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Abstract: Biopolymers, especially polysaccharides (e.g., gum Arabic), are widely applied as drug
carriers in drug delivery systems due to their advantages. Curcumin, with high antioxidant ability
but limited solubility and bioavailability in the body, can be encapsulated in gum Arabic to improve
its solubility and bioavailability. When curcumin is encapsulated in gum Arabic, it is essential
to understand how it works in various conditions. As a result, in Simulated Intestinal Fluid and
Simulated Gastric Fluid conditions, we investigated the potential of gum Arabic as the drug carrier of
curcumin. This study was conducted by varying the gum Arabic concentrations, i.e., 5, 10, 15, 20, 30,
and 40%, to encapsulate 0.1 mg/mL of curcumin. Under both conditions, the greater the gum Arabic
concentration, the greater the encapsulation efficiency and antioxidant activity of curcumin, but the
worse the gum Arabic loading capacity. To achieve excellent encapsulation efficiency, loading capacity,
and antioxidant activity, the data advises that 10% is the best feasible gum Arabic concentration.
Regarding the antioxidant activity of curcumin, the findings imply that a high concentration of gum
Arabic was effective, and the Simulated Intestinal Fluid brought an excellent surrounding compared
to the Simulated Gastric Fluid solution. Moreover, the gum Arabic releases curcumin faster in the
Simulated Gastric Fluid condition.

Keywords: gum Arabic; curcumin; drug delivery system; Simulated Intestinal Fluid; Simulated
Gastric Fluid; encapsulation efficiency; loading capacity; antioxidant activity; release rate

1. Introduction

Polymers are giant molecules with a high molecular weight (macromolecules) created
by the covalent bonding of several smaller molecules or repeating units, called monomers.
A natural polymer, found in plants, microorganisms, and animals, is one form of polymer
based on its source of origin [1]. Natural polymers have several advantages over synthetic
polymers, including homogeneous shapes and sizes, biodegradability, biocompatibility,
non-toxicity, low cost, ease of modification, and accessibility [1–4]. Biopolymer is a natural
polymer created directly by living organisms’ cells. It comprises bio-based monomer units
covalently bound together to form bigger bio-based polymer molecules [5]. Polynucleotides
(made of nucleotide monomers, e.g., DNA and RNA), polypeptides (composed of amino
acid monomers, e.g., collagen), and polysaccharides (containing carbohydrate structures,
e.g., starch, cellulose, and gum Arabic) are the three types of biopolymers [6]. Due to their
biocompatibility, processability, and other benefits, natural polymers and biopolymers,
mainly polysaccharides, are commonly used as drug carriers in drug delivery systems
(DDS) [7]. By stabilizing the drug, localizing the drug’s action, and managing the release
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drug’s rate, time, and location, DDS is claimed to provide better therapeutic effects of the
encapsulated drug at specific disease sites with low toxicological effects [8,9].

Gum Arabic (GA) in Figure 1 [10], also known as acacia gum, is the hardened sap of
the Leguminosae family of Acacia senegal and Acacia seyal trees. It is a complex mixture of
glycoproteins and polysaccharides, branched heteropolysaccharides that are either neutral
or slightly acidic, light-orange or pale white, and water-soluble [11,12]. The GA structure’s
mainframe comprises 1,3-linked β-D-galactopyranosyl units. At the same time, the side
chains are made up of two to five 1,3-linked β-D-galactopyranosyl units that connect to
the main chain via 1,6-linkages. Another study discovered that simple sugars such as
D-galactose, L-arabinose, L-rhamnose, and D-glucuronic acid are also constituents of this
heteropolysaccharide [13]. Because of biocompatibility, tastelessness, non-toxicity, and
high-water solubility, GA is widely used as a drug carrier in DDS [14]. GA can also prevent
aggregation as a drug carrier by forming a thick protective film around the encapsulated
drug’s core material and acting as an emulsifier. Several studies have shown that using
GA to encapsulate drugs or active compounds with antioxidant properties can improve
the drug’s stability, encapsulation efficiency, and antioxidant capacity [15–19]. The ability
of a mixture to scavenge free radicals by intervening in one of the three main steps of the
oxidative process mediated by free radicals (i.e., initiation, propagation, and termination)
is referred to as antioxidants [20,21].
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As a result, finding a suitable DDS is critical to overcoming the problem of delivering 
curcumin into the body for therapeutic use. 

Several studies have shown that liposomes as DDS can overcome curcumin’s weak-
nesses, allowing curcumin to be well encapsulated and its effectiveness in the body to 
improve [32–36]. Other materials of DDS, as depicted in Figure 2, such as dendrimers, 
micelles, and microemulsions, emulsions and nanoemulsions, solid lipid nanoparticles 
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Figure 1. The structure of gum Arabic.

Curcumin is the curcuminoid active compound found in turmeric (Curcuma longa
L.) It has numerous health benefits, one of which is an antioxidant [22,23]. Curcumin’s
unique reactive groups, which include two phenolic hydroxyl groups and an enol from a
β-diketone moiety, are known to have potent free radical scavenging activity [24,25]. Due
to their ability to directly react with free radicals and transform them into more stable or
non-radical products, phenolic compounds with more than one hydroxyl group (–OH) are
effective primary antioxidants [26,27]. Curcumin, poorly soluble in water (7.8 µg/mL), has
low bioavailability in the body and a fast metabolism and excretion rate from the body’s
system [28–30]. Curcumin is rapidly degraded in alkaline conditions (pH > 7) but degrades
slowly in acidic conditions, implying that its decomposition is pH-dependent [31]. As a
result, finding a suitable DDS is critical to overcoming the problem of delivering curcumin
into the body for therapeutic use.

Several studies have shown that liposomes as DDS can overcome curcumin’s weak-
nesses, allowing curcumin to be well encapsulated and its effectiveness in the body to
improve [32–36]. Other materials of DDS, as depicted in Figure 2, such as dendrimers, mi-
celles, and microemulsions, emulsions and nanoemulsions, solid lipid nanoparticles (SLNs),
nanoparticles (NPs) including polymeric nanoparticles, magnetic nanoparticles, biopoly-
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mer nanoparticles, microgels, and hydrogel beads, have also been used to increase the
solubility and bioavailability of curcumin so that it can be delivered into the body [36,37].

Molecules 2022, 27, x FOR PEER REVIEW 3 of 14 
 

 

biopolymer nanoparticles, microgels, and hydrogel beads, have also been used to increase 
the solubility and bioavailability of curcumin so that it can be delivered into the body 
[36,37]. 

 
Figure 2. Representation of curcumin delivery systems. 

As mentioned above, GA has been widely used as the primary drug carrier or addi-
tional stabilizing material to improve the ability of encapsulated drugs when delivered 
into the body [14,16]. Therefore, this study aimed to investigate GA’s potential in encap-
sulating curcumin under two different oral drug delivery pathways, namely SIF and SGF 
solutions. Our new finding is that a 10% concentration of gum Arabic in both SIF and SGF 
solutions is the optimum concentration to achieve the optimal encapsulation efficiency of 
curcumin and the loading capacity of gum Arabic for curcumin. 

2. Results and Discussion 
Curcumin is a bioactive agent that is poorly soluble in water (7.8 µg/mL) [28], slightly 

improved under physiological pH conditions (0.0004 mg/mL) [36], easily soluble in or-
ganic solvents, including 96% ethanol (10 mg/mL) [38], and chemically unstable in gastric 
and intestinal environmental conditions [28]. Its decomposition depends on pH. Curcu-
min’s half-life at pH 3–6.5 is ~100–200 min, while at pH 7.2–8.0 it decreases significantly 
to only 1–9 min [37]. Research has shown that encapsulation using polymeric micelles, 
liposomes, or surfactant micelles can increase curcumin solubility [29,39]. In this research 
we establish that DDS using GA matrices, which are biopolymer, provide promising re-
sults in SIF and SGF solutions. 

2.1. Encapsulation Efficiency, Loading Capacity, Release Rate, and Antioxidant Activity in SIF 
and SGF Solutions 

Encapsulation efficiency (EE) is an important parameter to consider when evaluating 
the success of a DDS. The percentage of an encapsulated material (e.g., active ingredients, 
drugs, etc.) successfully entrapped into drug carriers following an encapsulation process 
for protection, absorption, delivery in the body, and controlled release is defined as EE 
[40,41]. Therefore, we investigated the EE of curcumin encapsulated in GA and expressed 
it as a percentage. It represents the amount of the drug encapsulated. In this study, the EE 
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As mentioned above, GA has been widely used as the primary drug carrier or addi-
tional stabilizing material to improve the ability of encapsulated drugs when delivered into
the body [14,16]. Therefore, this study aimed to investigate GA’s potential in encapsulating
curcumin under two different oral drug delivery pathways, namely SIF and SGF solutions.
Our new finding is that a 10% concentration of gum Arabic in both SIF and SGF solutions
is the optimum concentration to achieve the optimal encapsulation efficiency of curcumin
and the loading capacity of gum Arabic for curcumin.

2. Results and Discussion

Curcumin is a bioactive agent that is poorly soluble in water (7.8 µg/mL) [28], slightly
improved under physiological pH conditions (0.0004 mg/mL) [36], easily soluble in organic
solvents, including 96% ethanol (10 mg/mL) [38], and chemically unstable in gastric and
intestinal environmental conditions [28]. Its decomposition depends on pH. Curcumin’s
half-life at pH 3–6.5 is ~100–200 min, while at pH 7.2–8.0 it decreases significantly to only
1–9 min [37]. Research has shown that encapsulation using polymeric micelles, liposomes,
or surfactant micelles can increase curcumin solubility [29,39]. In this research we establish
that DDS using GA matrices, which are biopolymer, provide promising results in SIF and
SGF solutions.

2.1. Encapsulation Efficiency, Loading Capacity, Release Rate, and Antioxidant Activity in SIF and
SGF Solutions

Encapsulation efficiency (EE) is an important parameter to consider when evaluating
the success of a DDS. The percentage of an encapsulated material (e.g., active ingredients,
drugs, etc.) successfully entrapped into drug carriers following an encapsulation process for
protection, absorption, delivery in the body, and controlled release is defined as EE [40,41].
Therefore, we investigated the EE of curcumin encapsulated in GA and expressed it as
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a percentage. It represents the amount of the drug encapsulated. In this study, the EE
of curcumin was calculated indirectly by measuring the amount of the unencapsulated
curcumin (Ct) in the supernatant using UV-Vis spectrophotometer [42] and Equation (2).

The EE of curcumin increased as the concentration of GA (CGA) increased in both
SIF and SGF conditions, as shown in Figure 3. EE grew rapidly at low CGA up to 20%,
then relatively more slowly at higher CGA up to 40%. The data in Figure 3 also revealed
that the EE for each CGA (5–40%) in SIF (range 32.3–72.8%) was more significant than that
in SGF (range 10.47–49.97%). The higher the EE value obtained, the more curcumin was
successfully encapsulated in GA. Thus, the CGA to get the highest EE for better DDS was
40% for both SIF (EE = 72.8%) and SGF (EE = 49.97%) conditions.
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Loading capacity (LC) refers to a drug carrier’s ability to encapsulate a specific encap-
sulated material. The percentage of drugs incorporated within the drug carrier relative to
the total mass of the drug carrier is referred to as LC. The drug carrier’s structural, physical,
and chemical properties determine LC [41,43]. As shown in Equation (3), LC in this study
can be calculated by dividing the total concentration of successfully encapsulated curcumin
(C0–Ct) by the total concentration of GA (CGA). The higher the LC value of GA, the more
curcumin was successfully encapsulated. This indicates that the best potential of GA as a
drug carrier in DDS (composed of the drug carrier and the encapsulated material) can be
obtained at this CGA because curcumin can be maximally encapsulated [44,45].

As shown in Figure 4, the LC decreased as the CGA increased in SIF and SGF conditions
except for GA in SGF with a 5% to 10% concentration. The LC between these concentrations
increased by 4.86%, from 21.35% to 26.21%. The data in Figure 4 also revealed that the
LC for each CGA (5–40%) in SGF (range 26.21–12.74%) was greater than that in SIF (range
6.58–1.86%). The lowering of the loading capacity of GA is assumed because the carboxylic
group in GA has been wholly ionized to COO−. The formation of this charge creates
a repulsion force between the acid groups of GA, resulting in destabilization of the GA
structure and a decrease in LC [16]. The CGA for obtaining the highest LC value for DDS
was 5% for SIF (6.58%) and 10% for SGF (26.21%) conditions.
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The rate of drug release (RR) from a DDS to the desired target tissues is a critical prop-
erty associated with a drug’s therapeutic activity in the body [46]. Hence, we investigated
the release rate of curcumin encapsulated in GA. A controlled rate of release of a DDS is a
delivery form in which the drug is released at a predetermined rate based on the desired
therapeutic concentration and the drug’s pharmacokinetic properties [47]. Because the
release rate has been determined, the medication delivered can have a long lifetime ranging
from days to months, with minimal side effects on the body.

The RR of curcumin encapsulated in GA varied as the CGA increased in SIF and SGF
conditions, as shown in Figure 5. The RR of curcumin encapsulated in GA dispersed in
SIF was higher than that of SGF at 5% and 15% of CGA, respectively. However, at other
CGA (10%, 20%, 30%, and 40%), the RR in SGF was higher than that in SIF. The observation
of the RR for 12 days revealed that under SIF conditions, curcumin encapsulated in GA
lasted the longest at 40% of CGA, while, under SGF conditions, curcumin encapsulated in
GA lasted the longest at 10% of CGA. In general, curcumin would be released faster in the
SGF compared to the SIF condition.
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We estimate the mechanism of curcumin encapsulation in GA occurs due to non-
covalent interactions between the –COOH group of GA and the –OH group of curcumin to
form hydrogen bonds. The formation of hydrogen bonds affects both the encapsulation
of curcumin in GA and the release of curcumin from GA. This hydrogen bond formation
also explains why the EE and LC of GA to encapsulate curcumin are higher than that of
tocopherol [16]. Curcumin has additional OH groups compared to tocopherol, so more
hydrogen bonds are formed during the encapsulation process. Further studies are still
needed to confirm the hydrogen bonding formation such as using X-ray Diffraction (XRD),
Differential Scanning Calorimetry (DSC), or computational studies.

Antioxidant activity (IR) is defined as limiting or inhibiting the oxidation of nutrients
(particularly lipids and proteins) by preventing oxidative chain reactions from occurring.
We used the DPPH scavenging activity assay to assess the IR of curcumin encapsulated in
GA, as shown in Equation (4). If the scavenging activity of DPPH is high, the value of IR
will be increased. If the value of DPPH is higher, it means that the amount of antioxidant
compounds in the related drug (e.g., curcumin) is smaller [21,32,48]. The lower the number
of antioxidant compounds required to obtain a high value of IR, the better the compound’s
ability to defend against free radicals in its role as an antioxidant [49–51].

When the odd electron from the nitrogen atom in the radical form of DPPH accepts a
hydrogen atom from the antioxidant, it undergoes reduction. It forms the corresponding
hydrazine or non-radical form of DPPH [48,52]. Overall, the DPPH molecule is classified
as a stable free radical due to the delocalization of the spare electron across the molecule,
which prevents the molecule from dimerizing like most other free radicals. The presence of
electron delocalization results in a deep violet color, with absorption in ethanol solution at
around 515–517 nm. When the DPPH solution is mixed with an antioxidant compound
that donates a hydrogen atom, such as curcumin, it loses its deep violet color (becomes
colorless or pale yellow in color), as shown in Figure 6 [21,53,54].
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Equation (1) depicts the primary reaction in which the DPPH radical is Z•, whose
activity will be suppressed by AH as an antioxidant donor molecule, ZH is the reduced form
of DPPH (non-radical), and A• is the antioxidant donor molecule’s free radical form [21,55].

Z•+ AH = A•+ ZH (1)

In terms of the number of electrons taken up, the decolorization in the DPPH molecule
that reacts with antioxidants is stoichiometric. DPPH can respond with the entire sample,
even if the antioxidants are weak. Therefore, the DPPH free radical scavenging assay
method is widely used to assess a compound’s ability to act as a free radical scavenger or
hydrogen donor and its antioxidant activity (IR) [55,56].

In both SIF and SGF conditions, as shown in Figure 7, the IR increased as the CGA
increased. The IR in SIF (range 33.21–60.39%) was higher than in SGF (range 9.08–40.84%),
indicating that curcumin’s antioxidant activity was better in SIF than in SGF conditions.
This is due to the nature of curcumin, which degrades quickly in alkaline but slowly in
acidic conditions [31], resulting in a decrease in the amount of undegraded curcumin
as an antioxidant compound that will react with DPPH. This decrease in the curcumin
results in a high value of DPPH scavenging activity, which directly impacts the IR value
in SIF rather than SGF. Furthermore, curcumin in SIF appears in the enolate form of the
heptadienone chain (an electron donor), whereas curcumin in SGF appears in a protonated
form (a hydrogen donor). Because only hydrogen donors can react with DPPH, SIF has
a higher IR value than SGF [32,57]. The higher the IR value at a high CGA, the better
curcumin’s antioxidant performance against free radicals. It is also aided by GA, which has
antioxidant activity [17,19]. Therefore, the CGA for obtaining the highest antioxidant activity
of curcumin was 40% for both dispersions in SIF (60.39%) and SGF (40.84%) conditions.
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2.2. Optimum Encapsulation Efficiency and Loading Capacity in SIF and SGF Solutions

The EE of the encapsulated material and the LC of the drug carrier are both parameters
that are closely related to the ability of a DDS to encapsulate a drug for delivery to specific
sites in the body. This study will compare the EE of curcumin, and the LC of GA dispersed
in SIF and SGF to determine the optimum value between these two parameters.

EE increased while LC decreased as CGA increased in SIF and SGF solutions as shown
in Figure 8. Furthermore, Equation (2) demonstrates that the EE value was directly propor-
tional to both the encapsulated curcumin concentration and the CGA, whereas Equation (3)
demonstrates that the LC value was directly proportional to the encapsulated curcumin
concentration and inversely proportional to the CGA. Therefore, EE is inversely propor-
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tional to LC, consistent with the results. The higher the CGA used, the easier it was for
curcumin to be encapsulated (higher value of EE), but it further reduced the space of GA to
encapsulate curcumin again (lower value of LC).
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The EE ranged from 32.25–72.82% for CGA dispersed in SIF, and the LC ranged from
6.58–1.86%. The EE of curcumin increased significantly at 5–15% of CGA, whereas the LC
of GA decreased significantly at 5% of CGA as shown in Figure 8A. The EE ranged from
10.47% to 49.97% for CGA dispersed in SGF, and the LC ranged from 21.35 to 12.74%. The
EE of curcumin increased significantly at 5–20% of CGA, whereas the LC of GA decreased
substantially at 20% of CGA as shown in Figure 8B. The data recommend that 10% is the
optimum CGA to obtain the optimum EE of curcumin and LC of GA of the encapsulation
process in SIF and SGF conditions.

2.3. Relationship of Encapsulation Efficiency and Antioxidant Activity of Curcumin in SIF and
SGF Solutions

These two parameters relate to the amount of curcumin encapsulated in GA (EE) and
the ability of curcumin to act as an antioxidant compound (IR) in different pH environments.

Both EE and IR increased as CGA increased in SIF and SGF conditions as shown in
Figure 9. According to Equation (2), the EE value was directly proportional to both the
encapsulated curcumin concentration and the CGA, whereas Equation (4) shows that the IR
value was directly proportional only to the antioxidant activity of DPPH radical that reacts
with GA-Curcumin to form non-radical DPPH and inversely proportional to the antioxidant
activity of only DPPH radicals. Therefore, the results in which EE is directly proportional
to IR align with the theoretical suggestion. The higher the CGA, the more curcumin was
successfully encapsulated in GA (higher value of EE) and the higher curcumin’s ability as
an antioxidant to ward off free radicals (higher value of IR).

The EE and IR progression values in both SIF (Figure 9A) and SGF (Figure 9B) showed
that SGF gave a higher increment than SIF. This suggests that regarding EE and IR, SGF
gave better environmental conditions for encapsulation of curcumin in GA. Furthermore,
the results indicate that the highest increase in EE and IR in SIF and SGF occurred between
5% and 20% of CGA.
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2.4. Relationship of Loading Capacity and Antioxidant Activity of Curcumin in SIF and SGF Solutions

These parameters relate to the ability of GA as a drug carrier for curcumin (LC) and
the power of GA to stabilize further and enhance curcumin’s ability as an antioxidant
compound (IR) in two different pH surroundings.

As the CGA increased in both SIF and SGF as shown in Figure 10, LC decreased while
IR increased, implying that LC was inversely proportional to IR. The results suggest that
a high amount of curcumin loading in GA was not adequate concerning the antioxidant
activity of curcumin.

In SIF (Figure 10A), the LC ranged from 6.58 to 1.86%, and the IR ranged from 33.21
to 60.39%. The LC of GA decreased significantly at 5% of CGA, whereas the IR increased
significantly at 5–20% of CGA. In SGF (Figure 10B), the LC ranged from 21.35 to 12.74%,
and the IR ranged from 9.08 to 40.84%. The LC of GA decreased significantly at 20% of
CGA, while the IR increased significantly at 5–20% of CGA. These outcomes propose that
the optimum CGA for obtaining the optimum LC of GA and IR of curcumin is around 10%
to 20% in SIF and SGF conditions. The SGF provided a better atmosphere than the SIF
solution regarding the antioxidant activity.
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(B) SGF solution.

This study provides several parameters that feature the encapsulation of curcumin in
GA, namely EE, LC, and release of curcumin encapsulation in GA. To understand more
about the curcumin delivery system using GA, further study is necessary to analyze other
physicochemical characteristics of the dispersion, including the particles’ size, shape, and
surface charge. These parameters are crucial for a successful delivery system.
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3. Materials and Methods
3.1. Materials

The materials used were gum Arabic, curcumin, Na2HPO4·2H2O (0.05 M), NaH2PO4·2H2O
(0.05 M), HCl (37%), NaCl, NaOH, ethanol, DPPH solution (40 µg/mL), and demineralized
water.

3.2. Methods
3.2.1. Preparation of Simulated Intestinal Fluid (SIF)

A solution of 0.05 M was prepared from 7.5 g of Na2HPO4·2H2O in 500 mL of deminer-
alized water. Another solution of 0.05 M was also prepared from 3.9 g of NaH2PO4·2H2O
in 500 mL of demineralized water. A mixture of 9.5 mL of NaH2PO4·2H2O (0.05 M) and
40.5 mL of Na2HPO4·2H2O (0.05 M) was prepared and diluted into 100 mL. The pH was
adjusted to 7.4.

3.2.2. Preparation of Simulated Gastric Fluid (SGF)

In 800 mL of demineralized water, about 2 g of NaCl was dissolved. Drop by drop,
a total of 4.5 mL of 37% HCl solution was added into the NaCl solution, followed by
demineralized water until the volume reached 1 L. The pH of the solution was tuned to 1.2.

3.2.3. Curcumin Encapsulation in Gum Arabic (GA)

A series of GA dispersions with concentrations (CGA) of 5%, 10%, 15%, 20%, 30%,
and 40% (w/v) were prepared in 100 mL of chloroform/methanol (9/1, v/v). Curcumin,
at a concentration of up to 0.1 mg/mL per GA dispersion, was first dissolved in a small
amount (a few drops) of ethanol before being added to each GA dispersion, then stirred for
10 min. The ethanol facilitates the mixing of the curcumin with the GA dispersion. In a
test tube, 10 mL of GA-curcumin dispersion was streamed with nitrogen gas until a thin
layer remained at the bottom. After that, 10 mL of the SIF solution was added to the test
tube containing a thin layer, and the freeze-thawing process was continued in the test tube.
The freeze-thawing cycle adapted from Hudiyanti’s research [32,58–60] was carried out
by cooling it at 4 ◦C and heating it at 45 ◦C repeatedly until the thin layer was completely
dissolved. Then it was sonicated for 30 min at 27 ◦C. This procedure for repeated for each
GA concentration in both SIF and SGF solutions. Next, 1 mL of sonicated GA-curcumin
dispersion was dissolved in 5 mL of ethanol (w/v), then centrifuged at 3461× g for 40 min
until two layers were formed in the test tube. The watery top layer (supernatant) containing
unencapsulated curcumin was separated for analysis on LC and EE. The thick bottom layer
(GA residue) was stored at −18 ◦C until it was reused for analysis of IR and RR. The sink
condition was maintained at 30 ◦C for all compositions.

3.2.4. Curcumin Encapsulation Efficiency (EE) and GA Loading Capacity (LC)

The EE of curcumin and LC of GA were evaluated based on the concentration of unen-
capsulated curcumin in the supernatant. The unencapsulated curcumin in the supernatant,
which had previously been dissolved in ethanol before the centrifugation process, was
then analyzed using a UV-Vis spectrophotometer. The concentration of unencapsulated
curcumin (Ct) was analyzed at a wavelength of 426 nm. The EE of curcumin was calculated
with Equation (2), while the LC of GA was calculated with Equation (3) [16].

EE =

[
1 −

(
Ct

C0

)]
× 100% (2)

LC =

(
C0 − Ct

CGA

)
× 100% (3)
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3.2.5. Analysis on Curcumin Release Rate (RR)

The RR of curcumin was determined using the concentration of curcumin released
from GA during storage. The GA residue obtained from the previous encapsulation
procedure was dispersed in the buffer solution, i.e., SIF and SGF solutions (1/5, w/v), and
stored in an incubator at 4 ◦C. Curcumin release from GA into the buffer solution was
monitored for 12 days. Each dispersion was homogenized using an ultrasonic homogenizer
for 5 min, followed by centrifugation at 4500 rpm for 15 min. The dispersion was then
allowed to settle and form two layers. The absorbance of the supernatant separated from
the GA residue was measured at a wavelength of 426 nm. This procedure was repeated for
each GA dispersion.

3.2.6. Analysis of DPPH Free Radical Scavenging Assay (Antioxidant Activity, IR)

The Blois method [55] was used to perform the 1-Diphenyl-2-picrylhydrazyl (DPPH)
free radical scavenging assay, in which 1 mL of each GA-Curcumin dispersion was mixed
with 3 mL of DPPH (40 µg/mL) solution. The mixture was then incubated for 30 min at
room temperature without exposure to light. The absorbance of the mixture was measured
with a UV-Vis spectrophotometer at a maximum wavelength (λmax) of 515 nm. The DPPH
antioxidant activity (IR) was calculated using Equation (4) as follows:

IR =

(
A0 − A1

A0

)
× 100% (4)

where A0 is the absorbance of the DPPH solution without the addition of GA-Curcumin dis-
persion and A1 is the absorbance of the DPPH solution with the addition of GA-Curcumin
dispersion after 30 min of incubation [32].

Statistical Analysis

All data presented in this article were acquired in triplicate. The data were presented
as mean ± standard deviation (SD).

4. Conclusions

We have successfully encapsulated curcumin in gum Arabic dispersions in the SIF
and SGF solutions. The results give a satisfactory outcome regarding the potency of gum
Arabic for the encapsulation of curcumin in both environments. The higher the gum
Arabic concentration, the higher the encapsulation efficiency and antioxidant activity of
curcumin, but the lower the gum Arabic loading capacity. The data propose that 10% is the
best possible gum Arabic concentration to achieve the optimal encapsulation efficiency of
curcumin and the loading capacity of gum Arabic for curcumin. Regarding the antioxidant
activity of curcumin, the results indicate that an excessive concentration of gum Arabic was
effective, and the SIF delivered a superior milieu than the SGF solution. Moreover, the gum
Arabic would release curcumin more quickly in the SGF setting.
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