
Frontiers in Neurorobotics www.frontiersin.org March 2010 | Volume 4 | Article 1 | 1

NEUROROBOTICS
ORIGINAL RESEARCH ARTICLE

published: 03 March 2010
doi: 10.3389/fnbot.2010.00001

lence dominates. The local concentration gradient hence fl uctuates 
constantly in magnitude and direction and does not always point 
to the source. The fi ne-scale structure of the chemical distribution 
consists of sparse, dispersed and sporadic patches of odors sur-
rounded by wide voids, and the probability of encountering one of 
these patches decays exponentially with distance (Schraiman and 
Siggia, 2000). Tracking scents and locating odor sources in such 
dilute conditions is a major challenge in current robotics.

Recently, Vergassola et al. (2007) proposed a strategy, named 
‘infotaxis’, for searching in turbulent environments. Infotaxis relies 
on Bayesian inference to maximize information gain, and exploits 
the scarcity of odor encounters. It involves a period of explora-
tion during which the agent (robot) builds a probabilistic map of 
the source location, in a similar way to Pang and Farrell (2006). 
As the agent accumulates information, the map becomes sharper 
and its entropy – which refl ects the uncertainty about the loca-
tion of the source – decreases. Because the expected search time is 
determined by the uncertainty of the belief, the robot navigates to 
maximize the expected reduction in entropy, and therefore the rate 
of information acquisition. Maximizing information gain entails a 
competition between two confl icting terms. The exploitative term 
drives the robot toward locations where the probability of fi nding 
the source is high. The explorative term favors motion to regions 
with lower probabilities of source discovery but high rewards in 
terms of information gain. Interestingly, although animal pat-
terns such as ‘casting’ or ‘zigzagging’ are not pre-programmed or 
imposed through explicit rules of movement, these behaviors do 
actually emerge naturally from the trade-off between exploration 
and exploitation at the core of the model (Martinez, 2007).

INTRODUCTION
Olfactory cues are employed by many forms of life to locate food 
or fi nd mates with a high degree of precision. Moths and bacteria 
are the most illustrative and well documented examples of naviga-
tion strategies under real world conditions. The later rely on local 
concentration gradients to direct toward the source of a nutrient 
(Berg, 1975). Male moths on the other hand are guided by phe-
romonal cues to locate their female (Baker et al., 1985; Birch et al., 
1990; Mafra-Neto and Carde, 1994). Upon sensing an odor signal, 
they surge upwind, since a good estimate of the source direction 
is provided by the direction of the fl ow. When odor information 
vanishes, they exhibit an extended cross-wind casting to perform a 
local search until the plume is reacquired. Considerable research has 
been carried out in an attempt to unravel the biological mechanisms 
that control some of these behaviors and apply them to robotics 
(Murlis et al., 1992; Vickers, 2000).

Computer or robot-based implementations of biomimetic strat-
egies are relevant not only for testing hypotheses about animal 
behavior (Belanger and Arbas, 1998), but also for tackling practical 
problems for which pure engineering solutions are still missing, 
e.g., fi nding dangerous substances such as explosives or drugs, or 
exploring inhospitable environments. Previous robotic attempts 
have been mainly based on plume tracking – performing a local 
search within the plume – or chemotaxis – climbing a concentration 
gradient (Kowadlo and Russell, 2008). Even if shown to work for 
large environments (Farrell et al., 2005), these strategies are truly 
effective in dense conditions only, i.e., close to the source where the 
odor plume can be considered as a continuous cloud. Far from the 
source, odor dispersal occurs mainly through advection and turbu-
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Promising results were achieved with infotaxis in simulation, 
even for environmental conditions that consider turbulence. 
Nevertheless, matching the complexity of the world in simula-
tion has been shown to be extremely diffi cult (Webb, 2000). A 
formal description of the instantaneous structure of the plume 
in a turbulent fl ow may for instance require simplifi cations or 
assumptions to make the problem tractable. The use of a robot, 
on the contrary, compels to consider and confront all factors in 
the environment, yielding complete results. We present hereafter a 
successful solution for implementing infotaxis within a real robotic 
system, and we assess its performance in terms of effectiveness 
and robustness under turbulent conditions. This framework is 
employed as a testbed to assert complete and rigorous evalua-
tions under real conditions. In addition, we confront infotaxis in 
simulation to time-varying environments such as the ones used 
in biological experiments, and thereby further evaluate the biomi-
metic characteristics pointed out by Vergassola et al. (2007). Our 
evaluation is twofold, and consists of both quantitative analyses 
of the agent’s propensity to surge upwind or to cast cross-wind, 
and qualitative interpretations of what compels him to exhibit 
such behaviors.

MATERIALS AND METHODS
Although infotaxis is fully described in Vergassola et al. (2007), 
for the sake of completion the algorithm is sketched in Appendix. 
Infotaxis relies on the capacity to exploit the fi nest characteristics 
of the turbulent medium, i.e., discontinuous odor cues dispersed by 
the fl ow. A pre-requisite is that odor ‘cues’ are detected. They may 
refer either to brief and discrete odor patches or to odor fi laments 
with extended spatiotemporal characteristics.

We tested extensively several gas sensors that are commercially 
available and none of them suited our needs in terms of response 
time and sensitivity. They saturate at medium concentrations 
and require a long-lasting phase of degassing before they can 
react again. To circumvent the problem, we used a temperature 
sensor that reacts quickly and does not saturate easily. Note that 
the transport model of heat is identical to the one of smell in 
environments where advection clearly dominates over diffusion 
(high Peclet numbers; Schraiman and Siggia, 2000) so that the 
statistical model of the turbulent medium (only the time- averaged 
concentration is used) described in Vergassola et al. (2007) may 
be used for updating the source distribution map. Such a model 
considers independent detections over time, regardless of pre-
vious events. Yet in reality an odor patch or fi lament covers a 
certain volume and generates correlated hits as it passes in front 
of the sensor. In order to ensure that consecutive detections are 
not overcounted, the posterior probability distribution of the 
source is derived from a modifi ed model of turbulent medium 
which accounts for correlated hits (see Appendix). The model is 
built from the time intervals of no-detection and from the transi-
tions from no-detection to detection. In our implementation, the 
transitions occur whenever the sensor signal exceeds an adaptive 
threshold, whose role is to fi lter noisy oscillations due to wind or 
sensor fl uctuations. The threshold is derived by averaging sensor 
readings over two time-steps (40 samples), and adding a constant 
term established empirically in the absence of stimuli (set to 25 
under our environmental conditions – Figure 1, bottom). Note 

nevertheless that since the duration of the detections is not taken 
into account, all the patches are equally considered, irrespective 
of their size.

Robot infotactic experiments were done with a Koala robot 
designed by K-Team SA, Switzerland and equipped with an on-
board low-level CPU for motion control. The sensor output is 
sampled at 10 Hz, amplifi ed (Amplifi er LMC6462 from National 
Semiconductor) and quantized with the analog to digital converter 
available on the robot (10 bits of resolution, 5 V of dynamic range). 
The heat source had a power of 2000 W and a fan created a wind 
speed of 2.5 m/s. The wind is assumed to be constant and in the 
same direction at any time, i.e., local wind speed and direction 
needed not to be measured by the robot. In order to limit corruption 
of the temperature sensor by the additional airfl ow created from the 
movement of the robot, the motion was implemented as consecu-
tive discrete steps and sensor readings were taken while the robot 
staying still. Steps of 20 cm were used so as to minimize the effect 
of discontinuities. The navigation experiments were performed in 
an arena of 5 m long by 4 m large resulting in a grid-based model 
of the environment of 25 × 20 points. In order to obtain statistically 
comparable results, all trials reported hereafter are initialized with 
the robot located at (10,2) and the source at (9,24). At every step, the 
agent updates its belief (probability map of the source distribution) 
according to the history of detection and non-detection events and 
chooses the best strategy in terms of entropy minimization among 
the fi ve possible actions, i.e., making a move to one of the four 
neighboring steps or staying still. The robot is assumed to have 
reached its goal at one step from the source.

Complementary infotactic simulations were performed in 
Python. Continuous and pulsed sources were considered (see 
Appendix). For the continuous case, the parameters are: diffu-
sivity D = 1, life-time of particle τ = 1.5 and emission rate of the 
source R = 2, expressed in arbitrary units. Wind speed is set to 
V = −2.5 m/s and the size of the sensor is a = 1 cm. These param-
eter values were established empirically to match the real robotic 
environment. For the pulsed case, the same values of parameters 
were used and the source frequency was set to 0.2 Hz for slow pulses 
(pulse duration = 0.2 s, air gap between pulses = 1.3 s) and 0.67 Hz 
for fast pulses (pulse duration = 0.2 s, air gap = 4.8 s).

RESULTS
To test the effectiveness of robot infotaxis for searching in dilute 
conditions, we performed 21 robot runs (see one example in 
Figure 1) and compared them with 150 simulations of Infotaxis. 
For 20 trials out of 21, the robot was able to reach the source 
within a reasonable time limit of 150 steps, above which the robot 
is considered to be lost. This case occurred in one trial only, during 
which too many detections persuaded the agent that the source was 
already found, i.e., exploitation was predominantly compelling the 
robot to stay in its current location rather than exploring further 
and gather information. For the successful runs, the number of 
detections was low (7.53 ± 6.42, mean ± SD), refl ecting the dilu-
tion condition of the experiments. The cumulative distribution of 
the number of detections for robot infotaxis, plotted in Figure 2 
(left), is not statistically different from the one obtained with simu-
lated infotaxis (8.59 ± 5.85, mean ± SD; two-sample Kolmogorov–
Smirnov test p = 0.26). The search time cumulative distributions 
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between simulated and robot infotaxis were also not different 
(Figure 2, right, two-sample Kolmogorov–Smirnov test p = 0.73). 
The search time distribution is well described by a gamma distri-
bution with shape and scale parameters 8.5 and 7.5 respectively. 
From Figure 3 (left), we note that robot trajectories are similar 
to those obtained in simulations, e.g., biomimetic patterns such 

as ‘extended crosswind casting’ or ‘zigzagging upwind’ typical of 
moth fl ight emerge naturally from the trade-off between explo-
ration and exploitation (Vergassola et al., 2007). The track angle 
histogram of robot infotaxis shown in Figure 3 (right) presents a 
peak at 0° (p = 0.001, Rao’s circular test of non-uniformity), indi-
cating a predominance of the robot to move upwind. Unimodal 
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FIGURE 1 | Robot infotaxis in action. Top: Snapshot of the robot at particular 
times during its path. Middle: Corresponding source distribution maps (belief 
functions). The blue (resp. red) color code corresponds to low (resp. high) 
probabilities. The path of the robot from start to current time is superimposed to 
the map as consecutive red dots when there is no detection, a green dot 

indicating a detection. Wind blows downwards. The source is at location (9,24), 
the robot starting point is (10,2). Bottom: Detection procedure. The sensor 
signal, recorded at 10 Hz during the robot path, is shown in red. An adaptive 
detection threshold, in blue, is derived from the smoothing average, in green. 
The fi ve detected patches are indicated as black dots.
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track angle histograms with mode at 0 are also representative of 
moths fl ying upwind in turbulent plumes (Mafra-Neto and Carde, 
1994; Lei et al., 2009).

Infotactic simulations and robotic experiments described above 
were done with a continuous source. Females of several moth species 
however are known to rhythmically extrude their pheromone glands 
(Baker et al., 1985). To assess the capacity of infotaxis to cope with 
real conditions such as those faced in biology, we considered simu-
lations with a pulsed source model that rhythmically releases odor 
patches in the environment. Note that there is a mismatch between 
the pulsed source generator and the continuous source model used 
to update the internal beliefs in Infotaxis. We performed 60 repeated 
simulation runs, 30 with fast pulses and 30 with slow pulses. For all 
trials, the agent was able to reach the source within a time limit of 
200 steps. Typical infotactic trajectories under fast and slow pulsed 
conditions are shown in Figure 4 (left) and the percentage of wind-
oriented movements per trajectory in the two regimes in Figure 4 
(right). Percentages of downwind movements were low and not sig-
nifi cantly different in both conditions, refl ecting the high success rate 
of the searcher. We found however that the searcher moves mainly 

upwind in the fast pulsed condition and crosswind in the slow pulsed 
condition. We further investigated this behavioral difference by look-
ing at the updates of the beliefs under both conditions. With fast 
pulses (Figure 5A), intervals of no-detection between pulses are short 
enough to keep the searcher on exploitation. Each update sharpens 
the posterior distribution. The high probability bump emerging in 
the wind direction induces the agent to move upwind. With slow 
pulses (Figure 5B), ‘unexpected’ long periods of time with no odor 
encounter broaden the posterior distribution, hence compelling the 
agent to counterturn and explore the environment in large spirals.

Three videos are appended as Supplementary Material and illus-
trate these evaluations. They cover the foundations of infotaxis, its 
robotic implementation and its effi ciency when confronted to a 
pulsed source (infotaxis.mpeg, robot_infotaxis.mpeg, pulsed_info-
taxis.mpeg).

DISCUSSION
The fundamental aspect of infotaxis is to exploit the fi nest char-
acteristics of the turbulent medium, i.e., discontinuous odor 
patches dispersed by the fl ow. A requirement is thus to be capable 
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of  resolving single cues and to exploit them to guide the search. 
Output neurons in the pheromonal system of the moth have been 
shown to respond to pulses of pheromone delivered at a rate up to 
10 Hz. When their capacity to follow pheromone pulses is pharma-
cologically disrupted, moths do not navigate successfully toward 
the source (Lei et al., 2009). Likewise, robot infotaxis did not suc-
ceed in the search for odor sources because the transient response 
of gas sensors is too slow to track individual odor patches above 
1 Hz (data not shown). As the diffusion model of heat is identical 
to the one of smell, we used instead a fast temperature sensor and a 
heat source. In our experiments, infotaxis led to effective searching 
and did not require fi ne tuning of parameters to work in the real 
environment. Seven detections on average and as few as three in 
many trials were suffi cient to reach the source, refl ecting the dilute 
condition of the experiments. The number of detections as well as 
the search time were not statistically different between simulated 
and robot infotaxis (see Figure 2).

We found however that the search was infl uenced by the frequency 
at which the source was pulsed. The searcher moved mainly upwind 
in the fast-pulsed condition and crosswind in the slow-pulsed case 
(Figure 4, right). Such a frequency modulated behavior is in agree-
ment with biological observations. Experiments with a puffi ng device 
revealed that upwind fl ights of moths were sustainable in fast but 
not slow pulsed plumes (Mafra-Neto and Carde, 1994; Vickers and 
Baker, 1994). It has been emphasized that a tempo of cues above a 
certain frequency is needed to ensure odor encounters before the 
moth undertakes a counter-turning or casting behavior.

Our infotactic evaluations illustrate that the behavior of the 
searcher not only depends on the detections made in the past, 
but also on the expectations derived from his internal belief. Note 
from Figure 5A that every single detection updates the agent’s 
belief in a way that pushes him forward as a fi rst step. When the 
information provided by the cues cannot be further exploited to 
drive upwind, spiraling becomes a better strategy (as in Figure 5B) 
unless a new cue is detected. The correlation between both the 
external detection rate and the internal expectations leads to effi -
cient trajectories. Fast frequencies in Figure 5A for instance bring 

new cues with a tempo that matches better the searcher’s internal 
expectations (i.e., before he switches to exploration mode), and 
iteratively updates his belief so that the behavior is targeted toward 
the goal. Resulting trajectories are mainly straight and upwind, 
except close to the source where too many detections persuade 
the agent that the source is already found, hence producing short-
length zigzags and very localized spirals. On the contrary, in the 
slow-pulsed condition, unexpected long time-periods without 
odor encounters result from a mismatch which compels the agent 
to counter-turn and explore in large spirals as the probability 
map gets broadened. In both cases, a continuous belief model 
is assumed.

The question of whether moths do actually employ infotac-
tic strategies as described is yet of a more delicate nature. The 
assumption that the agent constructs a detailed grid-based map of 
his environment is very computationally expensive, and requires 
the robot to be acquainted with the size and shape of the arena. 
Biological experiments have reported however that similar prin-
ciples account for navigation strategies in rats. These mammals 
employ internal spatial maps that combine both a topographical 
description of the environment (encoded by ‘grid cells’) and loca-
tion specifi c information (‘place cells’) (Hafting et al., 2005), in a 
similar way to the grid-model of the arena used in Infotaxis which 
gets updated as localized cues are detected. Yet simpler descriptions 
of the environment could also be considered, for which infotactic 
strategies may prove equally effi cient.

CONCLUSION
Previous experiments from the same laboratory revealed that a 
concentration gradient can be extracted from a turbulent plume 
in dense conditions when the robot moves slowly (2.5 cm/s) and 
near to the source (search area = 2.9 m2, see e.g., Figure 4, left 
in Martinez et al., 2006). To move the robot in the vicinity of 
the source, previous works considered the possibility of explor-
ing the environment by using vision, in addition to olfaction 
(e.g., Martinez and Perrinet, 2002). The main limitation is that 
odor source candidates need to be identifiable from visual fea-
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The searcher considers a continuous source model whereas the actual 
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p < 0.05 (Kruskal–Wallis test followed by pairwise comparisons, n = 30 trials 
per condition).
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tures. Here we tackled the more difficult problem of searching 
in dilute conditions, for which only the information released 
by the source and wind direction were used. We implemented 

infotaxis on a real robot and considered a larger search area 
(20 m2) and faster robot speed (14 cm/s) than in our previous 
experiments.

A

t1 t2 t3 t4 t5
B

t′1 t′2 t′3 t′4 t′5

FIGURE 5 | Navigation patterns observed when infotaxis is confronted to a 

pulsed source (fast pulses in A, slow pulses in B). Top rows represent 
snapshots of the simulated environment at different times [pulsed source 
located in r0 = (25, 2), wind blows downwards] and bottom rows are for the 
corresponding source distribution (belief function). False blue and red colors 
correspond to low and high probabilities, respectively. The path of the robot is 
superimposed to the map as consecutive red dots when there is no detection, 
and green dots for detections. (A) High-frequency pulsed patches provoke new 
detections before the robot starts spiraling. High probabilities are frequently 

updated and assigned to upwind locations (at times t1, t3 and t5) hence pushing 
the agent forward. (B) Between pulses, long intervals of clean air – during which 
no detections arise – compel the agent to explore regions where previous 
detections were recorded. Probabilities updates take the form of concentric 
ellipses that spread as the robot navigates around them, as clearly seen at times 
t2′, t3′ and t4′. (Note that such behavior – although with much smaller radius – 
may also be recorded for the fast-pulsed case when the agent is close to the 
source, due to an excessive amount of detections that push him to switch to 
exploitation mode).
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The robustness of infotaxis was evaluated with respect to 
 inaccurate modeling by the agent. The parameters employed 
internally to guide the search were not fi ne-tuned or adapted over 
time, and could differ from the instantaneous characteristics of 
the  surrounding. Despite this discrepancy, the robot was able to 
reach the source within a reasonable time limit and produced very 
few downwind movements (Figure 4, right). This emphasized the 
capability of the model to cope with the unpredictability imposed 
by real environments. Additional analyses with a pulsed source 
pointed out that frequencies at which cues are encountered account 
for the effi ciency of the strategy followed, just as reported in the 
case of moths, which depends on how well detection rates match 
the internal map used by the searcher.

The extension of Infotaxis to cope with stereo sensing capabili-
ties, just as in the case of insects, may prove benefi cial in terms 
of effectiveness and ought to be considered as future work. Two 
sensors, employed in parallel to update the probability map, may 
indeed increase directionality. Further applications of Infotaxis to 
collective search have also been reported recently by Masson et al. 
(2009) with impressive gains in search times.

APPENDIX: INFOTAXIS
Infotaxis is fully described in Vergassola et al. (2007). For completion, 
we detail its core modules in terms of probabilistic robotics (Thrun 
et al., 2005) as employed in our robot implementation. The model 
combines a belief function – the robot internal knowledge about his 
environment, updated as cues are encountered – along with decision-
making – execution of an action that maximizes a reward.

STATISTICAL MODEL OF THE ODOR PLUME AND GRID-BASED MAP OF 
THE ENVIRONMENT
In Infotaxis, the robot is provided with a statistical description of the 
odor plume that he uses to infer the probability that the source be 
located at any point of his internal grid-based probability map of the 
environment. The statistical description of the odor plume is derived 
from the resolution of the following advection-diffusion equation
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for an odor source located at r
0
 and emitting ‘particles’ or patches’ 

at a rate R. The particles propagate with diffusivity D, have a mean 
lifetime described by τ and are advected by a mean current or wind 
V. U(r) is the local concentration at location r and δ is the Dirac 
delta function. In such an environment, the mean frequency of 
odor encounters with a spherical sensor of radius ‘a’ follows the 
Smoluchowski’s (1917) expression

R(r) = 4πDa · U (r) (2)

This model provides a framework by which to take into consid-
eration the geometry of the environment when navigating. It can 
be easily solved through numerical methods and makes it possible 
for autonomous robots to iteratively infer knowledge about their 
surrounding. In the continuous case, the solution to Eq. 1 writes:
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For the non-continuous case, i.e., under the infl uence of a pulsed 
odor source R(t) at location r
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, we derived such function by solv-
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BELIEF FUNCTION
Let us consider the trace Γ
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where �(Γ
t
|r

0
) is the likelihood of experimenting the trace Γ

t
 for 

a source in r
0
.

In our robot implementation of infotaxis, consecutive detections 
are not considered as they belong to a same patch and are corre-
lated (see Section “Materials and Methods”). We therefore employ 
the following likelihood function (from Eq. 13 in supplementary 
materials of Vergassola et al., 2007) instead of the one considered 
in the original algorithm
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i ie R t ti Vi| ( ), |
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r r r
r r

0
1

0

0
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∑ ∫
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(6)

in which T represents the transitions from no-detection to detection, 
i.e., new patches, and the V

i
’s are the time intervals of absence of 

detection. Note from Eq. 6 that the absence of correlations permits 
to update the probability map without storing the whole history. 
Indeed, P

t+Δt
(r

0
) = P

t
(r

0
) update Δt (nparticles), where ‘nparticles’ 

is the number of detections that the searcher experienced during 
the short time interval Δt. Memory requirements are therefore kept 
to a minimum.

DECISION-MAKING
For the decision-making, the robot moves in the direction that 
minimizes its local uncertainty about the location of the source. 
The expected reduction of entropy – reward function – for the 
robot moving from r

i
 to r

j
, consists of two terms:

ΔH i jr r→( )= ( ) −( )P Ht jr 0
 

(7)

+ − ( )⎡⎣ ⎤⎦1 P St jr Δ
 

(8)

The fi rst term (Eq. 7) evaluates the reduction of entropy if the 
source is found at the next step. Reaching the source in r

j
 occurs 

with estimated probability P
t
 and the entropy goes from H to 0. 

The second term (Eq. 8) corresponds to the reduction of entropy 
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insects use them. Annu. Rev. Entomol. 
37, 479–503.

Pang, S., and Farrell, J. (2006). Chemical 
plume source localization. IEEE 
Trans. Syst. Man Cybern. B Cybern. 
36, 1068–1080.

Schraiman, B. I., and Siggia, E. D. (2000). 
Scalar turbulence. Nature 405, 
639–646.

Smoluchowski, M. (1917). Versuch einer 
mathematischen theorie des koagu-
lationslinetic kolloider losungen. Z. 
Phys. Chem 92, 129–168.

Thrun, S., Burgard, W., and Fox, D. 
(2005). Probabilistic Robotics 
( I n t e l l i g e n t  R o b o t i c s  a n d 
Autonomous Agents). Cambridge, 
MA, The MIT Press.

Vergassola, M., Villermaux, E., and 
Shraiman, B. I. (2007). Infotaxis as a 
strategy for searching without gradi-
ents. Nature 445, 406–409.

Vickers, N. (2000). Mechanisms of animal 
navigation in odor plumes. Biol. Bull. 
198, 203–212.

Vickers, N., and Baker, T. (1994). 
Reiterative responses to single strands 
of odor promote sustained upwind 
flight and odor source location by 

if the source is not found. It occurs with probability 1 − P
t
 and 

ΔS represents the information gain in r
j
 coming from expected 

odor encounters. The fi rst term is seen as exploitative as it drives 
the searcher toward locations where the probability of fi nding the 
source is high. The second term is explorative as it compels the 
searcher toward regions with lower probabilities of source discovery 
but high information gains.

The expected reduction of entropy in the case where the source 
is not found derives from the probability sum of experiencing i new 
detections during the movement, where encounters are modeled 
by means of a Poisson-distributed random variable ρ

i

Δ Δ Δ ΔS S S S= + +ρ ρ ρ0 0 1 1 2 2...  (9)

therefore accounting for all possible cases that new information is 
detected along the way (either 1, 2 or n encounters).
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