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Abstract

We wanted to verify the effect of combining multi-echo (ME) functional magnetic

resonance imaging (fMRI) with slice acceleration in simultaneous multi-slice acquisi-

tion. The aim was to shed light on the benefits of multiple echoes for various acquisi-

tion settings, especially for levels of slice acceleration and flip angle. Whole-brain ME

fMRI data were obtained from 26 healthy volunteers (using three echoes; seven runs

with slice acceleration 1, 4, 6, and 8; and two different flip angles for each of the first

three acceleration factors) and processed as single-echo (SE) data and ME data based

on optimal combinations weighted by the contrast-to-noise ratio. Global metrics

(temporal signal-to-noise ratio, signal-to-noise separation, number of active voxels,

etc.) and local characteristics in regions of interest were used to evaluate SE and ME

data. ME results outperformed SE results in all runs; the differences became more

apparent for higher acceleration, where a significant decrease in data quality is

observed. ME fMRI can improve the observed data quality metrics over SE fMRI for

a wide range of accelerated fMRI acquisitions.

K E YWORD S

acquisition acceleration, BOLD, multi-echo fMRI, simultaneous multi-slice imaging, TE
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a well-established

method for noninvasive brain mapping. The detection of brain activa-

tion is typically based on changes in blood-oxygen-level-dependent

(BOLD) images, that is, changes in the transverse relaxation rate or R2

* due to different blood oxygenation levels (Ogawa, Lee, Kay, &

Tank, 1990). The method commonly used for fMRI data acquisition is

echo-planar imaging (EPI). At a 3 mm resolution, it is possible to scan

the whole brain using a standard EPI sequence in about 2–4 s. This

repetition time (TR) is not able to efficiently and precisely sample

hemodynamic responses. The EPI method provides a relatively mean-

ingful trade-off between spatial and temporal resolutions. But for

higher spatial resolutions or fast sampling with whole-brain coverage,

combinations of EPI with various acceleration techniques are

required. The first group of techniques allows the acceleration of

acquisition by using a reduced amount of k-space rows (SENSitivity

Encoding [SENSE] or GeneRalized Autocalibrating Partial Parallel

Acquisition [GRAPPA]; Griswold et al., 2002; Pruessmann, Weiger,

Scheidegger, & Boesiger, 1999); the second group accelerates the

acquisition by exciting several slices simultaneously and then

decoding this image information; this is called the simultaneous multi-

slice (SMS) technique or multiband (MB) technique because several

slices are being excited with multiple radiofrequency bands

(Feinberg & Setsompop, 2013). Both acceleration techniques can be

combined. The biggest contributions of the SMS/MB techniques
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(hereafter, we use the terms SMS and MB as equivalent) are reduced

acquisition times and increased temporal and/or spatial resolution

(Setsompop et al., 2012), (Chen et al., 2015). The BOLD contrast-to-

noise ratio (CNR) increases with the square root of the number of

slices (Hamilton, Franson, & Seiberlich, 2017). SMS methods can pro-

vide better time resolutions and possibly higher CNR values,

depending on the MB factor and the defined CNR metric, for fMRI

experiments than conventional acquisitions. Todd et al. (2016) proved

that using an MB factor higher than 2 produces significant improve-

ments in BOLD sensitivity using a 3T scanner as compared to unac-

celerated sequences for motor and visual tasks. Another 3T MB EPI

study showed significant increases in BOLD activation for fast-event-

related tasks (Demetriou et al., 2018).

It is known that fMRI data can be seriously affected by various

types of artifacts, including head motion and physiological and

hardware-induced artifacts (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012). Despite advances in hardware and acquisition

techniques, the optimization of fMRI acquisition protocol (selection

of optimal TR, echo time (TE), flip angle, level of acceleration, spatial

resolution, etc.) as well as the optimization of data processing are

still important issues. Classic EPI sequences acquire data at one TE

selected in order to obtain the optimal contrast (Triantafyllou,

Wald, & Hoge, 2011). With 3T MR scanners, the TE value is usually

in the range of 30–40 ms (Triantafyllou et al., 2011). However, in

some brain areas the optimal TE can vary according to the T2* of

the specific tissue, which may lead to lower sensitivity. Higher TE

brings higher BOLD percent signal changes; at the same time, vari-

ous brain regions are more affected by susceptibility artifacts. This

issue can be solved with ME acquisition, when three or more echoes

are measured within one TR interval. For instance, Kundu

et al. (2017) reported using a ME fMRI approach with three differ-

ent TEs (Kundu et al., 2017). With three echoes, the value of the

first TE is typically selected to be as short as possible while

maintaining the other acquisition parameters (e.g., 15 ms; Kundu,

Inati, Evans, Luh, & Bandettini, 2012). The other two TE are then as

close as possible given the capabilities of the device. The earliest TE

has the highest signal intensity but lower levels of contrast between

gray and white matter and cerebrospinal fluid. Higher TEs provide

less MRI signal but higher BOLD differences between two brain

activation states (i.e., differences in T2*), and these echoes are more

sensitive to susceptibility artifacts (Kundu et al., 2017). One advan-

tage of the ME approach is the possibility to model the signal drop

associated with the T2* for each voxel. This makes it possible to

better understand the formation of individual signals and subse-

quently suppress undesirable artifacts (Posse et al., 1999). Individual

echoes are typically combined to one optimally-combined BOLD

series, weighted by voxelwise CNR (Poser, Versluis, Hoogduin, &

Norris, 2006). The ME approach was also proven to alleviate prob-

lems with signal loss in brain areas prone to susceptibility artifacts

and signal dropouts (Fernandez, Leuchs, Sämann, Czisch, &

Spoormaker, 2017; Kundu et al., 2013; Posse et al., 1999). A study

by Fernandez et al. (2017) showed that ME EPI yielded better

results at detecting task activation in the ventromedial prefrontal

cortex than standard single-echo EPI, which had signal loss due to

macroscopic field inhomogeneity.

The use of ME EPI together with MB EPI (MEMB EPI) thus

exploits both the possibility of fast acquisition and the robustness of

ME EPI against signal drop caused by susceptible artifacts and CNR

optimization. Our goals are to achieve a compromise between the

quality of the data collected and the speed of acquisition, to deter-

mine the contributions of ME to different levels of acceleration, and

to compare them with classical EPI. This should be useful to

researchers for many applications. Faster acquisitions can provide

higher statistical values due to the increase of available observations

and the better sampling of noise artifacts.

Few studies and experiments have combined the ME and MB

approaches. A few 7T studies used ME EPI together with MB for fMRI

experiments to obtain the best features of both approaches. For

example, a comparison of data from the basal ganglia acquired using a

7T scanner by Puckett et al. (2018) demonstrated MEMB out-

performing single-echo multi-band (SEMB) in image quality and func-

tional contrast (Puckett et al., 2018). Boyacio�glu, Schulz, Koopmans,

Barth, and Norris (2015) studied MEMB compared to unaccelerated

ME at 7T. Their findings suggest that MEMB provides better results in

terms of sensitivity and the correct detection of activation clusters

than ME single-band EPI at high field strengths. On the other hand,

high field strength caused an increase in susceptibility artifacts and

different signal characteristics; other studies using a 3T scanner have

thus been conducted. In one study, Olafsson, Kundu, Wong,

Bandettini, and Liu (2015) compared MEMB and single-band ME

acquisitions and demonstrated that significantly more BOLD compo-

nents from ME-ICA were found using MEMB-EPI data than ME-EPI

data. They explained that these results were caused by both the

increased number of temporal samples and the enhanced ability to fil-

ter out high-frequency artifacts. Amemiya, Yamashita, Takao, and

Abe (2019) demonstrated that ME improved language mapping and

laterality identification using combined MEMB data compared to a

single-echo data from the same MEMB acquisition (Amemiya

et al., 2019). Cohen, Nencka, Marc Lebel, and Wang (2017) used a

MEMB pseudo-continuous arterial spin labeling (pCASL) sequence

with and without ME-ICA and compared it to a single-TE-series from

the same sequence; the results showed that MEMB yields higher con-

nectivity and extent. Cohen et al. (2020) recently published two more

papers on MEMB. In 2020, they explored task fMRI activation using

MEMB and found that it showed higher activation volume and higher

sensitivity than SEMB without losing specificity. Their most recent

study, published in 2021, stated that all seed-based resting-state func-

tional connectivity and functional connectivity density were signifi-

cantly higher for MEMB than for SEMB. The results indicated that

MEMB was a promising technique for resting-state fMRI usage

(Cohen, Yang, Fernandez, Banerjee, & Wang, 2021). The two articles

by Cohen et al. had only two acquisition schemes (with and without

MB acceleration); therefore, the effects of various slice accelerations

were not evaluated in detail. Cohen et al. used different runs for SE

and ME acquisition. In general, this makes it possible to optimize

acquisition for both approaches. On the other hand, results can be
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affected by potential effects of learning, habituation, boredom, and so

on if the study is not well balanced and designed to avoid these con-

founding factors. In our study, we chose a different approach—SE data

were taken as the middle echo from ME acquisition. This makes it

possible to compare the exact same neural responses. However, SE

data cannot be fully optimized in this approach—mainly, the TR is

slightly longer (about 20%) than in independent runs with standalone

SE acquisition.

A side effect of using accelerated fMRI acquisition is the neces-

sity to use lower flip angles to avoid T1-modulaton within the BOLD

time-series in gray matter. Acquisition with lower flip angles produces

fewer measured signals, which affects the image quality. This should

not affect the percent signal change of the BOLD response; on the

contrary, it can help to decrease the amount of physiological artifacts

in the BOLD time-series (Gonzalez-Castillo, Roopchansingh,

Bandettini, & Bodurka, 2011). A study by Gonzalez-Castillo

et al. (2011) evaluated SE data without slice acceleration. For this rea-

son, we added runs with different flip angles as another factor to dif-

ferent slice acceleration levels.

In our study, we tried to evaluate extensively the advantages of

ME acquisition for various acquisition settings, especially for various

levels of slice acceleration, with a range of metrics assessing data

quality and activation results. The use of more metrics can provide a

more comprehensive view of the problem of optimizing the measuring

and processing of fMRI data because different metrics are sensitive to

different aspects of data quality and/or detection ability to the effect

of interest in our data (i.e., different neuroscience hypotheses and

goals of neuroimaging studies). For this reason, we combined metrics

based on classical fMRI task activation analysis (e.g., number of active

voxels, t-values in regions of interest (ROIs), residuals from general lin-

ear model fitting); temporal signal-to-noise ratio (tSNR) in modification

for the Human Connectome Project (Smith et al., 2013); signal-to-

noise separation (SNS) as introduced by Shirer, Jiang, Price, Ng, and

Greicius (2015); and data smoothness and global metrics from graph

connectivity analysis.

2 | METHODS

Data were collected from 26 healthy volunteers ages 20–38; 9 women

and 17 men. Exclusion criteria were any neurological, psychiatric, or

mental disorder. All participants were thoroughly familiar with the

complete contents of the measurement, were informed about safety,

and signed informed consent forms. The study protocol was approved

by the Masaryk University Ethics Committee. The measurements

were performed on the Siemens Prisma 3T MR whole-body scanner

with 64-channel head-neck coil in the Laboratory of Multimodal and

Functional Imaging at CEITEC Masaryk University.

The protocol for all measurements contained seven MB EPI fMRI

runs with different levels of acceleration (different MB factor values),

TR, and flip angles. The parameters of the runs are shown in Table 1

for clarity. First, high-resolution anatomical images T1-MPRAGE were

scanned for each subject and were later used for more accurate locali-

zation of the active areas of the brain and for detecting any possible

abnormalities that could result in a subject's removal from the study.

In the second part of the protocol, we acquired the seven BOLD runs

with different acquisition parameters. fMRI protocols were based on

the MB-EPI BOLD sequence obtained from the Centre for Magnetic

Resonance Research, University of Minnesota. The acquisition time of

each run was 6 min, but different numbers of images were obtained in

each run due to different TR values. Both field of view (FOV)

(192 � 192 mm) and TE (17.00, 34.64, and 52.28 ms) were constant

for all fMRI runs. TE values were chosen according to the MR machine

and sequence capabilities, as well as according to recommendations in

ME EPI review articles (Gonzalez-Castillo et al., 2011, 2016; Kundu

et al., 2012, 2017).

The first TE was chosen approximately as the lowest possible

value (rounded up to an integer), the second TE was as close as possi-

ble to the first one and was very similar to the typical optimal TE used

in SE acquisition, and the third TE was as close as possible to the sec-

ond one (to not unnecessarily prolong the TR). Flip angles were based

on the Ernst angle calculation and slightly rounded down. In addition

to this standard flip angle, we used the flip angle from the next accel-

eration level (i.e., 45� in run 2 to be identical to run 3). The measure-

ments of runs 1–7 were counterbalanced to avoid the effect of order.

The fMRI task was a block-design task that consisted of two regu-

larly alternating epochs. The first epoch was at baseline with instruc-

tions to lie still and fix the eyes on a red cross on a black background

in the middle of the stimulation screen. Additionally, subjects were

instructed not to think intensely. This epoch lasted 30.25 s. A second

epoch followed in which the red numbers 1, 2, 3, 4 in a series of

10 gradually appeared on the checkerboard background and the

TABLE 1 Acquisition parameters for individual runs

fMRI run Number of scans Resolution (mm) PAT factor MB factor TR (ms) Flip angle (�) Acq. matrix No. of slices

Run 1 120 3 � 3 � 3.5 2 1 3,050 80 64 � 64 48

Run 2 120 3 � 3 � 3.5 2 1 3,050 45 64 � 64 48

Run 3 450 3 � 3 � 3.5 2 4 800 45 64 � 64 48

Run 4 450 3 � 3 � 3.5 2 4 800 20 64 � 64 48

Run 5 600 3 � 3 � 3.5 2 6 600 45 64 � 64 48

Run 6 600 3 � 3 � 3.5 2 6 600 20 64 � 64 48

Run 7 900 3 � 3 � 3.5 2 8 400 20 64 � 64 48
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subject was supposed to press the corresponding buttons simulta-

neously. This active measurement period lasted 21.35 s, and the

sequence of the two epochs was repeated eight times within one

fMRI run.

2.1 | Preprocessing

The obtained data was processed using the toolbox SPM12 (rel. num.

6225) implemented in MATLAB. For each run, the images were

aligned using the SPM12 realign procedure in the following manner:

all images of the middle echo were realigned to the first image of the

second echo; subsequently the same translations and rotations were

applied to align the first and third echoes. Composite ME data were

calculated using the contrast-to-noise weighted average. Thus, in each

voxel, three temporal SNR (tSNR) values were calculated, one for each

TE, and the resulting voxel value was given by the weighted average

of the three original tSNR-weighted values and TEs. The tSNR-

weighted model was chosen with reference to the recommendations

of (Poser et al., 2006), who experimentally demonstrated that ME

tSNR-weighted data provided better sensitivity than conventional

processing techniques such as simple summation.

The presence of dropouts and spatial abnormalities in the data

was checked with the mask explorer tool (Gajdoš, Mikl, &

Mareček, 2016). The data quality, with respect to presence of exces-

sive movement, was inspected with the movement_info tool (available

at https://www.nitrc.org/projects/movement_info/) exploiting

framewise displacement (FD) measures (Power et al., 2012). The data

was controlled for number of scans per subject exceeding FD 0.5 mm

and 1.5 mm. When using the thresholds of 20% of scans exceeding

FD = 0.5 mm (as in e.g., Šimko, Pupíková, Gajdoš, & Rektorová, 2021)

and 1% of scans exceeding FD = 1.5 mm, all of the participants were

eligible. For details on the presence of movement in the data, see

Table S1 in the Supporting Information.

In the next step, the rest of the standard preprocessing of the

optimally combined ME data was performed using the SPM12 tool-

box. Co-registration to the anatomical images was done within all

sequences of all subjects. Anatomical and functional images were sub-

jected to spatial normalization to the Montreal Neurological Institute

template. Normalized data were then spatially smoothed using a

5 mm Full Width at Half Maximum Gaussian filter.

The middle TE (�35 ms) was chosen for the SE data as it is within

the recommended TE value range (Triantafyllou et al., 2011). Thereaf-

ter, spatial normalization and spatial smoothing of functional data was

performed (Figure 1).

Single-subject-level statistical analysis was performed using a

general linear model (GLM) as implemented in SPM12. One model

was estimated using data from the middle echo; the other model was

based on optimally combined ME data. The GLM design matrix con-

sisted of 26 regressors: the response to experimental stimulation,

24 movement regressors (Friston, Williams, Howard, Frackowiak, &

Turner, 1996), and the constant term. An autoregression model in

SPM was used with the AR (fast) option to take into account the

different order of autocorrelation in different fMRI sampling rates

(McDowell & Carmichael, 2019; Sahib et al., 2016).

This was followed by a group analysis in which the SE and ME

statistical models of the individual subjects were assessed with ran-

dom effect statistical model.

2.2 | Global metrics

We used several data metrics to evaluate the quality of preprocessed

data; that is, the metrics were calculated on preprocessed data before

the GLM estimation or the metrics were based on subsequent GLM

results. The tSNR metric (Krüger & Glover, 2001) was modified

according to Smith et al. (2013). The calculated tSNR value (mean of

individual time-series divided by standard deviation [SD]) was multi-

plied by the square root of the number of scans; we used the abbrevi-

ation tSNRn for clarity. The statistical power of such a large number

of timepoints should balance the SNR drop in the images. tSNRn was

calculated in each voxel and subsequently averaged over the defined

region—for global metrics, over the entire gray matter or white

matter.

Another global metric, SNS (Shirer et al., 2015), evaluates the dis-

tance (with t-value of two-sample t-test) between correlations of ana-

tomical areas of the brain to random correlations with noise signals;

that is, SNS evaluates the ability to evaluate functional connectivity.

The global effect of data on functional connectivity can be assessed

with graph metrics. We chose path length and node strength because

F IGURE 1 Scheme of data preprocessing
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a previous study (Gajdoš, Výtvarová, Fousek, Lamoš, & Mikl, 2018)

showed that these two metrics were clearly disturbed from the basic

level by noisy data. Decreasing node strength and increasing path

length cause the network to become more random. These metrics

were calculated using the Brain Connectivity Toolbox and were based

on functional connectivity matrices created with brain parcellation

using the Automated Anatomical Labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002) with 116 ROIs.

We calculated the number of active voxels (using p <.05 FWE

corrected) and the sum of residual mean squares from GLM activation

models averaged over gray matter as global metrics. Another global

metric used in this study was spatial smoothness of the data, used in

the quality control pipeline in the Human Connectome Project

(Marcus et al., 2013).

The metrics described above were subsequently analyzed in sta-

tistical software SPSS 27 using generalized mixed models with factors:

SE/ME version of data (SE or ME), acceleration factors (MB1, MB4,

MB6, and MB8), and flip angles (higher or lower in the same accelera-

tion level). This enabled the evaluation of the general effects of ME

data, acceleration, and decreased flip angles on the data. To evaluate

individual differences between SE and ME and between standard and

decreased flip angles, we calculated paired t-tests. A p-value of .05

corrected for multiple comparison was used to assess significance.

Moreover, the difference between SE and ME models was expressed

as a percent change in the observed metrics for better interpretation

and quantification of this effect.

2.3 | Evaluation of selected ROIs

To evaluate the resulting statistical images and other parameters,

10 ROIs were selected from all AAL regions (Tzourio-Mazoyer

et al., 2002) based on their relevance for the activation of our fMRI

task and spread across different parts of brain. An overview of the

selected regions is presented in Table 2.

In addition, β weights, residues, t-values, percentage signal

change (PSC; Luo & Nichols, 2003), and task-based SNR (amplitude of

fitted BOLD response divided by SD of residuals) were calculated

across all subjects, sequences, and ROIs. T-values within each ROI

were sorted by size, and the 50 largest ones in each ROI were

selected for further evaluation. Moreover, the positions of these top

50 were stored for all of the above metrics. All results were finally

stored in a separate structure.

The average correlation of individual voxel time-series with a rep-

resentative signal in ROI represents the homogeneity of the voxel

data contained in each ROI. The representative signal in a particular

ROI was calculated as a mean of all individual time-series. The correla-

tion of all voxels in ROI with this representative was then calculated.

The resulting value of the average correlation of the representative

signal in the ROI was determined across the correlations in all voxels.

A higher value represents better area homogeneity in the data.

The number of suprathreshold voxels was calculated in all ROIs

for each sequence, across all subjects within the SE and ME first-level

models. It is the number of suprathreshold voxels in a certain ROI; the

threshold was calculated on the FWE-corrected significance level

of p = .05.

PSC provides information on the BOLD contrast caused by a

change in the ratio of oxyhemoglobin to deoxyhemoglobin in passive

and active states. PSC was calculated as in Luo and Nichols (2003),

individually in each voxel and then an average was performed for the

whole ROI or a selected subset of 50 voxels with the strongest statis-

tic power.

The ROI metrics described above were subsequently analyzed in

statistical software SPSS 27 using generalized mixed models in a simi-

lar way as the global metrics. The following factors were used in the

statistical models: SE/ME data (SE or ME), acceleration factors (MB1,

MB4, MB6, and MB8), flip angles (higher or lower in the same acceler-

ation level), and ROI_ID (1–10). This enabled the evaluation of the

general effects of ME data, acceleration, decreased flip angles, and

individual ROI on the data. To evaluate individual differences between

TABLE 2 Overview of selected AAL regions for ROI metrics

ROI_ID ROI description AAL index Mean cover—SE model Mean cover—ME model

1 Left precentral gyrus (L PCG) 2 91.3% 91.7%

2 Left supplementary motor area (L SMA) 19 97.1% 97.7%

3 Right supplementary motor area (R SMA) 20 98.5% 99.0%

4 Left calcarine 43 96.8% 97.7%

5 Right calcarine 44 99.4% 99.6%

6 Left middle occipital gyrus (L MOG) 51 96.4% 96.8%

7 Right middle occipital gyrus (R MOG) 52 90.4% 91.0%

8 Left postcentral gyrus (L PCG) 57 94.8% 94.9%

9 Left pallidum 75 100% 100%

10 Right pallidum 76 100% 100%

Note: Mean cover represents the arithmetic mean of the covers of regions with valid voxels across all subjects. It is expressed as a percentage of all voxels

in the AAL regions covered with data in the SPM mask. Voxels with a BOLD signal higher than 80% of the mean signal are marked 1 in the SPM mask, and

only these voxels are used for subsequent analyses.
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SE and ME and between standard and decreased flip angles, we calcu-

lated paired t-tests. A p-value of .05 corrected for multiple compari-

son was used to assess significance. Moreover, the difference

between SE and ME data was expressed as a percent change in

observed metrics for better interpretation and quantification of this

effect.

3 | RESULTS

The greatest activation was observed, as expected, in the visual cortex

and motor areas (especially in the left hemisphere). When comparing

SE data and ME data (see Figure 2), there are only minor differences

in group activation maps. ME data provide a slight increase in the

number of active voxels and t-values. The group activation maps have

rather illustrative purpose because our main results are based on

global and local metrics.

3.1 | Global metrics

The distributions of global metrics are shown in Figure 3. Relative

changes in the ME results with respect to the SE are shown in

Figure 4. Figure 5 is a visualization of the effects of several factors

and interactions from the generalized mixed model calculated by SPSS

software. The significance of all the factors and interactions is pres-

ented in Table 3. There is a significant effect of the factor ME (SE vs.

ME data) in all the observed global metrics. The ME data provides

higher tSNRn both in gray matter and white matter (ranging from

15 to 70% according to the acquisition parameters), higher SNS (from

7 to 19%), more suprathreshold voxels (from 9 to 67%), higher

smoothness of data (from 1 to 9%), lower residuals (from 26 to 67%),

lower path length (from 5 to 25%), and higher node strength (from

1 to 50%). All metrics are affected by different MB factors

(i.e., acceleration of acquisition). But while a higher MB factor caused

a monotonic decrease in some metrics (tSNRn in white matter; SNS;

F IGURE 2 Example of group activation maps comparing SE and ME data. Runs 1–7 are presented as rows. Multi-band factors and flip angles
are depicted on the left side for each functional run. Activation map's threshold was p <.05 FWE corrected and this corresponds to t >6.17. FA,
flip angle; MBF, multi-band factor; ME, optimally combined multi-echo data; SE, single echo data
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smoothness), and a monotonic increase in others (residuals, path

length), there were also metrics with more complex behavior. Specifi-

cally, in the tSNRn in gray matter and the number of suprathreshold

voxels, MB factors of 4 and 6 provided higher or equal values to the

MB factor of 1 (data without slice acceleration), and the MB factor of

8 provided the lowest values. The lower flip angle affected only some

metrics (see Table 3 for details) and only residuals were affected by

interactions between the ME/SE model and flip angle. This means that

the flip angle did not have a significant impact on data quality

improvements caused with the ME data. On the other hand,

F IGURE 3 Distribution plots of global metrics for SE (black) and ME data (gray). White box represent median, white cross represents the
mean of the distribution. Multi-band factors and flip angle values are given under the x-axis for each run. Significance of post-hot test (comparing
SE and ME data from the same run) is depicted with stars above the distribution plots. * corresponds to p <.05 uncorrected. ** corresponds to
p <.05 corrected for number of runs. FA, flip angle; GM, gray matter; MBF, multi-band factor; ME, optimally combined multi-echo data; SE, single
echo data; WM, white matter
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interactions between the ME/SE factor and MB factor were signifi-

cant in a majority of metrics (all except SNS, path length, and node

strength). Practically, this means that the ME data provided greater

benefits for higher acceleration factors (see the percent effect sizes in

Figure 4 for details). The effects of flip angles on global metrics (per-

cent effect of decreased flip angle together with p-value of post-hoc

test) are presented in Table S2.

3.2 | Analysis of ROIs

One known benefit of ME data is a lower sensitivity to signal drop-

outs, that is, better coverage of a standard brain template with valid

data. This effect is visible for eight regions in Table 2. Two regions are

fully covered both in SE and ME data. Even if the changes in cover

between the SE and ME data are small, the statistical effect evaluated

F IGURE 4 Distribution plots of the percent change between SE and ME global metrics (positive number corresponds to increase of metric for
ME data). White box represent median, white cross represents the mean of the distribution. Multi-band factors and flip angle values are given
under the x-axis for each run. FA, flip angle; GM, gray matter; MBF, multi-band factor; ME, optimally combined multi-echo data; SE, single echo
data; WM, white matter

962 KOV�AŘOV�A ET AL.



F IGURE 5 Overview of the effect of
modeled factors in generalized mixed
model statistics for global metrics. Each
row represents one metric (depicted on
the left side). Estimated means (dots
connected with lines) and 95% confidence
intervals (whiskers) are presented for three
types of graphs. First shows the effect of
ME data on the metric for individual multi-

band factors. Second shows the effect of
ME data on the metric for two levels of
flip angles (high or low angle). Third type
shows the effect of multi-band factor on
the metric for two levels of flip angles. FA,
flip angle; GM, gray matter; MBF, multi-
band factor; ME, optimally combined
multi-echo data; SE, single echo data;
WM, white matter
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with the generalized mixed model is significant (p <.05). The outputs

of statistical analysis with the generalized mixed model are shown in

Table 4 (significance of individual factors and interactions among fac-

tors) and Figure 6 (visualization of effects). Because 10 ROIs were

selected as regions activated by our task, and the resulting character-

istics are very similar, the distribution of ROI metrics is shown only for

two selected regions as examples. Figures 7 and 8 show the metrics

and percent change of ME versus SE for the motor region (left

precentral gyrus, ROI_ID = 1). Figures 9 and 10 show the same for

the visual region (left middle occipital gyrus, ROI_ID = 6). The consis-

tence of the observed effect across the regions is visible from

Figure 6 (third column for the effect of the SE/ME data; fourth col-

umn for the effect of acquisition). It is clear that the effect of the ME

data versus the SE data is consistent in the sense of the direction of

the effect, and the regions differ mainly in the amplitude of effects

(in some regions, the difference between SE and ME is smaller; in

other regions, the difference is more pronounced). For the effect of

the MB factor (fourth column in Figure 6), there is also clear consis-

tency, even if few exceptions are visible.

General observations are that the ME data provides more sup-

rathreshold voxels (ranging from negligible changes in runs 1 and 2 up

to 64% in run 7), higher t-statistics (approximately from 1 to 30%),

lower residuals (from 20 to 60%), higher activation SNR (from 1 to

70%), and lower estimated beta and PSC (about 10 to 15%). While the

effects of beta and PSC are not significantly affected by acquisition

parameters (the percentage of the decrease of beta and of PSC in the

ME data was similar for all runs), the effects of t-statistics, residuals,

and the number of suprathreshold voxels differ across runs. PSC is

the only metric not significantly affected by the decrease of flip angle

factor. But the general effect of flip angle is only the change of signal

magnitude, and it does not interact with the factor ME (SE vs. ME)

except in the variance of residuals. The variance of residuals is the

metric most affected by flip angle, as well as the MB factor. The

homogeneity of regions is expressed with the average correlation

coefficient of the ROI representative signal with all the voxels in the

region. The ME data improve the homogeneity for all runs and the

effect is higher for more accelerated data. Practically, it means that

ME can partially compensate for the decrease of homogeneity caused

by higher acceleration. Beta values and PSC (which provides a very

similar but standardized view on the BOLD signal change fitted with

the GLM) are the only two metrics in which ME results are worse than

SE results. Optimally combined ME data provides about 10% lower

PSC than SE data. Mean t-value in 50 voxels around the activation

peak and the number of suprathreshold voxels in the whole region

indicate the advantage of slice acceleration with MBF = 4 and

MBF = 6 because these values are better than unaccelerated data

and the difference between SE and ME data is more pronounced here

(approx. 20% higher t-values and 30% more suprathreshold voxels).

On the other hand, acceleration with MBF = 8 provides worse results

than lower MB factors as well as than unaccelerated data. Residual

variance, regional homogeneity, and SNR show monotonic decreases

with respect to increase of slice acceleration. The effects of flip angles

on two selected ROIs (percent effect of decreased flip angle together

with p-value of post-hoc test) are presented in Table S3.

4 | DISCUSSION

This study compared the results from SE fMRI data and ME fMRI data

in seven runs with different acquisition parameters, specifically MB

factors (i.e., various levels of slice acceleration) accompanied with two

levels of flip angles. The aim was to better understand the relationship

between the ME approach and various acquisition protocols, espe-

cially various levels of slice acceleration. A further partial aim, based

on more general knowledge, was to find a suitable compromise

between acquisition speed and final data quality. We intended to sig-

nificantly extend the comparisons between ME and SE with acceler-

ated data provided by previous studies. We bring a set of new

TABLE 3 Results from generalized mixed effect models assessing the factors of SE versus ME, slice accelerations (MB factor), and flip angles
(higher vs. lower)

Metric

Signific. of

factor ME

Signific. of

factor MBF

Signific. of

factor FA

Signific. of interaction

ME � MBF

Signific. of

interaction ME � FA

Signific. of interaction

MBF � FA

tSNRn GM <.001 <.001 <.001 <.001 .976 <.001

tSNRn WM <.001 <.001 <.001 <.001 .096 <.001

SNS <.001 <.001 .078 .534 .254 .362

Active

voxels

<.001 <.001 <.001 .019 .832 .633

Smoothness <.001 <.001 <.001 <.001 .052 <.001

Residuals <.001 <.001 <.001 <.001 .007 .001

Path length <.001 <.001 .079 <.001 .164 .477

Node

strength

<.001 <.001 .388 .098 .160 .151

Note: The values in the table represent the significance (p-value) of each individual factor or interaction between factors for each global metric.

Abbreviations used in the table: FA, flip angle; ME, multi-echo; MBF, multiband factor; SNS, signal-to-noise separation; tSNRn, temporal signal-to-noise

ratio multiplied by number of scans.
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information and more complex views on the interaction of ME fMRI

with acquisition protocols. A few studies have combined ME MB

acquisition at 7T (Boyacio�glu et al., 2015; Puckett et al., 2018). Several

articles have concerned MEMB at 3T (Amemiya et al., 2019; Cohen

et al., 2020, 2021; Olafsson et al., 2015). These articles compared only

one single-band (slice unaccelerated) and one multi-band run. We

tried to evaluate a broader range of acquisition settings differing in

slice acceleration levels (MB factor) and flip angles and to assess ME

advantages with a wide range of metrics that can provide a more gen-

eral view on this topic. We chose the acquisition of ME data and the

subsequent processing of the individual (middle) echo or of all echoes

combined according to BOLD CNR (as a combination of calculated

tSNR and TE). This approach has the advantage of analyzing the same

time period, in contrast to independent measurements of SE fMRI

data and ME data in two runs. This approach was used in a study by

Amemiya et al. (2019). Cohen et al. (2020, 2021) used the acquisition

of two independent runs for SE and ME data, which made it possible

to optimize SE acquisition and reach a slightly lower TR. Our approach

enabled us to measure more functional runs during one visit and

therefore to test various acquisition settings—different levels of MB

acceleration combined with different flip angles for the same MB-fac-

tor. Gonzalez-Castillo et al. (2011) observed that fMRI sequences with

low flip angles provide the same BOLD percent signal change as for

the Ernst angle, even if the signal level is decreased. This was tested

using the same TR and without changes in the acquisition accelera-

tion. For this reason, we used three pairs of sequences with the same

parameters except for flip angle; we intended to verify whether their

observation was true, especially for SE and ME data analysis. Flip

angle was selected as a slightly rounded-down Ernst angle for odd

runs and the flip angle from a higher acceleration level for even runs.

The seventh sequence was not in a pair because of the high MB factor

and low TR; reduction of the flip angle by more than 20� would obvi-

ously lead to unacceptable data quality and it does not make sense to

try measure data with higher acceleration.

We selected several global and local metrics to evaluate our data

to provide a complex view on the effects of ME data and accelerated

acquisitions. One global metric used in our study was tSNR, in a modi-

fication suggested by Smith et al. (2013) for the Human Connectome

Project. In this modification, standard tSNR is multiplied by the square

root of the number of volumes measured in a specific functional run.

This incorporates the statistical power of more time points provided

by accelerated acquisition. Otherwise, any acceleration produces a

decrease of tSNR because of the decrease of the measured signal. We

calculated tSNR on a voxel-wise basis; subsequently, the mean tSNR

was obtained for gray matter and white matter. The latter offers a

more general overview of the time-series stability because white mat-

ter is not supposed to contain a significant portion of neuronal fluctu-

ations. The gray matter contains fluctuations of artificial origin

combined with neuronal resting-state fluctuations and task-induced

fluctuations. Thus, the tSNR calculation in gray matter can be

influenced by these signals of neuronal origin, even if we do not sup-

pose that the task-induced fluctuations can significantly change the

mean tSNR from the whole gray matter. The number ofT
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suprathreshold voxels represents a measure of sensitivity and it is

important to assess the basic activation results. The SNS metric

(Shirer et al., 2015) can be interpreted as a signal-to-noise ratio for

functional connectivity analysis because it is based on the distance

(expressed by a t-test) between meaningful correlations among brain

regions belonging to known functional networks and nonsense

F IGURE 6 Overview of the
effect of modeled factors in
generalized mixed model
statistics for local metrics
(calculated in individual ROIs).
Each row represents one metric
(depicted on the left side).
Estimated means (dots
connected with lines) and 95%

confidence intervals (whiskers)
are presented for four types of
graphs. First shows the effect
of ME data on the metric for
individual multi-band factors.
Second shows the effect of ME
data on the metric for two
levels of flip angles (high or low
angle). Third type shows the
effect of ME data on the metric
for individual region. Fourth
type shows the effect of multi-
band factor on the metric for
individual region. FA, flip angle;
GM, gray matter; MBF, multi-
band factor; ME, optimally
combined multi-echo data; ROI,
region of interest; SE, single
echo data; WM, white matter
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correlations among brain regions and background noise (dark regions

outside the brain). One may argue that SNS is more suitable for

resting-state data than for task fMRI. But only a very small amount of

gray matter is affected by task-induced activation, and the resting-

state fluctuations are still present in the task data, which makes it

possible to provide at least an approximation of the effect of ME on

connectivity-based quality measures. Moreover, task-fMRI data is also

analyzed with various connectivity methods—typically effective con-

nectivity; therefore, this type of metric can be useful. Another critique

of the SNS metric can be the calculation of correlations based on data

F IGURE 7 Distribution plots of local metrics from left precentral gyrus (ROI_1) for SE (black) and ME data (gray). White box represent
median, white cross represents the mean of the distribution. Multi-band factors and flip angle values are given under the x-axis for each run.
Significance of post-hot test (comparing SE and ME data from the same run) is depicted with stars above the distribution plots. *corresponds to
p <.05 uncorrected. **corresponds to p <.05 corrected for number of runs. FA, flip angle; GM, gray matter; MBF, multi-band factor; ME, optimally
combined multi-echo data; SE, single echo data; WM, white matter
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outside the brain. In an ideal case, data outside brain can contain ther-

mal noise. Practically all artifacts spread across the k-space affect the

data outside of the measured object. This can make violations of

assumptions, but it can be taken into the consideration as meaningful

behavior because all such widespread artifacts, such as leakage in slice

acceleration techniques, head movements, and so on, decrease the

SNS metric, which is a warning that the analysis of connectivity can

be affected by artifacts.

Smoothness is another measure of general data quality used in

the quality control pipeline, such as in the Human Connectome Pro-

ject (Marcus et al., 2013). A decrease of smoothness can be caused by

the presence of image noise and image artifacts with higher spatial

F IGURE 8 Distribution plots of the percent change between SE and ME local metrics (positive number corresponds to increase of metric for
ME data) from left precentral gyrus (ROI_1). White box represent median, white cross represents the mean of the distribution. Multi-band factors
and flip angle values are given under the x-axis for each run. FA, flip angle; GM, gray matter; MBF, multi-band factor; ME, optimally combined
multi-echo data; SE, single echo data; WM, white matter
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frequencies. On the other hand, some types of artifacts like move-

ment can increase the smoothness of the data because of image blur-

ring; thus, the metric has to be interpreted carefully. We did not

observe any outliers and unexpected changes in smoothness. The

global gray matter average of residual variance after GLM fitting is

another useful metric because it provides the amount of unexplained

signals and an estimate of the global noise levels in measured data.

The last two global metrics, path length and node strength, are taken

from global graph metrics calculated from the adjacency matrix of

functional connectivity. In a study concerning the quality of

F IGURE 9 Distribution plots of local metrics from left middle occipital gyrus (ROI_6) for SE (black) and ME data (gray). White box represent
median, white cross represents the mean of the distribution. Multi-band factors and flip angle values are given under the x-axis for each run.
Significance of post-hot test (comparing SE and ME data from the same run) is depicted with stars above the distribution plots. *corresponds to
p <.05 uncorrected. **corresponds to p <.05 corrected for number of runs. FA, flip angle; GM, gray matter; MBF, multi-band factor; ME, optimally
combined multi-echo data; SE, single echo data; WM, white matter
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representative signals from atlas-based ROIs for functional connec-

tivity (Gajdoš et al., 2018), these two metrics showed clear changes

for noisy representative signals. Decreasing node strength and

increasing path length cause the network to become more random.

Thus, our hypothesis was that we can observe these effects for

more accelerated data (given by image quality decrease) and ME

data can offer improvements in this deviation from unaccelerated

results. These two metrics are part of the analysis of functional

connectivity, but we believe they provide, like SNS, a meaningful

extension of task-based activation metrics and are valid even for

task data. We expected that higher data quality is represented by

higher tSNR, higher SNS, higher smoothness (even if this should be

F IGURE 10 Distribution plots of the percent change between SE and ME local metrics (positive number corresponds to increase of metric
for ME data) from left middle occipital gyrus (ROI_6). White box represent median, white cross represents the mean of the distribution. Multi-
band factors and flip angle values are given under the x-axis for each run. FA, flip angle; GM, gray matter; MBF, multi-band factor; ME, optimally
combined multi-echo data; SE, single echo data; WM, white matter
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interpreted carefully), higher number of active voxels, and lower

residual variance.

As local metrics, we used the parameters obtained directly from

the GLM (t-statistics, beta values, and residuals) or advanced metrics

(BOLD activation SNR, percent signal change, and mean correlation of

representative signals with all the voxels in the region) but calculated

in selected AAL regions containing activation in our visual-motor task.

Two metrics were based on whole AAL regions—the number of sup-

rathreshold voxels and the mean correlation of the representative sig-

nal with all the voxels in the region, which represents the measure of

homogeneity in the region. Other local metrics were calculated from

the 50 most significant voxels around the peak activation in the

region. This made it possible to avoid averaging possible task-

anticorrelated or just noisy voxels together with the task-activated

voxels because some AAL regions are much larger than the extent of

task activation. This could also be overcome using ROIs based directly

on activation, but we wanted to avoid circularity and favor some run

or SE/ME model. We also calculated mentioned metrics as averages

from complete AAL regions, and the characteristics were close to the

presented ones. We did not include this data in this article, because it

does not provide additional information. We expected that higher

data quality in ROIs is expressed with higher number of active voxels,

higher t-values, higher homogeneity of region, higher activation SNR

and lower residual variance.

All metrics (except for the beta values and corresponding PSC,

discussed later) showed significant improvement for the ME data over

the SE data. This was more pronounced in runs with accelerated

acquisition. The practical improvement of metrics was typically by a

few percent for unaccelerated data, but the effect size (improvement

of ME vs. SE) increased in accelerated data up to 70%. The interaction

between the factors of SE/ME model and MBF was significant for

most of the global metrics, except SNS and node strength, and some

of local metrics, specifically number of suprathreshold voxels, residual

variance, and mean t-value. This means that the ME approach pro-

vides even more benefits for highly accelerated data.

Acquisition settings affect the measured data despite the SE or

ME variant (see Figures 3–10, Tables 3 and 4). All metrics are signifi-

cantly affected by the MB factor, but while some metrics decrease or

increase with the MB factor in a monotonic way, and thus do not pro-

vide easy answers about optimal acceleration, several metrics show

more interesting behavior. These are the tSNRn in gray matter, tSNRn

in white matter, the number of suprathreshold voxels in gray matter,

the number of suprathreshold voxel in ROIs, mean t-value in ROIs,

and partially also PSC in ROIs. The MB factors of 4 and 6 provide bet-

ter results than unaccelerated data and better than the MB factor of

8. This suggests that such intermediate (MBF = 4) or upper intermedi-

ate (MBF = 6) levels of slice acceleration are optimal for ME data.

Unfortunately, we are not able to evaluate mild slice acceleration

(e.g., an MB factor of 2) because this was not included in our dataset.

An important note is that in our dataset, as in many ME datasets, slice

acceleration was combined with a GRAPPA Parallel Acquisition Tech-

niques (PAT) factor of 2, because it is necessary to decrease the echo

train length to measure several echoes within a reasonable

TR. Practically, our accelerations were 4 � 2, 6 � 2, and 8 � 2. For

this reason, MBF = 8 in our dataset showed a dramatic decrease in

data quality, while acquisition with MBF = 8 without the PAT factor

(e.g., as used in Human Connectome Project fMRI) provided

acceptable data.

We expected that PSC, betas, and t-values would not be not

affected by flip angle decrease, according to the results of Gonzalez-

Castillo et al. (2011) indicating that lower flip angles do not affect data

sensitivity. But the flip angle factor was significant for all task

activation-based metrics compared with the generalized mixed model,

except for the PSC metric. This might be explained by the fact that

the statistical model assessed a large number of very small differ-

ences. For instance, concerning t-values and betas in ROIs, a post hoc

paired t-test revealed only a few significant differences across the

ROIs and runs. Residual variance is the metric most affected by lower

flip angles, especially for the mid acceleration. This may be caused by

decreasing amounts of physiological noise in fMRI data, as was

reported by Gonzalez-Castillo et al. (2011), but a detailed explanation

of this phenomenon is beyond the scope of this article.

Our results are in agreement with previous articles introducing

ME fMRI acquisition (Amemiya et al., 2019; Cohen et al., 2020, 2021;

Kundu et al., 2012, 2017; Olafsson et al., 2015; Poser et al., 2006),

but we extended and verified the results for accelerated data with

middle and higher MB factors (4–8). Although the improvement cau-

sed by optimally combined ME data is present even for very high

acceleration (MB factor of 8 in run 7), we do not recommend measur-

ing such highly accelerated fMRI data because the loss of data quality

compared to run1 is really huge, as can be seen with the tSNRn met-

ric; we used a modified version of tSNR according Smith et al. (2013)

that takes into consideration the number of measured timepoints as a

key parameter for statistical power.

Concerning group-level activation, the patterns seemed to be

similar and the main differences (large number of active voxels) with

ME were observed in the basal ganglia, which is in concordance with

the findings by Puckett et al. (2018).

As we stated earlier, beta values and PSC in were lower in the

ME model than in the SE model. This is caused by a combination of

data from individual echoes. In the current implementation of

weighted averages (Poser et al., 2006), the weights are given by the

multiplication of tSNR in each individual voxel and TE. The first one

should favor data with a higher signal mean and lower signal variance,

that is, typically data from the first echo. The second member repre-

sents the sensitivity to the BOLD response. Unfortunately, even in

regions that are not affected by signal dropouts, the first echo can

play a more important role than the later ones and, in this case, the

weighted average provides slightly lower BOLD PSC than for the indi-

vidual middle echo. Because all other parameters (both local and

global) are better for the ME model, we do not consider this a serious

problem. It can raise the question of whether CNR-based weighting is

the best possible solution, but comprehensive (complex) research on

new weighting is beyond the scope of this article. Similar findings

were described in previous studies (Cohen et al., 2020; Gonzalez-

Castillo et al., 2016; Heunis et al., 2021).
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We did not address the effect of data cleaning during post-

processing (various type of filtering, regression), because this would

add more factors to the final analysis and interpretation. In our data

processing pipeline, only movement regression was used, with an

extended set of 24 parameters (Friston et al., 1996). We did not

regress out signals from white matter or cerebral-spinal-fluid compart-

ments because previous studies reported this should be considered

carefully for task data (Bartoň et al., 2019).

5 | CONCLUSION

The results of this study clearly show the benefits of the ME approach

for fast fMRI acquisition. This phenomenon was verified by all the

evaluated metrics: group activation maps, global metrics, and detailed

analysis of selected ROIs. The increase in signal quality was proven to

be statistically significant compared to standard SE acquisition.

Generally, ME acquisition is meaningful and useful for fast imag-

ing, where it can improve the data quality over the SE approach. By

averaging three TEs, it is possible to eliminate noise and motion arti-

facts to some extent and to obtain higher signal values. In our mea-

surements, this principle applied to all of the accelerated runs,

although we do not recommend the last one (run 7) for routine use

because the quality of acquired data is very low. We suggest using a

MB factor in the range of 4–6 as a safe option when combined with a

PAT factor of 2 for acquisition of ME data.
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