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Abstract: The high number of matching haplotypes of the most common mitochondrial (mt)DNA
lineages are considered to be the greatest limitation for forensic applications. This study investigates
the potential to solve this constraint by massively parallel sequencing a large number of mitogenomes
that share the most common West Eurasian mtDNA control region (CR) haplotype motif (263G 315.1C
16519C). We augmented a pilot study on 29 to a total of 216 Italian mitogenomes that represents
the largest set of the most common CR haplotype compiled from a single country. The extended
population sample confirmed and extended the huge coding region diversity behind the most
common CR motif. Complete mitogenome sequencing allowed for the detection of 163 distinct
haplotypes, raising the power of discrimination from 0 (CR) to 99.6% (mitogenome). The mtDNAs
were clustered into 61 named clades of haplogroup H and did not reveal phylogeographic trends
within Italy. Rapid individualization approaches for investigative purposes are limited to the most
frequent H clades of the dataset, viz. H1, H3, and H7.

Keywords: massively parallel sequencing; next-generation sequencing; forensics; most common
haplotype; power of discrimination; mtDNA haplogroup H; random match probability

1. Introduction

Mitochondrial (mt)DNA is a niche marker in forensic genetics that is employed for low
copy number and degraded samples, as well as for the investigation of maternal kinship.
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In these applications, it outperforms nuclear DNA. Yet, its discriminatory power is limited
for two principal reasons. The molecule is maternally inherited en bloc, thus even very
distant maternal relatives carry identical mtDNAs, barring mutation. In addition, while
entire mitogenome sequence data are now more accessible even from forensic samples
through massively parallel sequencing (MPS) [1], due to legal and financial restrictions, the
current forensic gold standard is to sequence only the ~1.1 kbp of the non-coding mtDNA
control region (CR; nps 16024-16569, 1-576) [2] or the ~0.6 kbp of its hypervariable seg-
ments HVS-I (nps 16024-16365) and HVS-II (nps 73-340) [3] instead of the entire ~16.6 kbp
molecule. Incomplete mitotypes yield higher match probabilities [4] and limit phylogenetic
assessment and phylogeographic leads [5]. The distribution of incomplete mitotypes is
highly skewed, with a few very frequent ones [4,6]. In West Eurasian populations, the most
common mtDNA CR haplotype (MCH) falls into haplogroup H—poetically referred to
as “Helena” [7]—and its close relatives. It is characterized by the mutational motif 263G
315.1C 16519C relative to the revised Cambridge reference sequence (rCRS) [8] and is found
at a frequency of ~3–4% throughout West Eurasia [9], and in populations of European
origin [10], with only slightly lower proportions at the far extensions of West Eurasian
populations [11].

The MCH frequency in the high-quality profiles stored in the mtDNA population
database EMPOP v4/R13 (https://empop.online, accessed on 15 June 2022) [12] is 4.0%,
with a two-sided 95% Clopper–Pearson confidence interval (CI) of 3.7–4.3% in the 15,782
West Eurasians, and 4.7% (CI: 4.2–5.2%) in 8039 European profiles with a minimum CR
range. Together with the neighbors carrying exactly one difference, 11.5% of database
profiles in EMPOP v4/R13 for West Eurasia and 13.0% for Europe cannot be excluded from
deriving from the same maternal lineage or are inconclusive [3,13,14].

The frequency of the MCH is extremely high when compared to autosomal DNA
fingerprinting that combines several unlinked loci. It is true that the least powerful STR
genotype [15,16] for a single locus of the seven European Standard Set (ESS) core loci [17],
viz. TH01 (6|9.3), yields an actual match probability (AMP) of 14.2% in Europe. However,
using the high-quality STR allele frequencies stored in the STRidER reference database
R2/v2 (https://strider.online, accessed on 15 June 2022) [18], from 7070–7076 individuals
genotyped for these markers, the least powerful STR genotype containing all ESS loci
(viz. FGA (21|22), TH01 (6|9.3), vWA (17|18), D3S1358 (15|16), D8S1179 (13|14), D18S51
(14|15), D21S11 (29|30)), generates an AMP of 9.8 in 100 million in Europe. Moreover,
generally, many more loci than the ESS core set are analyzed, yielding even lower AMPs in
STR typing.

The low power of discrimination (PD) for common types is considered the great-
est limitation for mtDNA testing [4,19]. A specific mtDNA CR profile, however, does
not always anticipate all sequence variation harbored in the complete mitogenome [20].
Phylogenetic CR motifs can predict haplogroup-specific mutations in the coding region
(codR; nps 577-16023) but, on the other hand, homoplasy across several haplogroups is
common [21] and private variants can never be inferred. Therefore, codR sequencing may
allow for mtDNAs with identical CR sequences [4,6] to be distinguished.

In a pivotal study, we collected 29 MCH mtDNAs from Italy and explored their
identity in the complete mitogenome. This pilot investigation revealed an extremely high
coding region diversity, with only one remaining pair of identical sequences and 28 distinct
haplotypes. The discrimination power increased from 0 to 99.8% at the highest resolution
and we detected 19 named haplogroup H subclades [9]. To rule out incidental properties of
the small dataset and assess the full magnitude of “Helena’s hidden beauty” [9], we here
extended the investigation more than sevenfold and present the complete mitogenome
sequences from 216 MCH samples in this study, including the 29 initial mtDNAs. We again
restricted the donor origin to Italy, where an MCH proportion of 5.6% is reported (see
below) to allow for phylogeographic evaluation. Beyond unveiling MCH mitogenome
diversity and dispersal in Italy, the data augment the EMPOP etalon of verified mitogenome
variation for quality control (QC) and haplogroup estimation [12,22,23].

https://empop.online
https://strider.online
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2. Results and Discussion
2.1. Mitogenome Diversity behind the MCH

The enormous sequence diversity and almost complete discrimination at the highest
level of resolution described for the initial set of 29 Italian MCH mitogenomes [9] was
confirmed in the sevenfold extended sample. In the 216 complete mitogenomes identical in
the CR, we found 163 distinct haplotypes (Tables 1 and S1).

Table 1. Diversity parameters of the 216 Italian mtDNAs exhibiting the most common West Eurasian
control region (CR) haplotype using different sequence ranges. Percentages are rounded (see text
for details).

CR CR + 3 codR SNPs 1 Complete Mitogenome 2

Haplotypes 1 4 163

Unique haplotypes 0 0 131

Discrimination capacity (DC) – 0.019 0.755

Named haplogroups 3 1 4 61

Random match probability (RMP) 1.000 0.342 0.009

Power of discrimination (PD) 4 0.0% 66.1% 99.6%
1 specific for haplogroups H1 (np 3010), H3 (np 6776), and H7 (np 4793); 2 see Table S2 for alternative scenarios;
3 including the paraphyletic group (paragroup) H*; 4 Haplotype diversity (HD).

The statistical assessment of the 216 mitogenomes was complex, since a heteroplasmic
individual matched two haplotypes separated by a full difference at that np: UniPV_046,
carrying np 6253Y, matched six mitogenomes exhibiting np T6253 and another mitogenome
(np 6253C). For calculations, a double match was assumed, resulting in a septet and a pair,
both including UniPV_046. Of the 163 haplotypes, 131 haplotypes (80.4%) comprising
60.6% of the samples were unique, resulting in a discrimination capacity (DC) of 75.5%.
The 86 non-unique mitogenomes formed 32 groups of identical haplotypes: one septet,
two quintets, two quartets, seven triplets, and 20 pairs (Figure 1). We considered alternative
scenarios: (i) assuming a total of 217 mtDNAs (as a result of the double match), and
(ii) assuming the UniPV_46 matches only with either the sextet (np T6253) or (iii) the
singleton (6253C). Other than the obvious changes in the unique and non-unique haplotype
statistics, the resulting forensic and population genetic parameters were very similar and
differed only at (higher) decimal places between the scenarios (Table S2). Random match
probability was 0.9%, and the PD (or haplotype diversity, HD) was 99.6% (Table 1). The
increase in the latter among the 216 mitogenomes that were previously considered to
be identical from their CR sequence is huge when compared to random West Eurasian
population samples consisting of representatives of diverse haplogroups, where the gain
was 0.2% in a US “Caucasian” dataset [24] and 1.2% in Basques [25]. Hence, while additional
mitogenome sequencing contributes little discriminatory information on randomly mixed
population CR datasets in general, in specific cases as described here, its impact can
be immense. The most common mitogenome motif among the 216 samples was 263G
315.1C 750G 1438G 3010A 4769G 8860G 15326G 16519C relative to the rCRS [8] with
seven representatives (3.2%), two thereof carrying additional point heteroplasmic positions
(PHPs), and matching haplogroup H1. While the close maternal relatedness of donors could
practically be excluded due to the sampling strategies, 18 of the 32 clusters of identical
mitogenomes consisted only of individuals from the same administrative region of Italy,
which might indicate some degree of kinship (Table S1). However, simulations show that
hundreds of individuals are expected to share identical mitogenomes in a population, and
two such individuals are typically a few hundred meioses apart, which corresponds to
being “unrelated” for practical purposes [26]. Straightforward methods to identify close
kinship in mtDNA population samples have been described [27], but the assessment of
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more distant relatedness over many generations is laborious [28–30] and impossible in a
forensic routine setting.
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Figure 1. Schematic phylogenetic tree of the 216 mitogenomes sharing the most common West
Eurasian CR haplotype motif. The tree is rooted in haplogroup H. The gray backbone and clade
names follow PhyloTreemt Build 17. Every box represents a mitogenome. Adjacent yellow boxes
indicate identical mitogenomes. White boxes stand for unique mitogenomes. The blue boxes indicate
UniPV_046, which matches two haplotypes with one and six representatives. Stem lengths have no
information content (see text and Figure S1 for details).

2.2. Point and Length Heteroplasmy

We found fifty PHPs, all but one being transitions, in 47 (21.8%) individuals at
47 different nps both in the CR (n = 12) and codR (n = 35): 146Y, 150Y, 195Y, 204W, 215R
(twice), 246Y, 2090R, 2289R, 3003R, 3278Y, 3534Y, 3550R, 3729R, 3943R, 4086Y, 4856Y, 5585R,
6221Y, 6253Y, 6267R, 6716R, 7746R, 7961Y, 8251R, 8252M, 8344R, 8634Y, 9180R (twice),
9828R, 10237Y, 10750R, 11914R (twice), 12373R, 12892Y, 13641Y, 14121Y, 14249R, 14563Y,
14754Y, 14798Y, 15927R, 16080R, 16172Y, 16256Y, 16311Y, 16519Y, and 16527Y. Three samples
showed two PHPs, while all other PHPs were the only ones in their sample. Heteroplasmy
levels (minor base proportions) ranged from 11–50% (mean 25%, median 24%). They were
higher on Ion Torrent platforms (mean 26%, median 25%) than on Illumina platforms
(mean 19%, median 18%). The proportion of individuals exhibiting point heteroplasmy
was 24.5% on Ion Torrent platforms and 14.2% on Illumina platforms (see below for de-
tails on the experiments). Recent MPS population studies found 20.2 [31], 27.5 [32], and
9.0% [25]. Notwithstanding the differences in samples and protocols, the variant detection
threshold has a clear influence [33]. One individual (0.5%) carried the heteroplasmic dinu-
cleotide repeat insertion at nps 524.1a 524.2c (note the extended IUPAC nomenclature [2,34])
(Table S1).
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2.3. Helena’s Many Daughters: Haplogroup Diversity behind the MCH

Mitogenome sequencing confirmed haplogroup H status for all 216 mtDNAs. One (0.5%)
was found to be an exact haplogroup H representative with no variation in addition to the
MCH pattern. A further 29 samples (13.4%) could not be assigned to a named H clade of
PhyloTreemt Build 17 [35]. The remaining 186 mitogenomes were clustered into 60 distinct
clades within 22 first-level subhaplogroups at maximum resolution, viz. H1*, H1aj*, H1aj1,
H1ax, H1bm, H1bw, H1c2, H1e*, H1e1*, H1e1a*, H1e1a2, H1e2, H1h1, H1j*, H1j3, H1q*,
H1q2, H1q3, H1r, H1t, H1u*, H1u1, H1w, H2, H3*, H3ar, H3e, H3q, H7*, H7a, H7b*, H7b1,
H7b6, H7c2, H7d3, H7e, H10a, H10c, H13a1a*, H13a1a1, H13a2a, H17, H18*, H18b, H26*,
H26a1, H30a, H35, H51, H58, H59*, H59a, H64, H65, H72, H73, H75, H84, H86, and H87
(Table 2, Table S1, Figure S1). The predominant first-level H subhaplogroups in the dataset
were: H1, comprising 95 samples (44.0%) in 23 named clades but mainly H1* (43 samples,
19.9%, including seven exact H1 matches); H3 (30 samples, 13.8%) with mainly H3* samples
(25 samples, 11.6%, including three exact H3 matches), and further three named clades; H7,
whose 16 members (7.4%) were assigned to H7* and seven clades. The 19 remaining rarer
first-level H subgroups comprised one to five (mean: 2.4, median: 2) each, and altogether
45 mitogenomes (20.8%) (Figures 1 and 2, Table 2). This confirmed the picture that was
yielded from the initial small sample, where H1 (44.8%; including 24.1% H1*), H3 (17.2%;
including 13.8% H3*), and H7 (6.9%) were also predominant [9]. Studies agnostic towards
a specific CR sequence also revealed H1 and H3 as being predominant H clades in Italy and
beyond, peaking in Southwest Europe. Haplogroup H5, also among the top three H clades
found in these populations, harbors a CR polymorphism excluding MCH status [36–39].

Table 2. Complete list of mtDNA haplogroups found in the 216 most common West Eurasian CR
haplotypes at the complete mitogenome level. Bold text indicates first-level subhaplogroups. They
comprise any listed subclades. Percentages are rounded.

n % n % n %

H1 95 44.0 H2 1 0.5 H18 3 1.4
H1* 43 19.9 H3 30 13.9 H18* 2 0.9

H1c2 1 0.5 H3* 25 11.6 H18b 1 0.5
H1e* 6 2.8 H3e 2 0.9 H26 5 2.3
H1e1* 2 0.9 H3q 1 0.5 H26* 4 1.9

H1e1a* 9 4.2 H3ar 2 0.9 H26a1 1 0.5
H1e1a2 2 0.9 H7 16 7.4 H30 3 1.4

H1e2 4 1.9 H7* 3 1.4 H30a 3 1.4
H1h1 4 1.9 H7a 1 0.5 H35 2 0.9
H1j* 4 1.9 H7b* 2 0.9 H51 1 0.5
H1j3 2 0.9 H7b1 3 1.4 H58 3 1.4
H1q* 1 0.5 H7b6 3 1.4 H59 5 2.3
H1q2 1 0.5 H7c2 2 0.9 H59* 1 0.5
H1q3 2 0.9 H7d3 1 0.5 H59a 4 1.9
H1r 1 0.5 H7e 1 0.5 H64 1 0.5
H1t 2 0.9 H10 4 1.9 H65 1 0.5

H1u* 3 1.4 H10a 1 0.5 H72 1 0.5
H1u1 1 0.5 H10c 3 1.4 H73 1 0.5
H1w 1 0.5 H13 5 2.3 H75 3 1.4
H1aj* 1 0.5 H13a1a* 1 0.5 H84 1 0.5
H1aj1 1 0.5 H13a1a1 1 0.5 H86 2 0.9
H1ax 1 0.5 H13a2a 3 1.4 H87 1 0.5
H1bm 2 0.9 H17 2 0.9 H* 30 13.9
H1bw 1 0.5
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Figure 2. Overview of haplogroups behind the most common West Eurasian CR haplotype revealed
by complete mitogenome sequencing (n = 216). The proportions of the 22 first-level subhaplogroups of
haplogroup H are shown, combining any subclades, and only those with five or more representatives
are named, viz. H1 (44.0%), H3 (13.9%), H7 (7.4%), H13 (2.3%), H26 (2.3%), H59 (2.3%), and H*
(13.9%). Colors correspond to the colors used in Figure 3. The paragroup H* is included as a single
unit (see text and Table 2 for details).

2.4. Phylogenetic Insights

The findings highlight the importance of research in human mitophylogenetics even
after more than four decades and within the most common West Eurasian haplogroup.
In addition to numerous singular so-called “private” polymorphisms remaining despite
terminal haplogroup assignment found at all clade levels, clusters of related non-identical
mitogenomes indicated novel or modified phylogenetic branches within the paraphyletic
clusters H*, H1*, and H3*. We did not consider branching solely based on PHPs and
polycytosine stretch variation. Several of the shared polymorphism patterns were reported
before, intriguingly being mostly from Italy [39–42] but also Spain [43]. The yet unnamed
clusters were H-930A-3531A-4703C (n = 3 in this study), H1-15217A (n = 7, also in [39]), H1-
709A-15470C (n = 4), H1-14329T (n = 4, also in [39–41]), H1e1-11914A-13938T-15930A (n = 2,
also in [39]), H1q3-@16037-11266T (n = 2, also in [42]), H3-6827C (n = 4, also in [39,43]),
H3-7664A-8406T (n = 2), and H3-11200G-(2851G) (n = 3, also in [39,40]) (Table S1, Figure S1).
Additional unpublished and/or geographically unassigned related mitogenomes are col-
lected in online resources [44,45]. A re-evaluation of signature mutations is emphasized
by two further clusters, viz. H1-2851G-12372A-14148G (n = 2) and H1e1a-2320G-4823C-
(6216C) (n = 4), that only partly fulfill the currently described diagnostic pattern for the
haplogroups H1h2 and H1e1a5 [35], respectively (see also [9]), and by the uncertain posi-
tions of completely sequenced mitogenomes that could be assigned to two clades at similar
costs. Here, the most recent common ancestor (MRCA) haplogroups were used [23]: the
six representatives of H-3010A-10211T were assigned to H* for H1|H23, and UniPG_033
was assigned to H3* for H3ap|H3ag (Table S1, Figure S1). In a fully resolved phylogeny,
any mitogenome sequence will only be assignable to one specific clade and few private
polymorphisms will remain [23].

2.5. MCH Geography and Phylogeography

The 199 donors with geographic information containing more detail than the national
level originated from all the administrative regions of Italy, except for Aosta Valley, the
smallest and least populous [46], for which we could not find any published human mtDNA
data. The 19 regions were represented by a mean of 10 (4.8%) and median of eight (3.7%)
donors each, ranging from one (0.5%) to 38 (17.6%) (Figure 3, Table S1). The geographic
dispersal of donor origins results from the foci of collections available at the contributing
institutions and does not necessarily reflect the true differences in MCH proportions.
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Figure 3. Geographic origin of the Italian individuals whose mitogenomes were analyzed in this
study. Circles represent individual mitogenomes. They are assigned to their region of origin for
199 donors, while Italian origin is not further specified for 17 donors. The color codes correspond to
Figure 2 and distinguish between the haplogroups H1, H3, H7, H13, H26, and H59 and those falling
into H* and other H lineages (see text and Table S1 for details).

Earlier modern Italian population studies, taken together, reveal little MCH frequency
patterns within Italy. Individuals of Italian origin were part of one of the earliest mtDNA
sequencing population studies [47] and numerous studies on various geographic scales
have been conducted, but even today there are few pan-Italian datasets reporting (at least)
the complete CR. The insights are likely biased by the wide range of sampled populations,
sample sizes, and sequenced segments. In studies reporting diverse ranges, including
both HVS-I and HVS-II data (mostly partial), but less data than the entire CR, the mean
proportions of potential MCHs were 8.6% for North [48–54], 10.1% for Central [42,50,55–59],
7.7% for South Italy [59–62], and 9.5% for Sardinia [63], resulting in 9.0% over the studies.
According to our analyses, the MCH proportion is overestimated from such HVS datasets
by one third to one half, mostly due to SNPs in HVS-III (nps 340-576) [2] and np T16519
(unpublished data). Studies covering the entire CR revealed mean MCH frequencies of
6.3% for North [37,38,64], 3.9% for Central [37,38,42,65], 5.5% for South Italy [37,38], and
6.6% for Sardinia [38–40], and an overall mean of 5.6%. The latter is similar to the overall
results of the datasets covering the entire peninsula (6.3%) [37] or all four macro-areas
(6.2%) [38].

2.6. MCH Phylogeography and Investigative Implications

When plotting the mitogenomes from this study by regional donor origin, the
three predominant clades H1, H3, and H7 were found throughout the peninsular and
insular regions (Figure 3). Due to the enormous phylogenetic diversity of mitogenomes in
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this sample set (Figures 1 and S1), no other lineages were frequent enough to reveal specific
dispersal patterns. The three haplogroups equally ranking fourth in proportion comprised
only five individuals each and were geographically restricted, but the patterns were likely
caused by the small sample sizes: H13 and H59 were absent in the South, while H26 was
absent in the North (Figure 3). Hence, the geographic and phylogenetic distribution of
clades behind the MCH over Italy does not seem to contribute investigative leads that
would enable the tailoring of the envisioned specific SNP panel for the investigation of
the MCH [4,9]. When all the variation found in the 216 mitogenomes was combined, the
distribution all over the mitogenome did not reveal “preferred” segments (Figure 4).
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Figure 4. Circular histogram of the variation found in the 216 Italian mitogenomes harboring the
most common West Eurasian CR haplotype. Labels were added to nps of the mtDNA molecule where
five or more occurrences (indicated in brackets) were observed. Universal variants present in all
216 mitogenomes are not depicted (see text and Table S1 for details).

Nevertheless, this study has highlighted a promising approach in case an MCH
match should be further scrutinized, but complete mitogenome sequencing is not feasible.
The screening of diagnostic codR SNPs for the predominant haplogroups H1, H3, and
H7 appears to be most effective to investigate differences between the involved MCH
mitogenomes (at least in Italy). Typing assays specifically addressing these markers, among
others, to circumvent the limited PD of CR have been described [66] and applied in MCH
casework [67,68]. When only the three diagnostic markers for H1 (np 3010), H3 (np
6776), and H7 (np 4793) were typed, four haplotypes could be distinguished among the
216 samples reported in this study with 98, 30, 16, and 72 representatives. Accordingly, a
random match probability (RMP) of 34.2%, an HD of 66.1%, and a DC of 1.9% would be
yielded (Table 1).

3. Materials and Methods
3.1. DNA Samples

We combined DNA samples donated by Italian residents after informed consent from
pre-existing pan-Italian collections of blood, buccal swab, and mouthwash specimens,
curated by forensic and population genetic institutions. We considered only the samples
with mtDNA sequence information already available for at least partial HVS-I and HVS-II,
typically nps 16024-16300 and 73-200, respectively, for this study. The available sequencing
data never exceeded CR; sometimes, codR RFLP data was available and always indicated
haplogroup H (unpublished). We assessed DNA quantity and integrity in the provided



Int. J. Mol. Sci. 2022, 23, 6725 9 of 16

extracts in a modular real-time quantitative assay [69]. We performed Sanger-type sequenc-
ing (STS) for CR completion using described protocols [70] and aligned the haplotypes to
the rCRS [8] using Sequencer v5.1 (Gene Codes, Ann Arbor, MI, USA). We only included
those mtDNAs that exhibited the MCH (263G 315.1C 16519C) from this point. We did not
consider heteroplasmy and differences in polycytosine stretch lengths to be preclusive,
according to forensic practice [2]. The screening resulted in 187 MCH samples that are
collectively presented here for the first time, except for one mitogenome published in
advance, in the course of a validation study [31], and 15 partial CR sequences [42]. Together
with the pilot sample [9], we investigated a total of 216 mitogenomes in this study. For
17 donors (7.9%), no regional geographic origin information was available. The remaining
199 donors originated from all the administrative regions of Italy except Aosta Valley
(Table S1, Figure 3).

3.2. Mitogenome Sequencing

Complete mitogenome MPS was performed on Ion PGM (n = 61), Ion S5 (n = 127) and
Illumina MiSeq (n = 28) platforms.

For Ion PGM library preparation, we amplified the entire mtDNA molecule as two
overlapping ~8.5 kbp fragments [71]. We constructed libraries as previously described [72],
quantified using the Ion Library TaqMan Quantitation Kit and normalized to a final con-
centration of 26 pM. We pooled samples for template amplification and enrichment on
the Ion One Touch 2 System (Ion OneTouch 2 and Ion OneTouch ES instruments), using
the Ion PGM Template OT2 200 Kit. We loaded the final pool manually onto Ion 314 or
316 chips. Alternatively, for automated template amplification and enrichment, we used the
Ion Chef instrument with the Ion PGM Hi-Q Chef Kit. After templating, the samples were
automatically loaded on two Ion 316 chips simultaneously for sequencing. We performed
sequencing on an Ion PGM using the Ion PGM Sequencing 200 Kit or the Ion PGM Hi-Q
Sequencing Kit (all equipment and kits: Thermo Fisher Scientific [TFS], Waltham, MA).

We performed library preparation manually for the Ion S5 using the Precision ID
mtDNA Whole Genome Panel with the AmpliSeq Precision ID Library Kit 2.0 or automated
using the Precision ID DL8 Kit. For manual library preparation after amplification, we
applied the “two-in-one” or “conservative” pooling strategy. We performed partial primer
digestion and adapter ligation as described [73]. After library preparation, we quantified all
samples using the Ion Library TaqMan Quantitation Kit and normalized them to 30 pM. We
pooled samples for template preparation on the Ion Chef. For templating and sequencing,
we used either the Ion 520-530 Kit Chef together with the Ion S5 Sequencing Kit or the Ion
S5 Precision ID Chef & Sequencing Kit. We sequenced two Ion 530 chips per initialization
on an Ion S5 (all equipment and kits: TFS).

We analyzed all Ion PGM data using the Torrent Suite Software suite and the imple-
mented Torrent Mapping Alignment Program to align the raw sequence data in FASTQ
format to the rCRS [8]. For variant calling, we used the Torrent Variant Caller plug-in with
the default settings of germline low-stringency parameters to generate a variant call format
file listing the differences relative to the rCRS in tabular format [72] (all software: TFS).
We inspected all the resulting sequences using Integrative Genomics Viewer (IGV) [74] to
visualize sequence reads and alignments, to check the consistency of nucleotide calls, and
to identify sequencing errors. All Ion S5 data were aligned using Torrent Suite software as
described above. More extensive alignment and variant calling for analysis was performed
using the HIDGenotyper v2.1 plugin and Converge software v2.1 as described in [75] (both:
TFS). Plug-ins were started with default settings. All data were inspected using IGV [74] as
described above.

We amplified mtDNA for Illumina MiSeq library preparation as described for the
PGM. We quantified the PCR amplicons on an Agilent 2100 Bioanalyzer instrument us-
ing the Agilent DNA 12000 Kit (Agilent, Santa Clara, CA, USA) and normalized them
to 0.2 ng/µL per amplicon. We prepared libraries using the Nextera XT DNA Sample
Preparation Kit according to the manufacturer’s protocol (Illumina, San Diego, CA, USA);



Int. J. Mol. Sci. 2022, 23, 6725 10 of 16

after tagmentation (tagging and fragmentation) by the Human mtDNA Genome Sample
Prep transposome, we amplified DNA with a limited-cycle PCR program including Nex-
tera XT Index Kit index primers. We cleaned the PCR products using AMPure XP beads
(Beckman Coulter, Brea, CA, USA) and normalized them bead- or bioanalyzer-based to
2 nM each. We loaded a 12 pM library pool on the cartridge and sequenced it using the
MiSeq Reagent Kit v2 (500 cycles). We inspected all mitogenome sequences and assessed all
variants using both the internal MiSeqReporter v2.1 (all: Illumina) with its default variant
caller GATK as detailed in [1] and the NextGENe software (SoftGenetics, State College, PA,
USA) using the default settings. All data were also inspected using IGV [74] as described
above. Four samples were sequenced on an Illumina MiSeq instrument at the Earlham
Institute, Norwich, UK following the protocol detailed in [76].

3.3. Sequence Data Quality Control

All mitogenome sequences were manually inspected twice by two independent experts
and were validated by a third. The relative read depth threshold for variant detection was
10%. We employed further STS and visualization of MPS data in Geneious Prime 2022.0.1
(Biomatters, Auckland, NZ, USA) to clarify doubtful and confirm unobserved variants. For
QC purposes, we analyzed a subset of 16 samples (7.4%) independently using two MPS
methods with identical sequence results, apart from polycytosine stretch lengths and PHP
levels. All results confirmed previous RFLP analyses and STS ([42] and unpublished). All
haplotypes passed strict EMPOP QC measures [12].

3.4. Haplotype and Haplogroup Assessment

We calculated forensic genetic parameters using Arlequin v3.5 [77] as described [9,66].
In accordance with forensic practice, we disregarded heteroplasmic positions as well as
cytosine stretch length variation around nps 309 and 573. We performed calculations
and plotting in Microsoft Excel (Office 2019) (Microsoft, Redmond, WA, USA) and the
CorelDRAW X7 Graphics Suite (Corel, Ottawa, ON, Canada). We accomplished circular
plotting using the genomic visualization software Circos [78] considering all variation in
the dataset except for the universal differences at nps 263, 750, 4769, 8860, 16519, and 15326,
as well as length heteroplasmy and polycytosine stretch insertions. We counted PHPs as
full differences at the np, and block insertions as single events. We assigned indels to the
corresponding reference np.

We estimated mtDNA haplogroups from the complete mitogenomes using the SAM2
engine [22] implemented in EMPOP [12], which uses an etalon of verified haplotypes to
assess the fluctuation rate of every SNP per clade, instead of following a strict minimal
phylogenetic tree classification that considers only the unweighted signature differences but
ignores all others. We applied haplogroup names and diagnostic motifs as in PhyloTreemt
Build 17 [35]. Following a conservative approach, we assigned samples with more than
one haplogroup candidate producing similar costs to the MRCA haplogroup of the candi-
dates [23].

3.5. Published MCH Frequencies

We collected MCH frequencies reported across Italy from published modern popula-
tion samples. We considered only the datasets covering both HVS-I and HVS-II, at least
partially. According to the reported information, we grouped them into a heterogeneous
“partial CR” set, when this was the available maximum, and a “full CR” set, when CR or
more was available, as well as into the geographic macro-areas of North, Central, South
Italy including Sicily, and Sardinia (Figure 3). We split datasets covering more than one
area according to geography. Notably, a single publication [38] covered all four areas. The
screening resulted in (i) 17 publications containing datasets with partial CR ranges covering
North [48–54], Central [42,50,55–59], South Italy [59–62], and Sardinia [63]; and (ii) seven
reporting at least full CR from North [37,38,64], Central [37,38,42,65], South Italy [37,38],
and Sardinia [38–40]. The diverse ranges in the “partial CR” category, the heterogeneity
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of sampled populations, as well as expected inter-laboratory differences in heteroplasmy
detection and reporting [79,80], are expected to have introduced some bias in the detected
MCH proportions, but not in the interpretations made across datasets. We took data as pub-
lished, except for correcting the reading frames for mtDNAs LIG15 and MES533 from [37]
after personal communication with the authors, and by assuming that 315.1C was omitted
and the reported nps 574-576 were truly sequenced, despite violating the stated reading
frame in [38].

4. Conclusions and Outlook

Earlier studies with limited sample sizes have shown that, after complete mitogenome
sequencing, MCH samples rarely match [4,9]. This study presents the largest set of these
forensically highly relevant haplotypes compiled from a single country. Extrapolating
from the MCH frequency of 5.6% in the published Italian datasets (see above), this sample
of 216 MCH mtDNAs represents the screening of 3858 individuals. Applying the West
Eurasian and European MCH frequencies in EMPOP [12], the data represent the screening
of 5400 (CI: 5023–5837) and 4596 (CI: 4154–5143) individuals, respectively, or roughly one
in every 10,000 Italians [46]. This collaborative study shows that, even in a large population
sample, random match probability for the MCH is almost zero at the highest resolution.
The most common haplotype’s frequency diminishes from 5.6% at the CR (see above) to
0.2% at the mitogenome level, where other haplotypes might be more frequent.

The “forensic (mito)geneticist’s ultimate desire” [9] to discern the seemingly identical con-
tinues to thrive. Mitogenome sequencing of further common haplotypes would clarify if the
same applies also to them. Particularly in other population backgrounds and haplogroups,
this approach could help to elucidate the reasons why the MCH is so common among the
many star-like haplogroup H clades [9] despite the high CR mutation rate [2]. Contributing
factors to the high proportion of this particular haplotype could be an evolutionary or func-
tional constraint or advantage to retain this non-coding sequence, could be a polyphyletic
origin, since homoplasy is frequent [21,81] or, plainly, could be the founder effect of the
success of haplogroup H representatives (≥40%) in West Eurasian populations [20,36,82]
that inevitably makes also their MCH so common [4,6,9]. The ongoing expansion of this
study to a West Eurasian scale may reveal patterns of haplogroup dispersal and diver-
sity behind the MCH that were not visible in the investigated single Southern European
country and differences in contributing haplogroups. The extended population sample
might clarify if the enormous variation reported in this study is a general phenomenon or
the consequence of the complex genetic composition of the Italian population, resulting
from the large extent, geographic position, and important historic role of the peninsula
and the two largest Mediterranean islands, with multiple historic population inputs and
migrations across the country, mirrored by both haploid [37,38,42,83,84] and autosomal
genomes [85–91].
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