlinearly associated with

the incidence with the EDFs that are much greater than

one. These results also indicate that the HFRS incidence

increases as sunshine time and humidity increase and

decrease as precipitation increases. In addition, the HFRS

incidence increases until wind speed increases to a peak at

approximately 4.0 m/s (meters per second), and atmo-

spheric pressure increases to a peak at approximately

1018 hPa (hectopascals), and then decreases.

Discussion
Our study showed that the incidence of HFRS presented

apparent seasonality and that there were two annual peaks

in Anqiu City in East China: the smaller peak occurred in

spring between April and June, and the larger peak occurred

in winter between October and November. Our results sup-

port the need to carry out deratization campaigns in spring

and winter around the City as well as enhance population

immunity by vaccination throughout the year. In addition, we

applied a SARIMA 0; 1; 1ð Þ 0; 1; 1ð Þ12 model to analyze the

HFRS surveillance data. Based on the results above, the

SARIMA 0; 1; 1ð Þ 0; 1; 1ð Þ12 model is reliable with high pre-

diction accuracy and can be used to predict the HFRS inci-

dence in the City in the subsequent year. The prediction

results suggested that theHFRS SARIMAmodel has a strong

ability to forecast and predict the incidence of HFRS.

Figure 2 Spatial distribution of hemorrhagic fever with renal syndrome (HFRS) incidence per 100,000 population from 2000 to 2017 (Panel (A)–Panel (R)) and their average

incidence (Panel (S)) in each town (each town is represented by a black dot with its name).
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Therefore, it is imperative and necessary to learn about the

knowledge of HFRS forecasts, which can help health agen-

cies to allocate health resources reasonably.

Our study also indicated that HFRS incidence was high

from 2000 to 2002 and remained low until in 2012

(Figure 1). The slight rebound from 2012 may be triggered

by the reconstruction and renovation of some areas of the

City in recent years, which included the renovation of

a large number of houses, destroyed the rodent habitat,

and made rats move frequently. These renovations also

decreased the quality of the living environments of villa-

gers and increased the chances of coming in contact with

hantavirus, which further caused an increase in HFRS

incidence. Based on our results, the government can allo-

cate more health resources to high-risk areas and reduce

the number of these resources used in low-risk areas to

improve the effectiveness of interventions and the alloca-

tion of medical resources.
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Figure 3 Analysis of autocorrelation and partial autocorrelation plots original time series, first-order difference series, and residuals of the ARIMA 2; 1; 1ð Þ model of monthly

cases of hemorrhagic fever with renal syndrome (HFRS).
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In our study, the GAMs were fit to further explore how

the environmental factors affect HFRS incidence. The ana-

lysis results given by the GAMs support an irregular non-

linear association between temperature and HFRS

incidence. Yet, a previous study identified a negative asso-

ciation between temperature and HFRS incidence.30 This

may be due to the fact that high temperatures can limit the

time available to farmers for outdoor activity and work,

Table 1 Comparison of Candidate SARIMA Models

SARIMA Model Goodness-of-Fit Statistics Ljung-Box Q Test

R2 RMSE MAE MaxAE Normalized BIC Statistic p-value

SARIMA 0; 1; 1ð Þ 0; 1; 1ð Þ12 0.230 3.001 2.232 11.134 2.280 19.551 0.241

SARIMA 0; 1; 2ð Þ 0; 1; 2ð Þ12 0.255 2.968 2.159 10.526 2.313 16.964 0.258

SARIMA 1; 1; 0ð Þ 1; 1; 0ð Þ12 0.046 3.341 2.536 12.873 2.495 47.655 0.000

SARIMA 1; 1; 1ð Þ 1; 1; 1ð Þ12 0.251 2.977 2.173 10.629 2.319 17.998 0.207

SARIMA 1; 1; 2ð Þ 1; 1; 2ð Þ12 0.265 2.964 2.176 10.201 2.365 16.303 0.178

SARIMA 2; 1; 0ð Þ 2; 1; 0ð Þ12 0.167 3.138 2.413 13.478 2.425 30.855 0.006

SARIMA 2; 1; 1ð Þ 2; 1; 1ð Þ12 0.257 2.980 2.170 10.271 2.376 16.425 0.173

Abbreviations: R2 , coefficient of determination; RMSE, root mean square error; MAE, mean absolute error; MaxAE, maximum absolute error; BIC, Bayesian information criterion.

Table 2 Parameter Estimation for the Selected

SARIMA 0; 1; 1ð Þ 0; 1; 1ð Þ12 model

Parameter Estimate Standard

Error

t-

Statistic

p-

value

Constant � 0.065 0.101 � 0.647 0.518

MA(1) 0.762 0.051 14.949 <0.001

SMA(12) 0.639 0.067 9.593 <0.001

Abbreviations: MA, moving average; SMA, seasonal moving average.

Table 3 Comparison of Observed Cases and Predicted Cases of Hemorrhagic Fever with Renal Syndrome (HFRS)

from January 2017 to December 2017

Month Observed HFRS Cases Predicted HFRS Cases 95% Confidence Interval Residuals

January 3.00 3.09 (� 2.72, 8.91) � 0.09

February 1.00 2.84 (� 2.97, 8.66) � 1.84

March 1.00 0.93 (� 4.89, 6.74) 0.07

April 1.00 2.04 (� 3.77, 7.86) � 1.04

May 3.00 2.24 (� 3.58, 8.05) 0.76

June 1.00 1.86 (� 3.96, 7.67) � 0.86

July 0.00 0.96 (� 4.86, 6.77) � 0.96

August 1.00 0.79 (� 5.03, 6.61) 0.21

September 0.00 2.40 (� 3.42, 8.21) � 2.40

October 12.00 2.91 (� 2.90, 8.73) 9.09

November 16.00 8.18 (2.36, 13.99) 7.82

December 3.00 7.49 (1.68, 13.31) � 4.49

Table 4 Univariate Generalized Additive Model Analysis of Meteorological Factors on Monthly Incidence of Hemorrhagic Fever with

Renal Syndrome

Meteorological Factor EDF RDF Chi-Square

Statistic

p-value Deviance

Explained (%)

Adjusted R2

Temperature 8.220 8.832 102.700 <0.001 12.500 0.064

Precipitation 1.000 1.001 70.340 <0.001 9.850 0.065

Sunshine time 8.473 8.923 61.910 <0.001 6.350 0.027

Humidity 8.399 8.894 50.930 <0.001 5.920 0.004

Atmospheric pressure 8.603 8.953 104.900 <0.001 11.900 0.065

Wind speed 6.012 7.172 250.100 <0.001 20.100 0.244

Abbreviations: EDF, effective degrees of freedom; RDF, reference degrees of freedom; Adjusted R2 , adjusted coefficients of determination.
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thereby reducing the opportunity for contact between peo-

ple and field mice, one of the most common agricultural

pests and a natural vector of hantavirus. Also, some studies

have suggested that the breeding rate of rodents is highest at

temperatures between 50 and 77°F, which are favorable

conditions for outdoor activity and work.30 However,

inconsistent findings have been reported in other studies

that indicated a positive association between temperature

and the incidence of HFRS.28,31 These discrepancies may

be due to different local conditions, such as different rodent

compositions, hantavirus serotypes, environments, and cli-

mates in the study regions, and also due to the strong

assumption on a linear association between temperature

and the incidence of HFRS. Our data indicate that precipita-

tion is negatively associated with the incidence of HFRS.

This finding is consistent with the findings of two previous

studies.32,33 Abundant precipitation could harm rodents by

destroying their habitats. Furthermore, frequent rainfall

may decrease the likelihood of rodent-to-human contact,

rodent-to-rodent contact, and virus transmission due to

decreased rodent activity and reduced human exposure.

However, several previous studies showed inconsistent

findings on the positive association between precipitation

and HFRS incidence.34–36 There is no clear explanation for

such differences, which may reflect the heterogeneity in

local climate conditions. Further studies should be

Table 5 Multivariate Generalized Additive Model Analysis of

Meteorological Factors on Monthly Incidence of Hemorrhagic

Fever with Renal Syndrome

Meteorological

Factor

EDF RDF Chi-

Square

Statistic

p-

value

Temperature 8.552 8.925 39.540 <0.001

Precipitation 4.358 5.373 19.520 0.002

Sunshine time 1.000 1.001 23.630 <0.001

Humidity 4.819 5.863 68.590 <0.001

Atmospheric pressure 7.427 8.371 46.540 <0.001

Wind speed 6.457 7.571 125.970 <0.001

Abbreviations: EDF, effective degrees of freedom; RDF, reference degrees of

freedom.
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Figure 4 Estimated smooth functions of six meteorological factors on monthly incidence of hemorrhagic fever with renal syndrome (HFRS). Shaded areas represent 2 times

standard errors above and below the estimate of the smooth functions.
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conducted in different regions to gain a better understanding

of the impact of precipitation on HFRS. The analysis results

given by the GAMs show that sunshine time and humidity

are positively associated with the monthly numbers of

HFRS cases. In addition, the HFRS incidence increases

until wind speed increases to a peak at approximately 4.0

m/s, and atmospheric pressure increases to a peak at

approximately 1018 hPa, and then decreases. This is con-

sistent with the results in a previous study.37 Our investiga-

tion provides practical evidence for the usefulness of GAMs

in HFRS prediction, with the optimum predictive climate

variables being determined for different regions.

The SARIMA models with external covariates are

named “SARIMAX” models. It is ideal to analyze the

HFRS incidence using the SARIMAX models with flex-

ible nonparametric representations of the covariates.38

However, we found in the literature the developed

SARIMAX models only include the external covariates

in a parametric additive linear fashion, and such semipara-

metric SARIMAX models and their implementation pro-

cedures have not been developed.

Conclusions
Our study results can provide a quantitative basis for local

disease control authorities to identify and potentially mitigate

the risks associated with HFRS. This can be achieved by

accurately predicting the fluctuation of HFRS with the

SARIMA models and analysis approaches presented here.

Such prediction can help improve the prevention and control

of HFRS.39
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