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Abstract: The encapsulation of active ingredients into solid capsules from biodegradable materials
has received significant attention over the last decades. In this short review, we focus on the formation
of micro- and nano-sized capsules and emulsions based on artificial peptides as a fully degradable
material. It deals with various approaches for the preparation of peptide-based capsules as well
as with their crucial properties such as size and stability. We categorize all preparation procedures
into three basic approaches: self-assembly, polymerization and crosslinking, and layer-by-layer
technology. This article is meant to offer a short overview over all successful methods suitable for
obtaining access to these very promising carrier systems.
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1. Introduction

Natural peptides, which are quite abundant in nature, are composed of amino acids
linked by peptide bonds. Commonly, three different synthetic pathways are used to prepare
peptides in the laboratory: by the polymerization of amino acids N-carboxyanhydrides
(NCAs), amino acids N-thiocarboxyanhydrides (NTAs), and N-phenoxycarbonyl amino
acids (NPCs); by various stepwise coupling reactions of α-amino acids; or by recombinant
techniques for expressing peptides in microorganisms [1–3]. Different synthetic pathways
tend to generate different kinds of peptides, such as oligopeptides and polypeptides. Vari-
ous structures, such as nanotubes [4], nanofibers [5], hydrogels [6], nanovesicles [7], and
nanocapsules [8], can be obtained through the self-assembly process of peptides. Moreover,
because of their desirable properties such as versatile structure and great biocompatibility,
these peptide-based architectures have been very promising in many fields, consisting of
drug and gene delivery [9], photocatalysis [10], and photoelectric conversion [11]. Never-
theless, in this review, we mainly focus on peptide-based capsules.

The encapsulation of active ingredients (chemotherapeutic agents, antibiotic agents,
mRNA, etc.) into various coating materials (lipids, polypeptides, albumin, chitosan, etc.) is
intensely studied in the biomedical field for applications such as chemotherapy, oxygen car-
riers, COVID-19 vaccines, and so on [12,13]. Micro- and nanocapsules are colloidal particles
that are formed by a shell-like wall with a liquid content according to a general and widely
accepted classification of nanoparticles, while their homogeneously solid counterparts
are often referred to as micro- and nanospheres [14]. Micro- and nanocapsules around
hydrophobic cores can be prepared by four principally different approaches according to a
previous review: interfacial polymerization, interfacial precipitation, interfacial deposition,
and self-assembly procedures [14]. Considering the reports of peptide capsules in recent
years, it is appropriate to classify the peptide-based capsules into three categories: capsules
formed by self-assembly, by polymerization and crosslinking, and by layer-by-layer (LbL)
technology. In the following, peptide-based capsules of these three different categories are
introduced. Subsequently, essential properties of these capsules are discussed.
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2. Current Methods for Peptide Micro/Nanocapsules Production

The three basic approaches for the formation of peptide-based capsules, self-assembly,
crosslinking, and LbL technology are depicted in Figure 1.
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2.1. Capsule Formation by Self-Assembly

Through the self-assembly process, peptide-based capsules can be obtained via non-
covalent interactions, including amphiphilic interactions, hydrogen bonding, and π-π
stacking. In this case, the capsule wall is formed by self-assembly of amphiphilic peptides,
a purely physical process without any chemical reaction (Figure 1). Some of the peptides
may later form additional physical cross-linking through non-covalent bonding on the
interface such as π-π stacking interactions or hydrogen bonding, weak interactions which
further stabilize the outer membrane [15,16].

Since capsules prepared from self-assembly around hydrophobic cores have no cova-
lent interaction and have properties similar to coated droplets in an emulsion, the terms
capsule dispersions and emulsions are equivalent at this point. In 2005, Morikawa et al.
prepared hollow microcapsules based on α-helical peptide by the emulsion-templated self-
assembly of amphiphilic poly(g-benzyl-L-glutamate) (Figure 2a). Corresponding hollow
microcapsules are formed by rapid evaporation of the dichloromethane phase. The hollow
microcapsules contain a solid polypeptide shell and an aqueous core, which is different
from the normal capsules with a hydrophobic liquid core. The hollow microspheres are sta-
ble even after drying in air and can be used as carrier for both water-soluble and -insoluble
molecules as reported [17].

Using an amphiphilic diblock-oligopeptide, nanocapsules around perfluorodecalin
(PFD) were prepared by the self-assembly approach [18]. The capsule formation process
leads to spherical shapes with an average diameter around 360 nm and a relatively narrow
size distribution. With the PFD core, the capsules are capable of transporting oxygen and
may be used as oxygen carriers for artificial blood replacement. The capsules exhibit fully
reversible oxygen uptake capability comparable to other PFD systems [18].

In 2008, Hanson et al. prepared stable water-in-oil-in-water double emulsions and
single oil-in-water emulsion using synthetic amphiphilic diblock copolypeptide surfactants
of Kx(rac-L)y and KxLy (K represents lysine and L represents leucine) [19]. Later, they pre-
pared stable nano- and microscale emulsion droplets using block copolypeptide surfactants
of biotin–K55(rac-L)20 and K55(rac-L)20, and they proved that the attachment of biotin to
the hydrophilic segment shows no adverse effect on the stability of the emulsion [20].

In addition to the above-mentioned preparation of capsules through amphiphilic
interactions, some researchers started to study emulsions specifically strengthened by
hydrogen bonding and π-π stacking of short peptides. Compared to traditional emulsions,
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these emulsions stabilized by peptide show higher stability. In 2014, Ulijn et al. demonstrate
the use of aromatic dipeptide to form the oil-in-water or water-in-oil emulsions that remain
stable for months through the formation of nanofibrous networks at the organic/aqueous
interface. Compared with traditional surfactant such as SDS, it is well justified to address
these droplets as microcapsules, which considerably improve the stability of the dispersion
(Figure 2b) [21].

Later, the same group began to study self-assembling of tripeptides in biphasic systems
to stabilize microemulsions using a combined experimental/computational approach. They
distinguished two types of aggregation behavior depending on peptide sequence: some of
the tripeptides formed bilayer structures, and the others formed fiber-like morphologies.
Significantly more stable emulsions are formed if the tripeptides have fibrillar assembly [22].

Yang et al. reported a considerable strategy to prepare highly stable nanoemulsions us-
ing ferrocene-tripeptide amphiphiles. The phase behavior regarding the emulsion–hydrogel
transition and the size distribution of the emulsions could be precisely controlled by altering
the temperature, the solvent ratio and the redox state of the ferrocene moiety [23].

Other interesting studies dealt with vesicles based on the self-assembly of peptides,
the schematic drawing of which is shown elsewhere [24–26]. Considering that vesicles
have analogue structures such as capsules, the related works based on self-assembly of
peptides into vesicles are also briefly introduced at this point, even though no hydrophobic
core is involved. In 2005, Holowka et al. reported the preparation of vesicles self-assembled
from a series of poly(L-lysine)-b-poly(L-leucine) block copolypeptides as well as the poly(L-
glutamatic acid)-b-poly(L-leucine) block copolypeptide. They proved that the proper ratio
of diblock peptide chain length and the stable α-helical conformations in the oligoleucine
segments are essential for the formation of the vesicles [24]. Hell et al. designed amphiphilic
oligopeptides (Ac-Ala-Ala-Val-Val-Leu-Leu-Leu-Trp-Glu2/7-COOH), which were recombi-
nantly produced in bacteria, that can self-assemble into vesicular structures. The vesicles
formed from these amphiphilic peptides showed a radius of approximately 60 nm with
a narrow particle size distribution. In addition, it was demonstrated that water-soluble
molecules can be entrapped inside these peptide vesicles [27].
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2.2. Capsule Formation by Polymerization and Crosslinking

In this case, the capsule wall is formed by polymerization and/or crosslinking of
peptides at the interface between the solid and liquid phase of a dispersion or between the
two liquid phases of an emulsion, a very efficient way to produce solid capsules owing to
the stability of the covalent bonds (Figure 1).

Peptides consisting of cysteine and tyrosine are widely used in the preparation of
capsules with cross-linked membranes [30,31]. Cysteine, as a natural cross-linking agent,
serves as an important structural unit in many proteins thanks its capability to form disul-
fide bonds. Following this principle, peptide-based nanocapsules, which make use of
cysteine as a cross-linking component, have been prepared. The capsules are based on an
amphiphilic triblock oligopeptide consisting of blocks from aspartic acid, cysteine, and
phenylalanine. The stability of the capsule wall was enhanced by the formation of sulfur
bridges via the central cysteine block. The capsule formation process leads to spherical
shapes with average diameters around 500 nm [Huayang Feng; Christian Mayer; et al.
Interlayer-crosslinked capsules from synthetic triblock-peptides as potential artificial oxy-
gen carriers. Angew. Chem., in preparation.]. The capsule walls show a distinct mechanical
strength and allows for fast gas exchange.

Jacobs et al. reported a novel and facile way to prepare polypeptide nanospheres
by miniemulsion polymerization of a S-(o-nitrobenzyl)-L-cysteine N-carboxyanhydrides
(NCA) monomer. Subsequently, the polypeptide nanospheres were stabilized by forming
disulfide bridges under the influence of UV light. The nanospheres show homogeneous
size and diameters around 200 nm. This methodology provided a new way to prepare
peptide-based nanoparticles [32].

Dityrosine exists in many biological macromolecules and is known as a natural cross-
linker. Based on this, Huang et al. reported the fabrication of stable polypeptide-based
nanocapsules consisting of L-lysine and L-tyrosine (Tyr) through cross-linking of Tyr
residues by UV irradiation. They also used the cross-linked capsules for encapsulation of
myoglobin. Their results indicate that the cross-linked membrane was permeable and that
the function of the encapsulated protein would not be affected during the reduction or
cross-linking reaction (Figure 2c) [28].

Min et al. reported the synthesis of short peptide nanocapsules with diameter of
100–200 nm through photo-polymerization of dityrosine in pH 10 buffer without requiring
templates. The peptide nanocapsules showed high mechanical strength and stability.
Interestingly, free-standing peptide thin films could be obtained by just changing reaction
medium to methanol with 0.1 M NaOH [33].

Yang et al. prepared peptide-based nanospheres through self-assemble of ferrocene-
tyrosine (Fc-Y) molecules, which could be transformed into hollow vesicles by covalent
photo-crosslinking of the Fc-Y monomers. They proved that the peptide-based nanos-
tructures have potential applications in various fields such as biomineralization of gold
nanoparticles, biomimetic catalysis, and superior energy storage [34].

Apart from the above-mentioned preparation of capsules through crosslinking of
tyrosine or cysteine, many peptide capsules based on other cross-linking strategies such
as the amidation reaction have also been reported. In 2013, Wibowo et al. prepared
stable cross-linked peptide-based capsules through the polymerization of a glutamate
N-carboxyanhydrides (NCA) monomer on silica particle templates deposited by hyper-
branched poly(ethylene imine) (PEI) macroinitiators, followed by deprotection, amidation
reaction between PEI and Glu, and template dissolution [35]. Cavalieri et al. prepared
polymeric capsules based on crosslinking of polylysine and PEG-NHS on the surface of
mesoporous silica (MS) particles. After core removal procedure, siRNA could be loaded
into the capsules. Their findings indicate that their peptide capsules have high siRNA
loading capacity and could deliver siRNA to cells efficiently [36]. Wang et al. prepared
polysaccharide-polypeptide hybrid spheres without crosslinking through interfacial poly-
merization of L-leucine NCA in O–W emulsion. Notably, amphiphilic polysaccharides play
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roles as macroinitiators and natural emulsifiers, which reduces the risk of potential side
effects introduced by the emulsifier during the capsule formation process [37].

2.3. Capsule Formation by Layer-by-Layer (LbL) Technology

In this case, the capsule wall is formed by in-sequence adsorption of polyelectrolytes
from the aqueous phase to the surface of solid particles or lipid droplets (Figure 1). If
colloidal particles are used as templating inner cores, a procedure to dissolve the core
material is also needed. After removal of the inner core, a hollow capsule is formed and
can be used for the following encapsulation of a given active ingredient.

Cationic polylysine (PLL), polyornithine (POR), anionic polyglutamic acid (PGA), and
polyaspartic acid (PAA) are four kinds of polypeptides that are commonly used for pairs
of oppositely charged polyelectrolytes for formation of polypeptide multilayers [38,39].
Most of the corresponding peptide capsules are based on colloidal templates. Zhou et al.
prepared multilayer microcapsules based on PGA and PLL for platinum-based pro-drug
delivery with silica spheres as templates (Figure 2d) [29]. Huang et al. prepared peptide
capsules based on PGA and POR. They extensively studied the physicochemical properties
and biocompatibility of their capsules and found that capsules with positive charge and
high stiffness facilitate a cellular uptake process [40]. Zhi et al. encapsulate an enzyme in
polypeptide-based capsules with LbL deposition of PLL and PGA. Their results indicate
that the polypeptide capsule wall can inhibit leakage of macromolecules from polypeptide-
based capsules without precluding the permeation of small molecules [41]. Shutava et al.
reported polypeptide nanoparticles based on PLL and PGA on gelatin nanoparticles by
the LbL procedure, suitable for the delivery of natural polyphenols [42]. Modification with
PEG and other biocompatible materials would improve the stability of these polypeptide
capsules. Accordingly, Shutava et al. use PEG-modified PLL and PGA to prepare capsule
walls using the LbL technology. Essentially, the modification with PEG preserves colloidal
stability in the intermediate state when the surface charge of nanocapsules is low [43].
Ruttala et al. fabricated peptide capsules by the alternate deposition of polyarginine and
PEG-b-PGA onto albumin conjugates. The encapsulation of drugs into the peptide capsules
effectively prevented exposure of the drug to the systemic environment. Modification with
PEG increased the blood circulation potential of the drugs, which is promising for clinical
application [44]. Ye et al. reported the fabrication of robust and stable microcapsules with
PLL-modified silk fibroin and graphene oxide flakes. The incorporation of graphene oxide
significantly enhances the mechanical properties of the capsule, which can provide good
protection for encapsulated cargo under harsh conditions [45].

In 2020, Mundo et al. prepared polypeptide stabilized soybean oil-in-water emulsions
through LbL technology directly in the emulsions without using colloidal particles as
template inner core. They initially prepared primary emulsions containing small anionic
saponin-coated lipid droplets. Then, the primary emulsions were added to PLL solution
and PGA solution in sequence to prepare secondary emulsions and the final tertiary
emulsions [46]. Later, they also showed that multilayer emulsions could be formed by
sequential adsorption of anionic emulsifier (Quillaja saponin), cationic polypeptide (PLL),
and anionic polysaccharide layers onto the surfaces of lipid droplets [47].

Finally, LbL technology can be combined with the cross-linking strategy to produce
more stable LbL capsules. Ye et al. fabricated microcapsules based on PLL and PGA-
modified silk fibroin. They used the cross-linker 1-ethyl-3-[3-dimethylaminopropyl] car-
bodiimide hydrochloride (EDC) to promote the crosslinking of capsules. They focused on
the physical (transport and mechanical) properties of the microcapsules after covalent cross-
linking, and they demonstrated that the resulting capsules are a new promising platform
for bioengineering applications [48]. Ochs et al. reported the synthesis of stable hollow
capsules from PLL and PGA using a combination of click chemistry and LbL assembly,
leading to capsules which are stable in the range of pH 2 to 11. Finally, LbL capsules can be
easily modified with PEG and biotin to improve their physiological function [49].
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3. Properties of Peptide Capsules

Size, mechanical stability, and dispersion stability are three of the key parameters that
affect the performance of capsules as drug carriers. A summary of the different methods
for peptide capsule synthesis and their basic properties is presented in Table 1.

Table 1. Summary of different formation processes of peptide capsules and the resulting capsule properties.

Formation Process Main Interaction Peptide Mechanical Stability Diameter Ref.

Self-assembly Amphiphilic interaction and
hydrogen bonding Polypeptide Average 1–5 µm [17]

Self-assembly Amphiphilic interaction Polypeptide Average 100 nm−1 µm [18]
Self-assembly Amphiphilic interaction Polypeptide Average 10–100 nm [19]

Self-assembly Aromatic π-π stacking and
hydrogen bonding Dipeptide High 5–50 µm [21]

Self-assembly Aromatic π-π stacking and
hydrogen bonding Tripeptide High 1–10 µm [22]

Self-assembly Amphiphilic interaction and
hydrogen bonding Polypeptide Average 1–10 µm [24]

Self-assembly Amphiphilic interaction and
hydrogen bonding Oligopeptides Average 100–200 nm [27]

Crosslinking Covalent bonding Polypeptide High 100–500 nm [32]
Crosslinking Covalent bonding Polypeptide High 20–200 nm [28]
Crosslinking Covalent bonding Oligopeptides High 100–200 nm [33]
Crosslinking Covalent bonding Polypeptide High 5 µm [35]
Crosslinking Covalent bonding Polypeptide High 1–2 µm [36]

LbL technology Electrostatic interaction Polypeptide Average 500 nm−2 µm [29]
LbL technology Electrostatic interaction Polypeptide Average 1–5 µm [40]
LbL technology Electrostatic interaction Polypeptide Average 4–5 µm [41]
LbL technology Electrostatic interaction Polypeptide Average 100–200 nm [44]
LbL technology Electrostatic interaction Polypeptide Average 500 nm–2 µm [46]

LbL technology Electrostatic interaction and
covalent bonding Polypeptide High 3–6 µm [48]

LbL technology Electrostatic interaction and
covalent bonding Polypeptide High 5–10 µm [49]

In methods involving self-assembly, the properties of the oil–water interface, including
surface tension and viscosity, can be used to adjust the size of the droplets, which determines
the size of the capsules [50]. In the preparation methods, including ultrasonication, stirring,
and microfluidics, parameters such as the ratio of hydrophobic solvent to water would have
an effect on the size of capsules [51]. Generally, the higher the energy input to the system, the
smaller the size of the capsules. Low fractions of the organic phase in relation to the aqueous
phase also tend to yield smaller capsules. For LbL capsules, the size is mainly determined
by the template core, and the capsule wall thickness is related to the number of layers. For
polymerization and crosslinking, the capsule wall thicknesses are tunable by varying the
polymerization time and initial monomer concentration. The composition of the capsules
can also be controlled by using different amino acid N-carboxyanhydrides derivatives [35].

The mechanical stability of peptide-based capsules means the mechanical strength of
the capsule wall, which mainly depends on the interactions among the peptides. Peptide
capsules formed by crosslinking always show high mechanical stability, an effect that has
been studied by many researchers [52]. It has been reported that the incorporation of
graphene oxide could also enhance the mechanical properties of the capsule [45].

The dispersion stability refers to the ability of a dispersion to resist change in its prop-
erties over time. For capsules or emulsions formed only based on amphiphilic interactions,
the dispersion stability can be adjusted by controlling the configuration and block ratio of
the peptide. It has been proven that amphiphilic block copolypeptide containing a racemic
(atactic) hydrophobic polypeptide block could stabilize emulsion droplets better than that
with L-configuration (isotactic) hydrophobic polypeptide block, as racemic hydrophobic



Molecules 2022, 27, 1373 7 of 9

peptides such as poly(rac-leucine) are soluble in many organic solvents such as CH2Cl2
and (CH3)2SO, whereas poly(L-leucine) is not. Amphiphilic block copolypeptides with
longer hydrophilic chains are especially suited for the stabilization of oil-in-water emul-
sions where the oil is on the concave side of the curved interface of a nanoscale droplet.
Conversely, the inner water–oil interface of a WOW double emulsion is best stabilized
by an amphiphilic block copolypeptide with shorter hydrophilic chains because the oil is
on the convex side of the interface [19]. Although peptides with amphiphilic properties
would accumulate at the oil–water interface and stabilize the emulsion, the oil phase would
merge or precipitate over time due to the fact that oil and water notoriously do not mix.
The formation of capsules through π-π stacking interactions and hydrogen bonding of
amphiphilic short peptides significantly improves the dispersion stability of the emulsions
owing to the formation of nanofibrous networks at the organic/aqueous interface [21].
Modifications with PEG and other biocompatible materials would not only stabilize the
capsules but also extend the in vivo circulation time [53]. Various types of functionalities,
such as the tendency to penetrate into cells, would also be achieved by modifications with
specific functional materials [54].

4. Conclusions and Perspectives

Peptides have attracted researchers’ interest because of their versatile composition, at-
tainable secondary structures, attractive self-assembly behavior, and ideal biocompatibility
and biodegradability. It is now possible to prepare peptide-based capsules with defined
sizes and functionalities through a variety of methods. Based on these developments,
peptide-based capsules have been utilized in various types of bio-applications, including
drug and gene delivery. This review mainly focuses on the preparation of peptide-based
capsules and emulsions through different approaches. Furthermore, the combination of
various cross-linking strategies with self-assembly and LbL methods is undoubtedly a
promising pathway for preparing capsules with enhanced mechanical stability. A more
flexible design of biomedical capsules could combine peptides with other biocompatible
materials, leading to specific functionalities and high mechanical stability. Overall, consid-
ering the progress in developing peptide-based capsules and emulsions, we believe that
peptide-based capsules will have a very promising potential for biomedical applications.
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