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Previously, our group demonstrated that nuclear expression of E3 ubiquitin ligase (MDM2) in malignant pleural mesothelioma
(MPM) is significantly associated with decreased overall survival. A possible explanation may be that overexpression of MDM2
leads to a proteasomal degradation of TP53 that eventually results in a loss of TP53-induced apoptosis and senescence. It is well
known from other tumor entities that restoration of TP53 activity, e.g., by MDM2 inhibition, results in an instant TP53-induced
stress and/or DNA damage response of cancer cells. Nutlin-3A (a cis-imidazoline analogue) has been described as a potent and
selective MDM2 inhibitor preventing MDM2-TP53-interaction by specific binding to the hydrophobic TP53-binding pocket of
MDM2. In the present study, the effects ofMDM2 inhibition inMPMviaNutlin-3A and standard platinumbased chemotherapeutic
agents were comparatively tested in threeMPM cell lines (NCI-H2052,MSTO-211H, andNCI-H2452) showing different expression
profiles of TP53, MDM2, and its physiological inhibitor of MDM2—P14/ARF. Our in vitro experiments onMPM cell lines revealed
that Nutlin-3A in combination with cisplatin resulted in up to 9.75 times higher induction of senescence (p=0.0050) and up to 5
times higher apoptosis rate (p=0.0067) compared to the commonly applied cisplatin and pemetrexed regimens. Thus Nutlin-3A,
a potent inhibitor of MDM2, is associated with a significant induction of senescence and apoptosis in MPM cell lines, making
Nutlin-3A a promising substance for a targeted therapy in the subgroup of MPM showing MDM2 overexpression.

1. Introduction

Malignant mesothelioma is a highly aggressive tumor arising
frommesothelial lined surfaces, mostly from the pleural cav-
ities (malignant pleural mesothelioma, MPM) [1, 2]. When

untreated, the median survival of patients is nine months [3–
5]. MPM patients are negatively affected by mostly insuffi-
cient current treatment modalities consisting of platinum-
containing regimes using cisplatin [6] or carboplatin [7–10]
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Table 1: Concentrations for each cytostatic substance and combination applied.

Testing Nutlin concentrations in comparison to Pemetrexed and
Cisplatin

Testing Nutlin in combination with Cisplatin in comparison to
Pemetrexed and Cisplatin

10nM Cisplatin 10nM Cisplatin
200nM Pemetrexed 200nM Pemetrexed
10nm Cisplatin + 200nM Pemetrexed 10nm Cisplatin + 200nM Pemetrexed
5nM Nutlin 10nm Cisplatin + 5nM Nutlin
10nM Nutlin 10nm Cisplatin + 10nM Nutlin
20nM Nutlin 10nm Cisplatin + 20nM Nutlin

10nM Nutlin

as first choice. Cisplatin treatment results in a response rate of
merely 14% and a median survival of less than seven months
[11]. Carboplatin resulted in similar response rates ranging
from 6 to 16% [11, 12]. In clinical practice, the antifolate
pemetrexed, as the only FDA-approved therapeutic forMPM,
is used in combination with platin compounds [6–10].

Several studies have shown the efficacy of the evaluation
of intratumoral expression of members of the folic acid
metabolism for prediction of multitargeted antifolate therapy
response in patients with different cancer entities but are
discussed controversially [10, 13–28]. As platin-analoga are
genotoxic compounds that induce DNA damage [29] leading
to TP53 induced cell cycle arrest and apoptosis [30], it is
basically conceivable that the DNA repair mechanism might
be one of the keys associated with an impaired therapy
response. As the identification ofmolecular properties shared
byMPMsmay help to overcome the poor treatment response
observed, several studies addressed this question [11, 12, 27,
31–34]. However, the reasons for the rather poor efficacy of
platinum compounds remain largely unknown.

Summing up, neither reliable predictive biomarkers nor
individualized therapeutic concepts for MPM exist until
now. Therefore, current guidelines emphasize the need of
innovative and novel therapies [35].

Since mutations of the TP53 gene are extremely rare in
MPM [36–38], other mechanisms such as deletion of the
locus or epigenetic alterations may contribute to inactiva-
tion of TP53 [36–38]. Overexpression of MDM2 in some
tumor types can lead to a loss of TP53 regulatory function
in cancer cells by its increased proteasomal degradation
[39–44]. P14/ARF, the physiological inhibitor of MDM2,
is recognized as a tumor suppressor and contributes to
this mechanism by induction of cell cycle arrest in both a
TP53-dependent and TP53-independent manner. Moreover,
miRNA regulation seems to play an important role [45–
52]. In previous studies, we have demonstrated a strong
nuclear MDM2 overexpression in approximately 25% of
MPM; this observation was restricted to epithelioid MPM
or the epithelioid components of biphasic MPM [44, 53].
Patients with MDM2-positive MPM showed a significantly
decreased overall survival (OS) and progression-free survival
(PFS) compared to MDM2-negative MPM [44, 53]. This
might be explained by a significantly decreased or completely
abolished TP53 activity and/or stability mediated by an
overexpression of MDM2 [39–43].

A restoration of TP53 activity, e.g., by MDM2 inhibition,
might result in an instant TP53 induced stress and/or DNA

damage response of cancer cells. Nutlin-3A (a cis-imidazoline
analogue) is a potent and selective MDM2 inhibitor with
an IC

50
value of 90nM [54] and prevents MDM2-TP53-

interaction by binding to the hydrophobic TP53-binding
pocket of MDM2 [55].

Thus, the aim of this study was to test the effect of MDM2
inhibition in MPM via Nutlin-3A in comparison to the
contemporary common chemotherapeutic strategies using
three cell lines showing different marker profiles concerning
TP53-status, P14/ARF- and MDM2 expression level.

2. Material and Methods

2.1. Cell Line Experiments. Based on reviewing the literature,
concentrations for the cytostatics were estimated (Nutlin-3A
[55, 56], cisplatin [57], and pemetrexed [57], respectively).

HumanMPMcell lines were obtained from theAmerican
Type Culture Collection in 2012-08 (Manassas, VA, USA).
The cell lines were authenticated and tested for contami-
nations by using a commercial service (Multiplexion, Hei-
delberg, Germany) and were last retested directly after the
experiments were finished.

NCI-H2052, NCI-H2452, andMSTO-211H were cultured
in Roswell Park Memorial Institute (RPMI) medium (Invit-
rogen, CA, USA) containing 10% fetal bovine serum (Invit-
rogen) at 37∘C in a 5% CO

2
-humidified atmosphere. Cells

were grown until 85% to 95% confluency, then washed with
phosphate-buffered saline (Invitrogen), and trypsinized with
1 ml of 0.05% trypsin-0.53 mM ethylenediaminetetraacetic
acid, phenol red (Invitrogen). Trypsinization was stopped by
adding fresh medium to the reaction. Approximately 10 𝜇l
was transferred to a hemocytometer (BRAND, Wertheim,
Germany) for cell counting purposes. 1,000 cells per well
(100 𝜇l) were seeded into microplates 96/U (Eppendorf,
Hamburg, Germany) suitable for luminescence and fluores-
cence detection. The cells were allowed to attach overnight
at 37∘C and 5% CO

2
. At the next day, the medium was

removed and fresh medium containing either one of the
cytostatics or without additive was applied to each well.
Cisplatin (10𝜇M; TEVA, Petah Tikva, Israel) pemetrexed
(200𝜇M; Lilly, IN, USA) and Nutlin-3A (5, 10 or 20𝜇M;
Sigma-Aldrich, MO, USA) was applied either alone or in
combination. Nutlin-3A had to be solubilized in dimethyl
sulfoxide (Sigma-Aldrich). Concentrations of the applied
cytostatics are summarized in Table 1. Cell cultures con-
taining cytostatics and blank medium were incubated for
three days at 37∘C and 5% CO

2
. Within 72 hours, necrosis,
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Table 2: Molecular marker constellation of the investigated MPM cell lines. The immunoexpression or mRNA-expression of the
investigated markers is shown for each investigated cell line.

Cell line MDM2 P53 P14/ARF
NCI-H2052 “+” “+” “+/-”
MSTO-211H “+/-” “+” “-”
NCI-H2452 “-” “-” “+”
-: minimal to no expression
+: expression measurable
+/-: little expression measurable

apoptosis, and cell viability were assessed by using the
following luminescence assays: CytoTox-Glo� Cytotoxicity
Assay (Promega), Caspase-Glo� 3/7 Assay (Promega), and
CellTiter-Glo� Luminescent Cell Viability Assay (Promega).
The assays were performed as recommended by the supplier.
Per cytostatic drug and luminescence assay at least four data
points were measured. Luminescence was assessed using a
SpectraMax L Luminescence Microplate Reader (Molecular
Devices, CA, USA). Luminescence (relative luminescent
units; RLU) was measured at 570nm and integration time
was adjusted to 1 second. Temperature of the SpectraMax L
was kept between 21.5∘C and 24.5∘C during measurements.
Additionally, from each cell line a FFPE block was prepared
for immunohistochemical and qPCR analysis.

2.2. RNA Isolation and Real-Time qPCR. Expression levels of
ACTB (reference gene), MDM2 and P14/ARF, were investi-
gated by TaqMan real-time qPCR in the threeMPMcell lines.
Therefore, RNA was isolated by cutting three to five sections
of 4𝜇m from the FFPE block using a microtome (Leica,
SM 2000 R, Wetzlar, Germany). Total RNA was isolated
using the miRNeasy FFPE kit (Qiagen, Hilden, Germany)
and manufacturer’s protocol, except for two modifications
(proteinase K digestion overnight; elution in 25𝜇l). RNA
concentrations were measured using UV/VIS spectrome-
try (NanoDrop ND-1000, PEQLAB Biotechnologie GmbH,
Erlangen, Germany). RNA was stored at -80∘C. For cDNA
synthesis, the iScript Select cDNA Synthesis Kit and protocol
(Bio-Rad Laboratories, Inc., CA, USA) was used with an
input of 1𝜇g total RNA per reaction.

For real-time qPCR, the TaqManGene ExpressionAssays
on Demand (AoD) for ACTB (Hs03023943 g1), MDM2
(Hs01066942 m1), and P14/ARF (Hs99999189 m1) were used
(Applied Biosystems�; CA, USA).The reaction volumes were
modified by using 50% of the recommended total reaction
volumeswith 50 ng cDNA input. Each target wasmeasured in
triplicate. Ct-values of P14/ARF andMDM2were normalized
to the mean values of ACTB. Real-time qPCR and data
analysis were performed on a Roche LightCycler 480 II
(Roche, Basel, Switzerland) and corresponding software. All
real-time qPCR experiments were performed in accordance
with the MIQE-guidelines [58].

2.3. Immunohistochemistry. Immunohistochemistrywas per-
formed according to standard protocols using an automated
stainer (Ventana Discovery XT, Munich, Germany). After
validation on reference tissues (liposarcoma for MDM2,
pulmonary adenocarcinoma for TP53), the immunohisto-
chemical investigations were performed with antibodies

directed against MDM2 (clone IF2, Calbiochem, Darmstadt,
Germany, dilution: 1:80) and TP53 (clone BP53-12, Zytomed,
Berlin, Germany; dilution: 1:5000). Pretreatment for antigen
retrieval was performed by heating in deionized water at pH
6 for 30 minutes. Protein expression was assessed using a
four-stage IHC scoring system based on the percentage of
tumor cell nuclei with a positive immunoreaction (Score 0:
no signal; Score 1 (weak expression): 1-25%; Score 2 (moderate
expression): 26-50%; Score 3 (strong expression): >50%).

2.4. Statistical Analysis. Statistical and graphical analyses
were performed with the R statistical programming environ-
ment (v3.4.2).

For analysis between single groups, either the Wilcoxon
Mann–Whitney rank sum test (non-parametric) or two-
sided students t-test (parametric) was applied. For ordinal
variables with more than two groups (luminescence signal
differences between all treatment groups), either the Kruskal-
Wallis test (non-parametric) or ANOVA (parametric) was
used to detect group differences.

The level of statistical significance was defined as p<0.05.

3. Results

The expression profiles of MDM2, TP53, and P14/ARF differ
between the investigated cell lines and are summarized in
Table 2. Scans of immunohistochemical staining’s are shown
in Figure 1; qPCR results are visualized in Figure 2. NCI-
H2052 showed pronounced MDM2-immunoexpression, but
little P14/ARF and TP53-expression. Immunohistochemi-
cally, MSTO-211H showed no expression of MDM2 and
P14/ARF, but TP53-expression was present. NCI-H2452
showed neither MDM2- nor TP53-expression, but P14/ARF
expression was detected. The investigated cell lines represent
the molecular constellation that was reported in previous
studies of patients with MPM [59, 60].

3.1. Response of MPM Cell Lines to Pemetrexed, Cisplatin,
andVaryingNutlin-3AConcentrations. Cisplatin (10𝜇M)and
pemetrexed (200𝜇M)as single agent aswell as in combination
were tested versus three Nutlin-3A concentrations (5𝜇M,
10𝜇M, and 20𝜇M).

3.1.1. Cell Viability

NCI-H2052. Any Nutlin-3A concentration was superior in
reducing cell viability compared to either cisplatin or peme-
trexed or their combination, respectively (p=0.0039). In
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(a) NCI-H2052, anti-P53 staining (b) NCI-H2052, anti-MDM2 staining (c) NCI-H2452, anti-P53 staining

(d) NCI-H2452, anti-MDM2 staining (e) MSTO-211H, anti-P53 staining (f) MSTO-211H, anti-MDM2 staining

Figure 1: Immunohistochemical staining of the investigated MPM cell lines with antibodies directed against P53 and MDM2. NCI-
H2052 shows a strong staining (Score 2) regarding P53 (a) andMDM2 (b). NCI-H2452 showed neither immunoexpression for P53 ((c), Score
0) nor for MDM2 ((d), Score 0). MSTO-211H stained positive for P53 ((e), Score 1) and MDM2 ((f), Score 1). The scale bars indicate 100 𝜇m
for pictures (a) and (b) and 500 𝜇m for pictures (c), (d), (e) and (f).

Figure 2: The bar chart shows the relative mRNA expression of MDM2, P53 and P14/ARF in the investigated MPM cell lines. On the
x-axis the investigated cell lines are shown and the respective mRNA expression of P53,MDM2, and P14/ARF. On the y-axis the 2∧ΔCt values
for the relative mRNA expression of the investigated target genes is shown after normalization against the reference gene ACTB (actin, beta).
NCI-H2052 and MSTO-211H show elevated expression of MDM2, whereas NCI-H2452 showed minimal MDM2 expression. TP53 mRNA
expression was reduced inNCI-H2452 compared to both other cell lines. P14/ARF expression was below the detection limit in the investigated
specimens.

contrast, treatment with pemetrexed alone showed signifi-
cantly elevated cell viability. Treatment with cisplatin alone
showed higher cell viability than cisplatin and pemetrexed in
combination.

MSTO-211H. Pemetrexed combined with cisplatin was asso-
ciated with the highest cell viability, followed by cisplatin
alone and the lowest Nutlin-3A concentration (p=0.0952).

Pemetrexed combined with cisplatin reduced cell viabil-
ity significantly, but Nutlin-3A (10𝜇M) exhibited a slightly
stronger reduction. The highest Nutlin-3A concentration
reduced cell viability to a minimum.

NCI-H2452. The highest Nutlin-3A concentration (20𝜇M)
reduced cell viability to aminimum (p=0.0017). 10𝜇MNutlin-
3A was the second strongest cell viability inhibitor followed
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(a) (b) (c)

Figure 3: Induction of senescence in MPM cell lines by pemetrexed, cisplatin, and varying Nutlin-3A concentrations as well as varying
Nutlin-3A concentrations combinedwith cisplatin. Figure 3 shows boxplots for cell viability/senescence for the three investigatedMPMcell
lines. On the y-axis RLU (relative luminescence units) are shown. High RLU indicate high cell viability, whereas low RLU indicate senescence.
On the x-axis, the concentrations of the cytostatics applied and the control are shown. In all threeMPMcell lines, 20𝜇MNutlin-3A showed the
strongest inhibition of cell viability compared to the other single agent cytostatics and concentrations applied.This is true against otherNutlin-
3A concentrations (NCI-H2052: p=0.021,MSTO-211H: p=0.007, NCI-H2452: p<0.001), cisplatin (NCI-H2052: p=0.021,MSTO-211H: p=0.018,
NCI-H2452: p=0.004), pemetrexed (NCI-H2052: p=0.032, MSTO-211H: p=0.008, NCI-H2452: p=0.006), and a combination of both (NCI-
H2052: p=0.003, MSTO-211H: p=0.002, NCI-H2452: p<0.001). Additionally, higher concentrations of Nutlin-3A (10𝜇M, 20𝜇M) combined
with cisplatin regimen showed the strongest inhibition of cell viability compared to nowadays approved cytostatics, either as single agents
(cisplatin: NCI-H2052: p=0.021, MSTO-211H: p=0.022, NCI-H2452: p=0.006; pemetrexed: NCI-H2052: p=0.014,MSTO-211H: p=0.029, NCI-
H2452: p<0.001) or in combination (NCI-H2052: p=0.003, MSTO-211H: p=0.014, NCI-H2452: p<0.001).

by cisplatin alone, pemetrexed alone, and cisplatin in combi-
nation with pemetrexed.The lowest Nutlin-3A concentration
showed the weakest impact on cell viability reduction.

Box plots for cell viability highlight decreasing cell viabil-
ity with increasing Nutlin-3A concentration in the tested cell
lines. The results for all cell lines regarding senescence/cell
viability are summarized in Figures 3(a)–3(c).

3.1.2. Apoptosis

NCI-H2052. In theNCI-H2052 cell line, the highest apoptosis
rate was found for 20𝜇M Nutlin-3A, whereas the other
treatment approaches showed similar apoptosis induction
(p=0.14).

MSTO-211H. In MSTO-211H, highest apoptosis rates were
found for pemetrexed followed by pemetrexed in combina-
tion with cisplatin and different Nutlin-3A concentrations
(p=0.0219). Almost no apoptosis was observed for cisplatin
alone and Nutlin-3A.

NCI-H2452. NCI-H2452 revealed the highest apoptosis rate
in response toNutlin-3A in the highest concentration (20𝜇M)
followed by cisplatin (p=0.0359). Significantly lower apopto-
sis rates were found for the remaining cytostatics.

The results for apoptosis are summarized in Figures
4(a)–4(c).

3.1.3. Necrosis. Necrosis of cells was not influenced by any
of the chemotherapeutics compared to the control (data not
shown).

3.2. Response of MPM Cell Lines to Varying Nutlin-3A Con-
centrations Combined with Cisplatin. In further experiments,
the induction of apoptosis was tested by using either aNutlin-
3A regimen or a combination of Nutlin-3A and cisplatin.
Three combinations of Nutlin-3A (5𝜇M, 10𝜇M, and 20𝜇M)
plus cisplatin (10𝜇M) were compared with cisplatin (10𝜇M)
alone, pemetrexed (200𝜇M) alone, Nutlin-3A alone (10𝜇M),
and a combination of cisplatin and pemetrexed.

3.2.1. Cell Viability

NCI-H2052. Nutlin-3A alone and its combination with cis-
platin showed significantly increased induction of senes-
cence compared to the other regimen (p=0.0051). Only
5𝜇M Nutlin-3A in combination with cisplatin showed lower
potency to induce senescence rates as 5𝜇M Nutlin-3A with-
out cisplatin. The higher Nutlin-3A concentrations (10 and
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Figure 4: Figure 4 shows boxplots for apoptosis for the investigated MPM cell lines. On the y-axis RLU (relative luminescence units) are
shown. RLU and increasing apoptosis rates show a direct correlation. On the X-axis, the concentrations of the cytostatics applied and the
control are shown. For cell line NCI-H2052 and NCI-H2452 (shown in Figures 4(a) and 4(c), respectively), 20𝜇M Nutlin-3A showed the
strongest induction of apoptosis when comparing single agents (cisplatin: NCI-H2052: p=0.084, NCI-H2452: p=0.028; pemetrexed: NCI-
H2052: p=0.011, NCI-H2452: p=0.049) but also against cisplatin combined with pemetrexed (NCI-H2052: p=0.015, NCI-H2452: p=0.008).
MSTO-211H (shown in Figure 4(b)), the highest apoptosis rate, was found for pemetrexed followed by 5𝜇M, 20𝜇M Nutlin-3A, and the
combination of pemetrexed and cisplatin (all p<0.001). When analyzing Nutlin-3A in combination with cisplatin, for cell line NCI-H2052,
(a) the highest apoptosis rate was found for 10𝜇MNutlin-3A combined with cisplatin (all p<0.001). MSTO-211H (b) apoptotic rates of 10𝜇M
Nutlin-3A combined with cisplatin comparable to the treatment with pemetrexed alone (p=0.493) significantly enhanced against all other
approaches (p=0.016). In NCI-H2452 (c), treatment with cisplatin combined with 20𝜇M and 10𝜇MNutlin3A showed the strongest induction
of apoptosis beside 20𝜇MNutlin-3A alone (p=0.004) but shows no statistically significant differences compared with 20𝜇MNutlin-3A single
agent treatment (p=0.199).

20𝜇M)with cisplatin reduced cell viability to aminimum.The
highest cell viability was found for pemetrexed followed by
the combination of pemetrexed and cisplatin.

MSTO-211H. Any combination of Nutlin-3A with cisplatin
induced significantly increased cellular senescence com-
pared to cisplatin, pemetrexed, or a combination of both
(p=0.0059). However, the combination of cisplatin and
pemetrexed showed similar efficacy compared to the lowest
Nutlin-3A/cisplatin regimen and Nutlin-3A alone. Higher
concentrations ofNutlin-3A combinedwith cisplatin reduced
cell viability to a minimum.

NCI-H2452.Nutlin-3A in combinationwith cisplatin or alone
was superior compared to the other cytostatics, except at
the lowest concentration of 5𝜇M (p=0.0089). Interestingly,
cisplatin showed comparable efficacy as 10𝜇M Nutlin-3A
alone and cisplatin in combination with 5𝜇M Nutlin-3A.
The highest cell viability was observed with pemetrexed, cis-
platin in combination with pemetrexed, and 5𝜇MNutlin-3A.
The highest Nutlin-3A concentration (20𝜇M) with cisplatin
showed the highest senescence rate.

Box plots for cell viability highlight that cell viability
decreased with increasing concentration of the cisplatin/
Nutlin-3A regimen in the tested cell lines. The results for
senescence/cell viability are summarized in Figures 3(a)–3(c).

3.2.2. Apoptosis

NCI-H2052. In the NCI-H2052 cell line, higher Nutlin-3A
concentrations combined with cisplatin applied induced sig-
nificantly increased apoptosis compared to pemetrexed alone
or combinedwith cisplatin (p=0.0069).The highest apoptosis
rates were found for 10𝜇M Nutlin-3A in combination with
cisplatin.

MSTO-211H. Cell line MSTO-211H exhibited the highest
apoptosis when treated with pemetrexed alone (p=0.0035).
The second highest apoptosis rate was found for 10𝜇M
Nutlin-3A combined with cisplatin. Pemetrexed in combi-
nation with cisplatin resulted in the third highest apoptosis
rate. Cisplatin in combination with 20𝜇M Nutlin-3A was
more potent than cisplatin alone, Nutlin-3A alone, and the
lowest concentration of Nutlin-3A (5𝜇M) in combination
with cisplatin.

NCI-H2452. The highest apoptosis rates were found for the
20𝜇M Nutlin-3A single agent as well as 10𝜇M and 20𝜇M
Nutlin-3A concentrations combined with cisplatin, followed
by cisplatin (p=0.1).

The results regarding apoptosis are summarized in Fig-
ures 4(a)–4(c).
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Table 3

(a) Response of MPM cell lines to pemetrexed, cisplatin, and varying Nutlin-3A concentrations

Cell viability
10um Cis 200um Pem 10um Cis+200um Pem 5um Nut 10uM Nut 20uM Nut

H2052 + - + ++ +++ +++
MSTO-211H 0 + 0 0 ++ +++
H2452 0 0 - - + +++

Apoptosis
10um Cis 200um Pem 10um Cis+200um Pem 5um Nut 10uM Nut 20uM Nut

H2052 0 + 0 0 0 ++
MSTO-211H 0 ++ + + 0 ++
H2452 0 0 0 0 ++ +++

(b) Response of MPM cell lines to varying Nutlin-3A concentrations combined with cisplatin

Cell viability
10uM Cis 200um Pem 10um Cis+200um Pem 5um Nut+10um Cis 10uM Nut+10um Cis 20uM Nut+10um Cis 10uM Nut

H2052 0 - 0 + ++ +++ +
MSTO-211H + + ++ ++ +++ +++ ++
H2452 + - - + ++ +++ +

Apoptosis
10uM Cis 200um Pem 10um Cis+200um Pem 5um Nut+10um Cis 10uM Nut+10um Cis 20uM Nut+10um Cis 10uM Nut

H2052 0 0 0 0 +++ ++ 0
MSTO-211H + +++ +++ + +++ ++ +
H2452 + 0 + 0 ++ +++ +

3.2.3. Necrosis. Necrosis of cells was not influenced by any of
the chemotherapeutics compared to the non-treated control
(data not shown).

All results of the cell line inhibition experiments are
summarized in Table 3.

4. Discussion

In previous studies we identified MDM2 as a prognostic
biomarker in patients with MPM and that expression is
regulated through specific miRNA [44, 52, 59]. Nutlin-3A
inhibits MDM2-TP53 interaction and thereby induces cell
cycle arrest, senescence, and apoptosis depending on the cell
type [61, 62]. Additionally, it is a nongenotoxic drug that
exhibits little toxicity in animal models and is associated with
a lower risk of resistance than conventional drugs [61–63].

Against this background we hypothesized that MDM2
overexpression, maybe in combination with partial or com-
plete loss of P14/ARF, can be targeted by a Nutlin-3A based
therapy regimen to restore TP53 activity in a subgroup of
MPM.

In this in vitro approach, the effects of the nowadays
state-of-the-art chemotherapeutics cisplatin and pemetrexed,
alone and in combination, compared to Nutlin-3A were
investigated in three cell lines covering the pattern found in
patients [44, 59]. Nutlin-3A induced senescence efficiently in
all three MPM cell lines and was superior compared to
cisplatin and/or pemetrexed, whereas apoptosis could only

be induced at high concentrations. It is known from the
literature, that the effects of Nutlin-3A are cell type specific
[61, 62, 64], rather inducing cell cycle arrest and senescence
than apoptosis [64]. Accordingly, we investigated cisplatin
and Nutlin-3A in combination to increase cellular stress by
inducing platin-based DNA damage. The combination of
Nutlin-3A with cisplatin results in increased apoptosis and
senescence rates compared to Nutlin-3A alone, as a major
function of TP53 is DNA damage and stress response [46].

The same mechanism seems to be true when combining
Nutlin-3A and radiotherapy to provide additional cellular
damage and shift the cellular TP53-response towards apop-
tosis, already shown in TP53wild-type esophageal squamous
cell carcinoma in vitro and in vivo [65]. Interestingly, Shimazu
et al. [66] found an additional growth inhibitory effect
in MPM when combining Nutlin-3A with metformin, an
mTOR inhibitor, suggesting a possible cross-talk between the
mTOR- and TP53-pathway. Of note, the authors confirmed
our findings of the cell lines NCI-H2052 and MSTO-211H as
best responders to Nutlin-3A therapy, postulating an IC50
value of 0.37𝜇M (MSTO-211H) and 0.50𝜇M (NCI-H2052),
respectively [66].

As mentioned before, overexpression of MDM2 can
lead to a loss of P53 regulatory function via increased
proteasomal degradation [39–44]. Besides its physiological
inhibitor P14/ARF, analysis of the signalling relationship
between these genes indicates an additional role of RB1 in this
signalling network [45–51]. It has been shown, that, besides
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inhibition of the MDM2-TP53 interaction, Nutlin-3A also
influences MDM2-RB1 interactions, making this a possible
explanation for Nutlin-3A based TP53 independent effects
[67].

Interestingly, even the low MDM2 expressing cell line
MSTO-211H as well as the MDM2 and TP53 negative
cell line NCI-H2452 shows reduced but clearly detectable,
induction of apoptosis via Nutlin-3A combined with cis-
platin. Also, immunohistochemically negative cells have, as
reported previously [59], detectable gene expression pattern
of MDM2, resulting in MDM2 protein concentrations below
the detection limit of IHC.We hypothesize, as MDM2 driven
regulation of TP53 is an essential mediator of apoptosis and
cell state in a physiological situation, also inhibition of the
TP53-MDM2 interaction at this low MDM2 levels will have
a beneficial effect on cytotoxicity of platinum compounds,
explaining the occurring side effects of Nutlin-3A therapy
[68]. For NCI-H2452, a cell line with absent expression of
TP53, the observed effect must be TP53 independently and
is most likely based on RB1 inhibitory effects.

Currently, Nutlin-3A is administered per os as substance
R05045337 in a multicentre phase I clinical trial for ther-
apy of hematologic neoplasia [69]. Additionally, RG7112, a
derivative of Nutlin-3A has entered phase I clinical trials in
patients with liposarcomas that are TP53 wild-type tumors
with amplified MDM2 [70]. In this clinical trial, RG7112 was
administered per os in 20 patients in a neoadjuvant setting
[68]. One patient showed partial remission and 14 showed
stable disease, but all patients suffered from side effects as
neutropenia [68]. A possible explanation might be the high
doses of medication of 1440 mg m−2 day−1 per os [68]. In
previous in vivo studies, oral administration of Nutlin-3A
showed several limitations as high input amounts of Nutlin-
3A (200-400 mg/Kg) and difficulties in administering these
high dosages [69]. It is noteworthy that efficient delivery
systems were developed using polymers as poly(lactide-co-
glycolide) (PLGA) and monoclonal antibodies [69].

5. Conclusion

In this in vitro study, our hypothesis that MDM2-overex-
pressing MPM can be targeted by a Nutlin-3A based chemo-
therapy was proven. Particularly, for an optimal biomarker
setting of MDM2-overexpression and low/absent P14/ARF
expression, superior apoptosis and senescence rates were
seen compared to the conventional chemotherapeutics. Even
for a less optimal biomarker setting with minimal MDM2
expression, a favorable induction of apoptosis and senescence
was obvious for Nutlin-3A in combination with cisplatin
compared to the conventional drug regimen. Therefore,
Nutlin-3A based therapy approach could be of great value for
a subgroup of patients with MPM.
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