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Female fertility declines with age, and this natural variation culminates in reproductive
senescence. Human follicular fluids are rich in low-molecular weight metabolites which are
responsible for the maturation of oocytes. The metabolomic approaches are powerful
tools to study biochemical markers of oocyte quality in the follicular fluids. It is necessary to
identify and quantify the reliable metabolites in follicular fluids reflecting oocyte
developmental potential. The goal of this study is to conduct a metabolomic analysis of
the follicular fluids in women of different ages and study the metabolomic profile of the
follicular fluids in relationship with oocyte quality in assisted reproductive technology (ART)
treatment. A total of 30 women seeking for ART treatment at the Women’s Hospital,
Zhejiang University School of Medicine from October 2014 to April 2015 were recruited for
the present study. Fifteen women aged from 39 to 47 were grouped as advanced
maternal age, and the other 15 women aged from 27 to 34, as young controls. Ovarian
stimulation and oocyte retrieval were conducted using a regular protocol involving mid-
luteal pituitary down-regulation and controlled ovarian stimulation. Follicular fluids from
mature follicles were collected and centrifuged for analyses. Liquid Chromatography-
Mass Spectrometry (LC-MS) and Gas Chromatography-Mass Spectroscopy (GC-MS)
were used to perform the quantitative metabolomic analysis. The follicular fluid levels of
311 metabolites and the metabolic significance were assessed. 70 metabolites showed
significant differences between women with young and advanced ages. Follicular fluids
from women with advanced age showed significantly higher levels of creatine, histidine,
methionine, trans-4-hydroxyproline, choline, mevalonate, N2,N2-dimethylguanosine and
gamma-glutamylvaline, as compared to those from the young age group. 8 metabolites
were found significantly correlated with maternal age positively. Moreover, 3 metabolites
were correlated with the number of oocytes retrieved, and 5 metabolites were correlated
with cleaved embryo numbers, both negatively. The follicular fluids from women
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undergoing ART treatment exhibited age-dependent metabolomic profile. Metabolites
associated with oocyte quality were identified, suggesting them as potential biomarkers
for oocyte maturation and ART outcomes.
Keywords: ovarian aging, follicular fluid, metabolomics, biomarkers, assisted reproductive technology, LC-MS,
GC-MS
INTRODUCTION

A worldwide growing trend for women to delay motherhood has
contributed to the increased incidence of female subfertility as well
as the need of fertility treatments for women at advanced ages. It is
generally accepted that age alone has an adverse effect on fertility,
especially the oocyte quality (1). Maternal age remains the most
valuable factor to predict the duration of reproductive life span (2).
Age-dependent decline in ovarian function, characterized by
decreased oocyte numbers and qualities (3), is attributed to both
genetic and environmental factors (4). Follicular fluid, the
microenvironment for oocyte development, has been suggested to
influence oocyte quality, sperm-mediated oocyte activation as well
as early embryo development (5). The human follicular
microenvironment contains a complex mixture of steroids, lipids,
small peptides, antioxidant enzymes and other metabolites (6),
many of which are known to be crucial for oocyte development.
For instances, the follicular level of anti-Mullerian hormone was
reported to be correlated with oocyte developmental competence
during in vitro fertilization (7). Lipogenesis and lipolysis play an
important role in providing sufficient energy source during oocyte
maturation (8, 9). Redox homeostasis is essential to oocyte
maturation (10, 11) and its disturbance is involved in the
pathogenesis of reproductive disorders (12), such as endometriosis
and polycystic ovarian syndrome (13, 14).

Metabolite changes can reflect important maternal biological
physiology. A recent study showed that identification of blood
metabolites in pregnant women could accurately predict
gestational age (15). Metabolomic analysis of follicular fluids is
therefore believed be to a good approach to assess oocyte and
embryo qualities (16). Levels of metabolites in the follicular fluids
were reported to be useful to predict the gamete development
potential and select embryos capable of developing into the early
cleavage stage (17, 18). However, it remains unknown whether
and how the metabolic profile of the follicular fluids would
change as the age advances, affecting oocyte maturation or their
later development. In the present study, we collected follicular
fluid from 30 women of different ages (from 27 to 47 years old)
undergoing assisted reproductive technology (ART) treatment
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for metabolomic analysis. Women of advanced and young ages
were compared for their follicular metabolic profiles. Correlation
analysis between follicular fluid levels of various metabolites and
quantity and quality of oocytes was also performed.
PATIENTS AND METHODS

Woman Subjects and Ethical Approval
Women seeking for ART treatment at the Women’s Hospital,
Zhejiang University School of Medicine from October 2014 to
April 2015 were recruited for the present study. Fifteen women
aged from 39 to 47 were grouped as advanced maternal age, and
the other 15 women aged from 27 to 34, as young controls. All
the procedures were approved by the Institutional Ethics
Committee of Women’s Hospital, Zhejiang University School
of Medicine. All participants gave their written informed
consents. The inclusion criterion for women seeking for ART
treatment was women with tubal factor infertility. Exclusion
criteria of subjects were as follows: women who applied for pre-
implantation genetic testing (PGT), women with chronic
hypertension, heart disease, diabetes, or donor oocyte/embryo
recipient cycles.

Collection of Follicular Fluids
Ovarian stimulation and oocyte retrieval were conducted using a
regular protocol involving mid-luteal pituitary down-regulation
and controlled ovarian stimulation as we previously reported
(19). Oocytes were retrieved by ultrasound-guided transvaginal
follicular aspiration. In each woman, the follicular fluid from a
mature follicle (18-20 mm in diameter) was aspirated and
collected individually into one tube before the oocyte was
retrieved. The follicular fluid was immediately transported to
the laboratory at room temperature and centrifuged at 2000 rpm
for 10 minutes to remove erythrocytes and leukocytes before the
supernatant was collected and stored at -80°C until further
analysis. Mass spectrometry analysis was performed within one
year after sample collection.

Specimen Processing and Metabolomics
Analyses
Each follicular fluid sample was accessioned into the Laboratory
Information Management System (LIMS) and assigned by the
LIMS a unique identifier that was associated with the original
source identifier only. This identifier was used to track all sample
handling, tasks, and results. Samples were prepared using the
automated MicroLab STAR® system from Hamilton Company.
A recovery standard was added prior to the first step in the
February 2022 | Volume 13 | Article 818888
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extraction process. Proteins were precipitated with methanol
under vigorous shaking for 2 minutes (Glen Mills GenoGrinder
2000) followed by centrifugation. The resulting extract was
divided into five fractions for: 1) ultra-performance liquid
chromatography (UPLC) with positive ion mode electrospray
ionization, 2) UPLC with negative ion mode electrospray
ionization, 3) Liquid Chromatography (LC) polar platform, 4)
Gas Chromatography-Mass Spectroscopy (GC-MS), and 5)
backup. Samples were placed briefly on a TurboVap®

(Zymark) to remove the organic solvent. For LC, the samples
were stored overnight in liquid nitrogen before preparation for
analysis. For GC, each sample was dried by vacuum for overnight
before analysis.

Several types of controls were used in concert with the
experimental samples: 1) a pooled matrix sample generated by
taking a small volume of each experimental sample served as a
technical replicate throughout the data set, 2) extracted water
samples served as process blanks, and 3) a cocktail of internal
standards that were carefully chosen not to interfere with the
measurement of endogenous compounds. Instrument variability
was determined by calculating the median relative standard
deviation (RSD) for the standards that were added to each
sample prior to injection into the mass spectrometers. Overall
process variability was determined by calculating the median
RSD for all endogenous metabolites present in 100% of the
pooled matrix samples. Experimental samples were randomized
across the platform run with internal standards samples spaced
evenly among the injections, as outlined in Figure 1. For studies
spanning multiple days, a data normalization step was performed
to correct variation resulting from instrument inter-day tuning
differences. Essentially, each compound was corrected in run-day
blocks by registering the medians to equal one (1.00) and
normalizing each data point proportionately.

Mass Spectrometry Analysis
For LC-MS analysis, the sample extract was dried then
reconstituted in acidic or basic LC-compatible solvents, each of
which contained 12 or more injection standards at fixed
Frontiers in Endocrinology | www.frontiersin.org 3
concentrations. One aliquot was analyzed using acidic positive
ion-optimized conditions and the other using basic negative ion
optimized conditions in two independent injections using
separate dedicated columns (Waters UPLC BEH C18-2.1×100
mm, 1.7 mm). Extracts reconstituted in acidic conditions were
gradient eluted using water and methanol containing 0.1%
formic acid, while the basic extracts, which also used water or
methanol, contained 6.5 mM ammonium bicarbonate.

The samples destined for analysis by GC-MS were dried
under vacuum for a minimum of 18 hours prior to being
derivatized under dried nitrogen using bistrimethyl-
silyltrifluoroacetamide. Derivatized samples were separated on
a 5% diphenyl or 95% dimethyl polysiloxane fused silica column
with helium as carrier gas and a temperature ramp from 60°C to
340°C in a 17.5 minutes period. Samples were analyzed on a
Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole
mass spectrometer using electron impact ionization (EI) and
operated at unit mass resolving power.

Statistical Analysis
The continuous variables of demographics and clinical outcomes
were summarized as mean ± standard deviation (SD).
Differences of continuous variables across groups were tested
with the unpaired Student’s t-test. The principal component
analysis (PCA) was applied for ground discrimination. The levels
of 311 metabolites between the advanced age group and young
control group were separately compared by using the t-test. To
account for the multiple comparisons, the Hochberg and
Benjamini false discovery rate (FDR) adjusted p-value (i.e., q-
value) less than 0.05 was applied to select the statistically
differentially expressed metabolites between the two groups.
The fold change in metabolites was calculated as the ratio of
metabolite levels in the advanced age group to the young control
group. The Pearson correlation was used to analyze the
correlations between each identified metabolite (q-value <
0.05) and maternal age, number of oocytes retrieved and
number of cleaved embryos. The heatmap was used to
intuitively distinguish the metabolites between the two groups.
FIGURE 1 | Technical flowchart of sample preparation for mass spectrometry analysis. A small aliquot of each study sample (colored cylinders) was pooled to
create a replicate sample (multicolored cylinder), which was then injected periodically throughout the process. For studies spanning multiple days, a data
normalization step was performed to correct variation resulting from instrument inter-day tuning differences. Variability among consistently detected biochemical was
used to calculate an estimate of overall process variability.
February 2022 | Volume 13 | Article 818888
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In addition, the association of each identified metabolite with
maternal age, number of oocytes retrieved and number of
cleaved embryos was estimated with the linear regression
model adjusting for the basal FSH levels which were found to
be significantly different between the advanced age group and
young group. Data analyses were conducted with R version 4.0.3.
RESULTS

Participant Characteristics and ART
Outcomes
Basic characteristics of the 15 women of advanced (39-47 years
old) maternal age and of the other 15 young (27-34 years old)
maternal age as controls were listed in Table 1. The two groups
showed no statistically significant differences in body mass index
(BMI), duration of infertility, number of previous cycles received,
basal serum levels of luteinizing hormone (LH), estradiol (E2),
prolactin (Prl), progesterone (P), testosterone (T), total
gonadotropin dose, duration of stimulation and endometrial
thickness on the day of human chorionic gonadotropin (hCG)
administration. However, the group of advanced age showed
significantly reduced antral follicle count (p = 0.001) with higher
basal follicle stimulating hormone (FSH) level (p = 0.008), as
compared to the young control group. The number of oocytes
retrieved (p < 0.001), 2PN (two pronuclei) embryos (p = 0.001)
and cleaved embryos (p = 0.001), indicating ART treatment
outcomes, were significantly lower in the advanced age group
compared to the young control group.

Metabolomic Profiling of Follicular Fluids
in Women With Advanced and Young Ages
The follicular fluids collected from women with advanced or
young age were analyzed through mass spectrometry as
Frontiers in Endocrinology | www.frontiersin.org 4
illustrated in Figure 1. Results of PCA showed a separation
tendency between the two groups (Figure 2A). The volcano plot
was applied to visualize the metabolomic profiling of follicular
fluids in women with advanced and young ages (Figure 2B). A
total of 311 metabolites in the follicular fluids were detected, of
which 70 had p < 0.05 and 8 had q < 0.05 when comparing the
metabolite levels between the two groups (Figure 2B and
Supplementary Table S1). Among them, biomarkers
associated with lipid metabolism, amino acid metabolism and
redox homeostasis were identified. In particular, we found that
levels of the eight identified metabolites [four amino acids (i.e.,
creatine, histidine, methionine and trans-4-hydroxyproline), two
lipids (mevalonate and choline), one nucleotide (N2,N2-
dimethylguanosine) and one peptide (gamma-glutamylvaline)]
were significantly higher in the advanced age group compared
with the young age group, with fold changes ranging from 1.24 to
1.62. As shown in the heatmap (Figure 2C), compared with
young women, those with advanced age had higher levels of the
selected metabolites.

Correlations Between Metabolites
and Maternal Age, Number of
Oocytes Retrieved and Number of
Cleaved Embryos
To exam possible effect of these age-dependently changed
metabolites on ovarian function and ART outcomes, we did
correlation tests for each of them with the number of retrieved
oocytes and cleaved embryos, respectively. Our data indicated
that levels of all the eight selected metabolites from follicular
fluids were higher in women with advanced age compared to the
young ones (p < 0.05) (panel A in Figure 3), and were
significantly positively correlated with maternal age among all
the participants [coefficients of Pearson correlation (R) > 0, p <
0.05] (panel B in Figure 3). Besides, the levels of amino acid
TABLE 1 | Baseline characteristics and ART outcomes of the participants included in the study.

Clinical parameters, mean ± SD Control Advanced age p-valuea

(n = 15) (n = 15)

Maternal age (years) 29.93 ± 2.31 42.27 ± 2.43 <0.001
BMI (kg/m²) 22.14 ± 4.04 23.05 ± 2.36 0.456
Duration of infertility (years) 3.20 ± 2.57 3.73 ± 2.79 0.590
Number of previous cycles received (n) 1.33 ± 0.49 1.87 ± 1.19 0.119
Antral follicle count (n) 14.71 ± 5.27 9.07 ± 2.94 0.001
Basal FSH (IU/L) 5.48 ± 1.41 8.01 ± 2.85 0.008
Basal LH (IU/L) 4.24 ± 3.14 3.81 ± 1.18 0.637
Basal E2(pmol/L) 125.67 ± 65.78 144.39 ± 85.54 0.532
Basal Prl (mIU/L) 19.89 ± 11.45 14.67 ± 6.71 0.200
Basal P (nmol/L) 1.92 ± 0.89 2.38 ± 1.29 0.300
Basal T (nmol/L) 0.84 ± 0.46 0.68 ± 0.43 0.409
Total gonadotropin dose (IU) 2130.83 ± 778.29 2775.00 ± 1027.51 0.067
Duration of stimulation (days) 10.33 ± 1.84 9.86 ± 2.60 0.571
Endometrial thickness on day of hCG (cm) 1.02 ± 0.21 1.07 ± 0.26 0.595
Number of oocytes retrieved (n) 14.60 ± 6.56 6.33 ± 4.72 <0.001
Number of 2PN embryos (n) 7.33 ± 3.85 3.13 ± 2.53 0.001
Number of cleaved embryos (n) 6.80 ± 3.99 2.60 ± 2.16 0.001
February 2022 | Volume 13 | Artic
ART, assisted reproductive technology; SD, standard deviation; BMI, body mass index; FSH, follicle stimulating hormone; LH, luteinizing hormone; E2, estradiol; Prl, prolactin; P,
progesterone; T, testosterone; hCG, human chorionic gonadotropin; 2PN, two pronuclei.
aCharacteristics between the control group and advanced age group were compared with t-test. The p-values in bold text mean statistically significant (p < 0.05).
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metabolites including histidine (R = -0.49, p = 0.006),
methionine (R = -0.44, p = 0.014) and trans-4-hydroxyproline
(R = -0.49, p = 0.006) were significantly correlated with decreased
number of oocytes retrieved (panel C in Figure 3). Correlations
between number of oocytes retrieved and the remaining
metabolites of creatine, choline, mevalonate, N2,N2-
dimethylguanosine and gamma-glutamylvaline were negative
but without statistical significance (R < 0, p > 0.05). The
number of cleaved embryos was significantly negatively
correlated with five identified metabolites including methionine
(R = -0.43, p = 0.018), trans-4-hydroxyproline (R = -0.43, p =
0.017), choline (R = -0.48, p = 0.007), N2,N2-dimethylguanosine
(R = -0.48, p = 0.007) and gamma-glutamylvaline (R = -0.59, p <
0.001), but not for creatine, histidine and mevalonate (R < 0, p >
0.05) (panel D in Figure 3).

Associations of Metabolites With Maternal
Age, Number of Oocytes Retrieved and
Number of Cleaved Embryos
As shown in Figure 4, levels of creatine in follicular fluids were
significantly associated with increased age [coefficients of linear
regression model (b) = 12.45, p = 0.001]. Similarly, we found that
the metabolite-age association was significantly positive for the
other six metabolites including histidine, methionine,
Frontiers in Endocrinology | www.frontiersin.org 5
mevalonate, choline, N2,N2-dimethylguanosine and gamma-
glutamylvaline (all p < 0.05), but not for trans-4-
hydroxyproline (p = 0.053). Besides, levels of histidine (b =
-16.01, p = 0.025) and trans-4-hydroxyproline (b = -6.48, p =
0.031) were associated with decreased number of oocytes
retrieved. Levels of choline (b = -3.46, p = 0.033), N2,N2-
dimethylguanosine (b = -5.38, p = 0.041) and gamma-
glutamylvaline (b = -8.46, p = 0.008) showed significantly
inverse association with number of cleaved embryos.
DISCUSSION

The present metabolomic profiling of the follicular fluids from
women undergoing ART treatment has revealed age-dependent
metabolism in human follicles, including age-dependent changes
in biochemical molecules or biomarkers related to redox
homeostasis, amino acid and lipid metabolism. Interestingly,
significant correlations between levels of the identified
metabolites and oocyte number and cleaved embryos were also
observed, suggesting these metabolites as potential biomarkers
for oocyte maturation and ART outcomes. This study can
promote the current understanding of the age-dependent
metabolomic profile of human follicular fluids, may provide
A B

C

FIGURE 2 | PCA score plots, heatmap and levels of metabolites in different groups. (A), PCA plots and 2D clustering plots describing the trend of separation
between the two groups. The red and green points mean the women with advanced and young ages, respectively. (B), Levels of each metabolite between the
advanced age group and young control group were tested with unpaired Student’s t-test. The p-values of t-test were then adjusted with the FDR method to obtain
q-values in consideration of multiple comparisons. Fold change was calculated as the ratio of mean of metabolites in the advanced age group to the young control
group. In the volcano plot, -log10 (q-value) (y-axis) was plotted against the fold change (x-axis). The metabolites with p ≥ 0.05, p < 0.05 and q < 0.05 were shown
with black, blue and red points, respectively. (C), Heatmap of the hierarchical clustering analysis. The selected metabolites (y-axis) for each participant (x-axis) were
presented. Standardized levels of metabolites were shown in different colors. PCA, principal component analysis; 2D, two-dimensional; PC1, first principal
component; PC2, second principal component.
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A DCB

FIGURE 3 | Metabolites in follicular fluids between the advanced age group and the young age group, and correlation tests of maternal age, the number of oocytes
retrieved, and cleaved embryo numbers with metabolites. (A), Comparisons of the selected metabolites in follicular fluids between the advanced maternal age group
and the young control group (t-test). (B), Correlations between metabolites and maternal age (Pearson correlation test). (C), Correlations between metabolites and
the number of oocytes retrieved (Pearson correlation test). (D), Correlations between metabolites and cleaved embryo numbers (Pearson correlation test).
Frontiers in Endocrinology | www.frontiersin.org February 2022 | Volume 13 | Article 8188886
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new insights into the endocrinology of aging, and offer future
directions for ovarian function and reproductive aging research.
Our results will be helpful for noninvasive prediction of
embryonic developmental potential and systematic evaluation
system of ART outcomes.

Ovary is the most important reproductive endocrine organ in
women. The reproductive and endocrine functions of ovary
decline with aging, mainly depending on the number and
quality of ovarian follicles (20). Some metabolites decreased in
follicular fluids, like advanced glycation end-products, have been
found to improve oocyte developmental potential (21). The
steroid metabolism in the follicles seems to be tightly
associated with ovarian function and oocyte quality. As
expected, decreases in the production of several steroids (i.e.,
21-hydroxypregnenolone disulfate, pregnanediol-3-glucuronide
and cortisol) were observed in the advanced maternal age group,
suggesting age-related decline in these steroids production.
However, increases in follicular progesterone, 17-alpha-
hydroxyprogesterone and dehydroepiandrosterone (DHEA)
were seen in the advanced age group, which is possibly due to
increased cholesterol metabolism as suggested by significantly
elevated follicular mevalonate.

Glucose and fatty acids are vital energy substrates for many
cell activities, and fatty acid b-oxidation is crucial for the quality
of oocyte and embryo development competence (22, 23). An
increase in lactate indicates a metabolic shift from mitochondrial
oxidative phosphorylation to glycolysis. Although follicular
glucose level didn’t show difference between the two groups of
different ages, lactate level in the follicular fluid was increased in
advanced age group suggesting increased anaerobic glycolysis.
Lipid metabolism disorder was proved to be associated with
female reproductive and endocrine functions (24). The current
Frontiers in Endocrinology | www.frontiersin.org 7
literature indicates that higher lipolysis and lower lipogenesis
enhance the delivery of lipid metabolites (25). Levels of fatty
acids were changed as a class (Supplementary Table S1),
especially increases in several acylcarnitines (i.e., octanoylcarnitine
and decanoylcarnitine) may suggest decreasing b-oxidative use,
which is supported by declines in the ketone body acetoacetate.
Finally, increases in deoxycarnitine could be consistent with
declining demand for use in b-oxidation. A decrease in ketogenic
use has previously been associated with aging in rodents (26), which
is consistent with the presently observed energetics shift in humans.
Choline can modulate the expression of a class of proteins involved
in the metabolism of ketone bodies and fatty acids (27). It is
transported into mitochondria, where choline metabolism leads to
increases in oxygen consumption and ATP production (28).
Mitochondrial metabolic imbalance may lead to decreased choline
utilization, resulting in its accumulation in follicles. Follicular fluids
of women with advanced age display lower expression of proteins
involved in mitochondrial function. In turn, this leads to lower
availability of mitochondria-derived energy sources for oocyte
maturation. Mitochondrial metabolism is tightly associated with
male spermatogenesis (29), female fertility and the fate of ovarian
follicles (30). Our results indicate a mitochondrial dysregulation in
the advanced age group (Figure 5), with a modified balance
between b-oxidation and glycolysis that could affect the fertility of
women with advanced age.

Glutathione serves several vital functions such as acting as
radical scavenger, antioxidant and modulating critical cell
processes including immune function (31). There was
experimental evidence that glutathione levels declined with age
(32). The present study observed that glutathione metabolic
status was altered in the advanced age group. Though oxidized
glutathione was not significantly changed, increases in gamma-
FIGURE 4 | Associations of metabolites with age, number of oocytes retrieved, and cleaved embryo numbers. The association of each identified metabolite with
maternal age, number of oocytes retrieved, and number of cleaved embryos was estimated with linear regression model adjusting for the levels of basal FSH. The
points and horizontal lines represent the coefficients and 95% confidence intervals (CI) of metabolites, respectively. The solid points in red mean statistically
significant (p < 0.05). FSH, follicle stimulating hormone.
February 2022 | Volume 13 | Article 818888
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glutamyl amino acids (i.e., gamma-glutamylleucine, gamma-
glutamyltyrosine and gamma-glutamylvaline) could suggest an
increasingly oxidizing environment. Oxidative stress could have
a deleterious effect on mitochondrial function and oocyte quality
(33), while 5-oxoproline may reduce non-enzymatic antioxidant
defenses (34). An increase in 5-oxoproline (also known as L-
pyroglutamic acid) is consistent with increased exchange of
gamma-glutamyl amino acids to regenerate glutathione.
Oxidative stress has been implicated in a variety of aspects of
aging (11), including the role of oxidative stress in ovarian aging
(35). Age-related oxidative damage to lipid, amino acid and other
cellular components may play a role in diminished ovarian
function that occur as maternal age advances. It was reported
that appropriate treatment with the antioxidant N-acetyl-L-
cysteine (NAC) postpones the process of ovarian aging in
mice (36).

Significantly increased level of tRNA-specific modified
nucleoside (N2,N2-dimethylguanosine) was identified in the
advanced age group. N2,N2-dimethylguanosine promotes the
folding of intracellular tRNAs toward the classical cloverleaf
structure (37). The reversible and dynamic nature of nucleoside
modifications identifies these metabolites as candidates to
monitor the response of related proteins (38). The altered level
of specific nucleoside modifications in women with advanced
maternal age, as exemplified by the increased expression of N2,
N2-dimethylguanosine, may reflect preferentially expressed
tRNAs that harbor them toward the translation of stress
response proteins. We observed that the level of methionine
was significantly higher in the advanced age group compared
with the young age group. After adjusting for the basal FSH level,
the metabolite-age association was still significantly positive
(Figure 4). Methionine is an aliphatic, sulfur-containing amino
acid and a precursor of homocysteine (Hcy) and creatine (39).
An elevated level of the Hcy has been confirmed to be connected
with pregnancy problems (40). The circulating levels of Hcy can
Frontiers in Endocrinology | www.frontiersin.org 8
be increased by deficiencies of vitamins B12 and folic acid, defects
in enzymes of the methionine metabolism or by feeding
methionine enriched diets (41). Recent research demonstrated
that methionine could regulate metabolic processes including
lipid metabolism and oxidative stress (42). In our study, bone
resorption biomarker trans-4-hydroxyproline was also found
age-dependently increased in human follicular fluids. Elevated
whole body hydroxyproline production has been confirmed be
associated with bone mineral loss (43, 44). Increased expression
of this metabolite in advanced age group may help to explain
why osteoporosis occurs with aging.

Among the differentially expressed metabolites in follicular
fluids, some of them were confirmed to be associated with
oocyte number or their developing capacity after fertilization.
Age-dependently increased amino acids (i.e., histidine,
methionine and trans-4-hydroxyproline) showed strong
negative correlation with the number of oocytes retrieved,
suggesting these amino acids as crucial factors for oocyte
quantity, and their age-dependent increase may account for
the declined ovarian function over age. Very interestingly, a
group of metabolites associated with amino acid metabolism,
not only showed significant correlation with the oocyte
number, but also are in significant correlation with the
number of cleaved embryos. Cleaved embryo numbers are
effective parameters to indicate developing capacity of selected
oocytes in ART treatment. Age-dependently increased
methionine and trans-4-hydroxyproline were found in
negative correlation with the number of cleaved embryos,
suggesting that these factors may play critical roles in oocyte
development and could serve as potential predicting factors for
ART outcomes. There were some limitations in the present
study. Although the post-hoc statistical powers of all the 8
selected metabolites were higher than 0.80 (data not shown),
the limited sample size might lead to low statistical power and
attenuated capabilities to identify other influential metabolites.
FIGURE 5 | Schematic representation of the metabolic pathways that are putatively altered in follicular fluids as age advances. Thick and short arrows indicate the
variation in metabolite concentrations in follicular fluids from women with advanced age compared with their concentrations in the young age group. A dysfunctional
mitochondrial metabolism could explain the observed accumulation of identified metabolites in the follicular fluids of advanced age women. SAM, S-adenosylmethionine;
Hcy, homocysteine; GSH, glutathione; GSSG, oxidized glutathione; GGT, gamma-glutamyltransferase; OAA, oxaloacetic acid; TCA cycle, tricarboxylic acid cycle.
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In conclusion, the follicular fluids from women undergoing
ART treatment exhibited age-dependent metabolomic profile.
The identification of significantly overexpressed metabolites,
especially methionine and trans-4-hydroxyproline, may
contribute to find an effective way to optimize oocyte quality
and evaluate ART outcomes for women with aging-related
infertility. Results of the present study suggest that it is very
important to pay close attention to the human follicular
microenvironment of women with advanced age. Nevertheless,
the ovarian aging process is complicated and it is caused by
numerous factors that control cellular life span. Follow-up
studies in a similar population with larger cohorts will be
necessary to elucidate the alteration of these follicular
metabolites. Molecular mechanisms underlying their age-
dependent changes as well as their roles in oocyte development
await further experimental investigation.
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