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Abstract: The mechanical properties of Ti alloys are changed significantly with the 

addition of interstitial elements, such as oxygen. Because oxygen is a strong stabilizer of 

the α phase and has an effect on hardening in a solid solution, it has aroused great interest 

in the biomedical area. In this paper, Ti-Zr alloys were subjected to a doping process with 

small amounts of oxygen. The influence of interstitial oxygen in the structure, 

microstructure and some selected mechanical properties of interest for use as biomaterial 

and biocompatibility of the alloys were analyzed. The results showed that in the range of  

0.02 wt% to 0.04 wt%, oxygen has no influence on the structure, microstructure or 

biocompatibility of the studied alloys, but causes hardening of the alloys, increasing the 

values of the microhardness and causing variation in the elasticity modulus values. 
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1. Introduction 

Currently, there is a need to find new materials for orthopedic and dental uses, mainly in relation to 

their mechanical properties, considering that the alloys used commercially in prostheses have different 

mechanical properties compared to human bone. To meet this need, research is looking for metals and 

alloys with excellent biocompatibility, chemically satisfactory passivity and good durability  

post implantation [1]. 

Ti and its alloys have abundant applications in the area of biomaterials. Its main properties are 

excellent corrosion resistance, relatively low elasticity modulus, high specific strength and good 

biocompatibility [1,2]. The development of new Ti alloys aims to obtain materials with favorable 

properties for use in the human body. The new alloys are being developed with the addition of Mo, Nb, 

Zr and Ta, because these elements do not cause cytotoxicity [3,4]. 

Zr is considered a neutral element in a solid solution with Ti, because it does not affect the β-transus 

temperature of the allotropic transformation. It presents high solubility in both crystalline phases of Ti, 

and it forms solid solutions in several concentrations [5,6]. As a substitutional element, it causes the 

hardening of the alloy, increases the corrosion resistance and improves biocompatibility [7]. The 

addition of the element in the formation of Ti alloys can even provide a decrease in the temperature of 

martensitic transformation and the melting point of the material [8,9]. 

Among the studied binary alloys, the Ti-Zr system presents advantageous properties for its 

application as a biomaterial, such as good tensile strength [10], low density and good biocompatibility. 

Zr has chemical properties similar to Ti, and the formation of solid solutions occurs with a certain ease. 

This set of properties is frequently studied and applied in orthodontics [10–13]. 

The effect of interstitial elements on the microstructure and mechanical properties of Ti alloys has 

awakened great interest in several works in the literature [14,15]. Oxygen is a strong Ti α phase 

stabilizer, showing a greater effect than Al in phase stabilization [15,16]. Earlier studies report that 

oxygen can cause hardening of the alloy, as well as influence the superelasticity and shape memory 

effect in some Ti alloys. The formation of martensite is another effect evidenced in some studies, 

though little understood [17–19]. 

In this paper, the influence of interstitial oxygen in the structure, microstructure, select mechanical 

properties and biocompatibility of Ti-xZr alloys (x = 5, 10 and 15 wt%) was analyzed. X-ray 

diffraction and optical microscopy measurements were conducted for the analysis of the structure and 

microstructure. The selected mechanical properties were obtained using Vickers microhardness tests 

and dynamic elasticity modulus. 

2. Results and Discussion 

The chemical composition of the produced alloys is presented in Table 1. The results of the 

chemical analysis indicated that the material produced has good quality, with the main elements in 

concentrations close to the stoichiometry and with negligible quantities of impurities [7]. Table 2 

presents the amount of oxygen present in all studied samples. 

The density values as a function of oxygen content are presented in Figure 1 for Ti-5Zr,  

Ti-10Zr and Ti-15Zr. It can be observed that the density values did not suffer significative variations of 
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the interstitial element, once the oxygen variation in the sample contributes negligibly to the density 

variation. The density values were also quite close to the theoretical value of the alloys: 4.56, 4.61 and 

4.69 g/cm
3
, for 5, 10 and 15 wt% of Zr, respectively [20]. 

Table 1. Chemical composition (in wt%) of the Ti-Zr produced alloys. 

Sample Zr Fe Cr Ni Al Ti 

Ti-5Zr 4.89 0.03 0.01 0.009 0.001 balance 

Ti-10Zr 9.76 0.03 0.01 0.008 0.006 balance 

Ti-15Zr 15.60 0.04 0.01 0.005 0.009 balance 

Table 2. Oxygen content of the produced samples (wt%). 

Sample #1 #2 #3 #4 

Ti-5Zr 0.029 ± 0.001 0.031 ± 0.001 0.025 ± 0.001 0.029 ± 0.001 

Ti-10Zr 0.029 ± 0.001 0.029 ± 0.001 0.031 ± 0.001 0.038 ± 0.001 

Ti-15Zr 0.020 ± 0.001 0.021 ± 0.001 0.023 ± 0.001 0.025 ± 0.001 

Figure 1. Density as a function of oxygen content in Ti-Zr alloys. 

 

Figure 2 shows the X-ray diffractograms of the studied samples compared with commercially pure 

titanium. It can be observed that in all the studied samples, the hexagonal compact crystalline structure 

is present [6,8,10–13,21], and there is no significant change of crystalline structure with the variation 

of the oxygen concentration. The oxygen concentration is too low to observe significative structural 

changes. The peaks found were related to the martensitic α’ phase, which has a distorted hexagonal 

compact structure. It can be clearly observed that oxygen concentrations do not significantly alter the 

peaks position in the diffractograms. As oxygen is an α phase stabilizer and Zr is a neutral element, it 

was expected that the material does not exhibit phase changes [6,14]. The diffractograms follow the 

results of the literature for Ti-Zr alloys, where the peaks of the retained β phase were found only at 

concentrations above 50 wt% of Zr [5,6,22]. There is a small displacement of the diffraction peaks for 

smaller angles, which can be the result of the increase of the lattice parameters of the crystalline 

structure. This dilation is mainly related to the addition of Zr in solid solution, because of the great 

difference in their atomic radius (1.58 Å) compared with Ti (1.47 Å) [18,20]. To verify this 
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assumption, the diffractograms were analyzed using the Rietveld method, and the parameters obtained 

are shown in Table 3. The fit residual (Rwp) and χ
2
 parameters are factors that indicate the  

quality of refinement [23]. In so-called perfect conditions, the Rwp parameter must be between 0% and 

10%, while χ
2
 must be exactly one. However, because the Rietveld method takes into account various 

experimental factors (such as powder size and equipment failure), the values found  

are satisfactory [23–25]. 

Figure 2. X-ray diffractograms for (a) Ti-5wt%Zr (Ti-5Zr); (b) Ti-10wt%Zr (Ti-10Zr) and 

(c) Ti-15wt%Zr (Ti-15Zr) alloys, in all conditions studied. 

  

(a) (b) 

 

(c) 

It can be verified that in all treatments, the α’ phase was prevalent, including when the sample was 

quickly cooled in the case of hot swaging. The presence of lubricating and coolant fluid in the swaging 

wheels significantly reduces the temperature of the samples. Thus, it can be concluded that the 

aggressive treatments to the material were not sufficient to stabilize the β phase, but martensitic 

formation may have occurred for these alloys, because the peaks of the α’ martensitic phase are in the 

same positions as the peaks of the α phase [23–26]. The substitutional Zr increases the lattice 
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parameter, which was expected, because the atomic radius of Zr is expected to be higher than that of Ti, 

making the unit cell larger. 

Table 3. Parameters obtained using the Rietveld method. 

Sample Rwp (%) χ
2
 a (Å) c (Å) α’ phase (%) β phase (%) 

Ti-5Zr #1 11.50 1.897 2.9618 (2) 4.6964 (4) 99.98 0.02 

Ti-5Zr #2 13.33 2.211 2.9616 (3) 4.6965 (4) 99.97 0.03 

Ti-5Zr #3 13.49 2.399 2.9616 (3) 4.6977 (5) 99.98 0.02 

Ti-5Zr #4 11.59 1.879 2.9614 (3) 4.6969 (5) 99.99 0.01 

Ti-10Zr #1 8.34 1.419 2.9697 (4) 4.7054 (5) 99.99 0.01 

Ti-10Zr #2 11.33 1.564 2.9701 (3) 4.7099 (5) 99.99 0.01 

Ti-10Zr #3 12.81 1.985 2.9704 (3) 4.7111 (5) 99.99 0.01 

Ti-10Zr #4 9.74 1.635 2.9715 (3) 4.7118 (5) 99.97 0.03 

Ti-15Zr #1 9.02 2.107 2.9801 (2) 4.7223 (5) 99.99 0.01 

Ti-15Zr #2 7.57 1.808 2.9806 (2) 4.7215 (4) 99.99 0.01 

Ti-15Zr #3 8.71 2.345 2.9801 (3) 4.7236 (4) 99.97 0.03 

Ti-15Zr #4 8.88 2.828 2.9888 (3) 4.7214 (6) 99.39 0.06 

The micrographs of the alloys after the doping steps are shown in Figure 3 and show an  

acicular-shaped microstructure, typical of the titanium martensitic α’ phase. The addition of Zr 

increases the formation of this phase, because it is not done as a homogenizing heat treatment [1,6]. It 

is observed in Figure 3 that the martensitic formation became denser (Widmanstätten pattern) after the 

heat treatment, indicating the removal of internal stresses, due to the swaging process. Even after the 

heat treatment, the basket weave-type structure is present throughout the sample, characteristic of Ti 

alloys of the hexagonal system. The formation of the martensite occurs due to the addition of Zr, 

because the element has a strong effect on decreasing the start of the martensitic transformation 

temperature [6,18]. The variation in the interstitial oxygen concentration did not cause changes in the 

microstructure, as shown earlier by the results of X-ray diffraction. The presence of interstitial oxygen 

facilitates the formation of the martensitic phase, because the presence of this element in the material 

distorts the crystalline lattice, causing crystallite microstrain [27–30]. 

The variation of microhardness values as a function of oxygen concentration is shown in Figure 4. 

The microhardness of the alloys presented an increasing tendency toward the interstitial oxygen 

concentration. The addition of oxygen as an interstitial element increases the difficulty of the 

dislocation motion, causing a hardening of the material. In the hcp crystalline structure, the interstitial 

elements are not free to move, and this truncation of the dislocations reduces the atomic mobility of the 

interstitial region [17], increasing the hardness of the material. Silva et al. [19] obtained the same 

behavior in binary Ti-Nb alloys. The highest value of the microhardness among the studied alloys for 

Ti-10Zr with 0.038% of oxygen was expected, but probably a great part of the oxygen was trapped in 

the grain boundaries, not contributing to increasing of the hardness of the alloy. All conditions 

presented microhardness values higher than cp-Ti (187 ± 4 HV), due to the solid solution hardening 

caused by interstitial oxygen and substitutional Zr. 

The effect of oxygen on the elasticity modulus of Ti-Zr alloys is shown in Figure 5. The values 

were obtained at 37 °C, which is approximately human body temperature. 
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Figure 3. Optical micrographs for Ti-Zr alloys. 

 

Figure 4. Microhardness as a function of oxygen content for Ti-Zr alloys. 
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Figure 5. Elasticity modulus as a function of oxygen content for Ti-Zr alloys. 

 

Different behaviors of the elasticity modulus as a function of oxygen were observed in the binary 
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the viable cells were observed. In both situations, there are conditions with a greater quantity of the β 

phase. For the Ti-15Zr alloy, no statistically significant variations in the number of viable cells 

cultured on the samples are observed, with the increase in the oxygen content. This will be the subject 

of new studies. It is observed that in all tests, the results are above the positive control and below the 

negative control and showed similar results to those observed in the tests with cp-Ti. Thus, it can be 

said that the inclusion of oxygen did not negatively influence the biocompatibility of the alloys [36]. 

The development of new titanium alloys is intended to produce a material with properties more 

suitable for application in the human body. In the case of dental implants, a high mechanical resistance 

is required, due to the need for hard mechanical work in the region [14,18]. For implants used in joint, 

0.020 0.025 0.030 0.035 0.040
76

78

80

82

84

86

88

90

 Ti-5Zr

 Ti-10Zr

 Ti-15Zr

E (GPa)

wt% O



Materials 2014, 7 549 

 

 

hip and knee replacements, an elasticity modulus near human bone (around 30 GPa) is very important 

to ensure successful implants and patient comfort [4,37]. The increase in hardness values, as well as 

the decrease of the elasticity modulus with the oxygen concentration, makes the alloys a great potential 

for use as a biomaterial. 

Figure 6. Direct cytotoxicity tests as a function of the oxygen concentration for (a) cp-Ti; 

(b) Ti-5Zr; (c) Ti-10Zr and (d) Ti-15Zr alloys. 

  

(a) (b) 
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process was conducted in a quartz tube under a vacuum of 10
−7

 mbar, a heating rate of 10 °C/min and a 

holding temperature of 900 °C for 2.0 h and quick cooling with water. The partial pressures of oxygen 

introduced into the quartz tube were 10
−2

 (Condition #2), 10
−1

 (Condition #3) and 100 (Condition #4) 

Torr. To obtain the amount of oxygen in the material, gas analysis was performed by 

thermoconductivity difference using LECO model TC-400 equipment. The density was obtained using 

the Archimedes’ method with an analytical balance. 

The analysis of the structure and microstructure of the produced alloys was performed by X-ray 

diffraction and optical microscopy, respectively. The diffraction pattern was obtained in a Rigaku 

D/Max 2100/PC diffractometer, using the powder method, with CuKα radiation (λ = 1.544 Å) in a 

scan of 2°/min in the range of 10° to 100°. Microstructural analysis was performed using an Olympus 

BX51M optical microscope. 

The selected mechanical properties were evaluated by microhardness and elasticity modulus 

measurements. Vickers microhardness measurements were obtained in a Shimadzu microdurometer, 

HMV-2 model, with a load of 200 g (1.961 N) for 60 s. The elasticity modulus was obtained in a 

torsion pendulum, with an oscillation frequency of 30 Hz, under a vacuum of 10
−6

 mbar with a heating 

rate of 1 K/min and a temperature range of 250 to 350 K [38,39]. 

The MC3T3-E1 cell lineages (preosteoblastic lineage obtained from the calvaria of Mus musculus; 

ATCC, Rockville, MD, USA) were used in the biological tests. The cell viability (MTT test) was 

measured using an absorbance reading [40]. The MTT analysis was done with an experimental time of 

72 h. Polystyrene (culture plate) was used as the negative control, while a solution of  

α-MEM + 10% of fetal bovine serum (FBS) + 1% phenol was the positive control for cytotoxicity. 

After 72 h, MTT (5 mg/mL) was added to each well, and the plate was incubated at 37 °C for 3 h. In 

this sequence, the medium was removed and replated with 100 µL DMSO to dissolve the formazan 

crystals. The product was quantified spectrophotometrically by measuring the absorbance at 562 nm 

using a microplate reader. 

4. Conclusions 

The prepared samples have good uniformity and stoichiometry. The gas doping process was 

effective, and it was possible to observe that the oxygen concentrations did not cause significant 

changes in the microstructure of the alloys. The formation of the martensite α’ phase was caused by the 

addition of Zr in a solid solution. 

The values of microhardness presented an increase according to the variation in oxygen 

concentration, showing a hardening of the material. For the elasticity modulus, it was concluded that 

all the samples studied have a lower elasticity modulus than cp-Ti and that the introduction of oxygen 

has an influence on the values of the modulus. 

Cytocompatibility tests conducted on the samples showed, in an initial analysis, that the material 

does not present cytotoxic effects. The fact that heat treatments and oxygen doping did not negatively 

interfere with the cytocompatibility shows that the studied alloys are promising for biomedical use. 
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