
Heliyon 10 (2024) e36906

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Assessing PV inverter efficiency degradation under semi-arid 

conditions: A case study in Morocco

Oussama Idbouhouch a,b,∗, Nabila Rabbah a, Nassim Lamrini b, Hicham Oufettoul b, 
Ibtihal Ait Abdelmoula b, Mourad Zegrari a

a Laboratory of Complex Cyber Physical Systems (LCCPS), The National Higher School of Arts and Crafts (ENSAM), Hassan II University, 20000, 
Casablanca, Morocco
b Green Energy Park, Km 2 Route Régionale R206, 43150, Benguerir, Morocco

A R T I C L E I N F O A B S T R A C T

Keywords:

PV inverter

Degradation

Semi-arid climate

Monitoring

Sandia

PVWatts

Driesse model

The worldwide shift towards renewable energy sources, including solar and wind, is progressing 
rapidly. This change is driven by decreasing prices and technical advancements that are becoming 
more centralized. The objective is to develop a cutting-edge approach and technology that 
seamlessly incorporates photovoltaic (PV) energy sources into a power network while ensuring 
grid stability. This research evaluates the lifetime and degradation of PV inverters under real 
operating conditions, focusing on semi-arid climate scenarios. Current papers demonstrate a yearly 
failure rate of 1–15% for PV inverters, highlighting the need for a thorough reliability evaluation. 
This investigation research applied a unique technique that included continuous monitoring of 
PV inverter performance parameters by comparing the measured with the predicted normal 
operating output. The results show that Sandia’s inverter performance model is highly suitable 
for accurately modeling normal PV inverter behavior. Furthermore, weighted efficiency dropped 
by 3.96%, 0.63% and 1.29% respectively for 7 kW, 15 kW and 20 kW photovoltaic systems over the 
five years. These findings have implications for comprehensive maintenance strategies, including 
regular inspections, safety protocols, and remote monitoring solutions. Ultimately, this research 
paper sheds light on the causes of declining solar inverter performance and provides suggestions 
for enhancing PV plant maintenance and reliability. It also represents an outstanding reference 
given the literature shortage.

1. Introduction

Renewable energy, particularly solar photovoltaic (PV) technology, has been on a meteoric rise in the last decade, to accelerate 
the energy transition and create a circular economy, which are two key priorities for many countries to change the face of the energy 
industry worldwide. This development is shown in the 2021 report [1] by the International Renewable Energy Agency (IEA), which 
reveals a global solar installation capacity of 942 GW. Forecasts show an additional 1,500 GW by 2030, according to [2]. Aligning 
with ambitious worldwide ambitions targeted at a future dominated by renewable energy by 2050, the increasing feasibility of solar 
energy has reached grid parity in numerous nations. Central to these aspirations is optimizing energy harvesting from PV systems, 
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which is vital for maximizing energy yield and reducing system downtime [3]. PV panels, designed with a lifespan of 20–25, are 
juxtaposed with the shorter expected lifetime of PV inverters, typically less than 15 years [4].

Various external conditions, including changes in humidity, temperature, dust, and rain, continuously challenge the operational 
efficacy of these systems. These circumstances may contribute to potential failures, including delamination, hot spots, cell cracks, 
glass soiling, and corrosion [5–7]. Managing Maximum Power Point Tracking (MPPT) and combining the direct current (DC) output 
from PV plants into usable alternating current (AC) are two of the inverter’s most essential functions [8]. Therefore, it is critical to 
guarantee the system’s effectiveness and dependability [9]. Despite their vital relevance, the enormous dependability challenges PV 
inverters encounter are shown by the annual failure rates, which range from 1% to 15% [10].

In light of these differences, it is clear that the installation site’s specific environmental conditions need a proactive and all-

encompassing maintenance strategy. The essential components of inverters include cooling fans, DC contactors, insulated-gate bipolar 
transistor (IGBT) power module solder connections, DC bus capacitors, and IGBTs. When these parts fail, it may significantly impact 
system downtime and energy consumption [11–13].

The inverter load ratio (ILR) hugely affects solar PV system dynamics, which was thoroughly investigated in the reference [14]. 
Therefore, ILR has become an important indicator that significantly affects system performance. It indicates the power of a pho-

tovoltaic field concerning the inverter’s power. This research deeply analyzed the complex correlation between the inverter load 
ratio and crucial performance metrics. These indicators include clipping occurrence, seasonal and daily patterns, temporal resolution 
of the data, ambient conditions, and module degradation. Through these assessments, researchers have conclusively demonstrated 
that increasing ILR increases inverter operating potential, decreases costs per kilowatt-hour of AC power, and affects system perfor-

mance during peak production phases. Furthermore, this study unequivocally indicates that higher ILRs contribute to more consistent 
generation patterns, even when associated with high solar-related ramp rates.

This work [15] addresses the complex dynamics between the location problem and PV module degradation, emphasizing the 
substantial influence on solar inverter durability and reliability. Furthermore, this research analyzes the impact of critical factors, 
including the state of degradation of photovoltaic modules and strategic positioning. Notably, the temporal degradation of PV modules, 
an inevitable consequence of prolonged exposure to ambient elements, is paramount due to its impact on PV inverters’ overall 
reliability and operational longevity.

The environmental conditions in which the UPS operates are also crucial to its performance. Numerous investigations have con-

firmed that inverter performance and downtime are closely linked to local climate and usage profiles. Several studies have highlighted 
the significant impact of the installation site on inverter performance and durability. This research suggests that the inverter load 
profile, determined by solar irradiation and ambient temperature, varies according to geographical location. For instance, areas near 
the equator, including South America and Africa, typically experience high solar irradiation levels throughout the year with minimal 
seasonal fluctuations [15].

A further aspect relating to photovoltaic panel sizing significantly impacts inverter reliability in colder climates, such as Denmark 
[16]. Indeed, the same authors point out in [17] that earlier research has neglected the impact of photovoltaic module breakdown, 
prompting the present study to assess inverter lifetime by incorporating both mission profiles and panel degradation rates. Assessments 
performed in Denmark and Arizona have demonstrated the substantial effect of rapid panel degradation, mainly in hot climates, 
including Arizona. Excluding such degradation can result in a significant 54% discrepancy in photovoltaic inverter lifetime predictions, 
highlighting the crucial role of comprehensive analyses in accurately assessing system reliability, particularly in severe climates.

1.1. Contribution

In light of the literature findings, this study utilizes Morocco as a case study to investigate a hitherto uncharted territory in the 
context of photovoltaic inverter performance and degradation of solar inverters in semi-arid climates. The article aims to refine 
maintenance strategies that improve the dependability and efficiency of not only inverters but entire photovoltaic systems. The main 
contributions of this study are twofold:

• Firstly, the research delves into the operational degradation of solar inverters, especially in semi-arid climates where the yearly 
failure rate is significant. The inverter performance is monitored continuously and compared with forecasts of typical operations 
in this study.

• Secondly, this research proves that Sandia’s inverter performance model accurately predicts photovoltaic inverter behavior. It 
highlights the contribution of modeling to understanding inverter degradation and developing a thorough maintenance strategy 
for PV plants.

Ultimately, several factors motivated this project: Filling a crucial knowledge gap by examining the impact of harsh environmental 
conditions and conducting a comparative analysis of the three inverter models (Sandia, PVWatts, and Driesse). This investigation 
critically assessed inverter model performance and established an outstanding reference for researchers and experts in the field.

1.2. Paper organization
2
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Fig. 1. Paper organization.

• The second section highlights the experimental photovoltaic systems studied and details the model-driven algorithm mathemat-

ically.

• The third section of this paper is dedicated to verifying inverter sizing, data filtering, quality control, and related efficiency 
metrics.

• The fourth section presents an exhaustive comparative analysis of the findings relating to the three proposed inverter models 
(Sandia, PVWatt, and Driess) through the degradation and efficiency assessment over five years.

Finally, a comprehensive and concise conclusion is presented, including an outline of the proposed method’s advantages and sugges-

tions for potential research avenues (see Fig. 1).

2. Experimental PV systems and model driven algorithms

2.1. Experimental PV systems

This study was conducted at the Green Energy Park research platform and focused on evaluating three different grid-connected 
PV systems. These systems had capacities of 7.2 kWp (first system), 16.56 kWp (second system), and 22.23 kWp (third system). The 
first system comprised 60 CIGS modules, the second system comprised 69 monocrystalline modules, and the third system contained 
114 monocrystalline modules. Fig. 2 visually represents these PV arrays. The solar panels are installed on fixed open racks, facing 
south at an angle of 32◦. Table 1 presents the specific details of each PV module. Additionally, each system is connected to its own 
inverter, which is monitored through a PV string monitoring unit, as depicted in Fig. 3. Table 2 lists the technical specifications of 
these inverters. A holistic and structured approach is applied to conduct the analysis. The outdoor test facility incorporates a data 
acquisition system recording electrical parameters on system operating performance such as (AC and DC power, AC and DC current, 
AC and DC voltage, frequency, etc.). Data loggers are interconnected to each system, enabling data recording with a sampling time of 
two minutes. Data acquisition is an essential preliminary step involving careful processing, correction, and cleaning of the acquired 
data. This preparation is necessary for effective real-time monitoring of PV systems. Subsequently, the data is stored in a database 
with a maintenance history. The aim is to develop predictive algorithms and use machine learning methods to automate the operation 
3

and maintenance (O&M) duties, hence enhancing the efficiency of solar systems, namely inverters.
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Fig. 2. (a) 22.23 kWp Mono-Si System, (b) 16.56 kWp Mono-Si System, (c) 7.2 kWp CIGS System.

Table 1

Technical characteristics of the studied PV systems.

Characteristics First system Second system Third system

Installed PV power (kW) 7.2 16.56 22.23

Panel power (W) 120 240 195

Module inclination (deg) 32 32 32

Module orientation South South South

Number of modules 60 69 114

Number of strings 5 3 6

PV Technology CIGS Mono-Si Mono-Si

Year of installation 2017 2017 2017

2.2. Model driven algorithms

Accurate modeling of PV inverters is essential for optimizing their efficiency and monitoring the performance of PV systems. 
Inverters are the primary elements of solar power systems and are responsible for converting DC to AC, which is suitable for electrical 
grids. Therefore, detailed and precise modeling is essential for continuous performance tracking, evaluating degradation over time, 
and developing effective maintenance strategies. This is particularly important in the context of prognostic and health management 
systems implemented in PV installations, as the system’s overall efficacy is contingent on the inverters’ long-term functionality and 
optimal performance [18].

Inverter failures can be categorized into several distinct types, including flaws in manufacturing and design, control system issues, 
and failures of electrical components. These failures highlight the complex relationship between the operational conditions, system 
illumination, thermal regulation, and heat dissipation mechanisms. In particular, control issues related to the complex dynamics 
between the inverter’s interaction with the AC side grid and the DC side’s PV panel highlight the diverse and intricate challenges 
of ensuring inverter reliability [19]. Photovoltaic systems present several challenges. Factors such as environmental variables and 
inverter efficiency contribute to the complexity of accurately simulating realistic performances. In common modeling approaches, 
inverter efficiency is oversimplified as a constant factor, assuming linearity throughout the operating range. Simplifying inverter 
4

performance may result in misleading findings since the inverter’s efficiency is directly related to the input voltage and load frac-
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Fig. 3. PV systems architecture and data collection at the Green Energy Park platform.

Table 2

Technical specifications of the studied inverters.

Technical data Sunny Boy 7000T-230 V Sunny Tripower 15000TLEE Sunny Tripower 20000TLEE

Input (DC)

Max. DC power (@ cos 𝜑 = 1) 7300 W 15260 W 20450 W

Max. input voltage 600 V 1000 V 1000 V

MPP voltage range/rated input voltage 345 V–480 V/379 V 580 V–800 V/580 V 580 V–800 V/580 V

Min. input voltage/initial input voltage 345 V/360 V 570 V/620 V 570 V/620 V

Max. input current 21.1 A 36 A 36 A

Max. input current per string 21.1 A 36 A 36 A

Number of independent MPP inputs 1 1 1

Strings per MPP input & Combiner Box 6 6 6

Output (AC)

Rated power/max. apparent AC power 7000 W/7000 VA 15 000 W/15 000 VA 20 000 W/20 000 VA

Nominal AC voltage 240 V/211 V 3/N/PE, 230 V/400 V 3/N/PE, 230 V/400 V

nominal AC voltage range 229 V 160 V–280 V 160 V–280 V

AC power frequency/range 50 Hz, 60 Hz/−6 Hz, +5 Hz 50 Hz, 60 Hz/−6 Hz, +5 Hz 50 Hz, 60 Hz/−6 Hz, +5 Hz

Rated power frequency/rated grid voltage 50 Hz/230 V 50 Hz/230 V 50 Hz/230 V

Max. output current 29.2 A 24 A 29 A

Power factor at rated power 1 1 1

Feed-in phases/connection phases 1/2 3/3 3/3

Efficiency CEC efficiency/max. efficiency 98.5%/98.7% 98.5%/98.3% 98.5%/98.2%
5
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tion. Thus, the requirement for more nuanced performance characteristics is highlighted, providing engineers and analysts with a 
comprehensive understanding of the inverter power conversion performance [20].

Significant research has been devoted to developing empirical performance models for grid-connected PV inverters in response 
to these challenges. Extensive literature reviews, illustrated in [21] and [22], outline various modeling approaches, ranging from 
simple performance approximations based on the manufacturer’s data sheets to more sophisticated analytical methods incorporating 
impedance models. An outstanding technique in this field is the performance-modeling approach, exemplified by the Sandia Array 
Performance Model. This approach, presented in this ref [23], offers an empirical perspective that accurately reproduces the energy-

delivery characteristics of the DC–AC inversion process. Moreover, the paper under consideration introduces a PV array conditions 
monitoring system utilizing the Sandia Array Performance Model. This model accurately predicts PV arrays’ power production and 
energy output. It highlights the importance of using performance models based on empirical data to monitor inverter performance 
continuously during system operation. This significantly contributes to assessing the health of PV systems and planning for mainte-

nance [24].

2.2.1. Mathematical modeling based on Sandia model

The Sandia model applied a specific equation to describe the AC power output (𝑃𝑎𝑐) of a PV inverter as a function of the DC power 
input (𝑃𝑑𝑐 ) [20]. The formula is given by Eq. (1).

𝑃ac =
(

𝑃aco

𝐴−𝐵
−𝐶 ⋅ (𝐴−𝐵)

)
⋅ (𝑃dc −𝐵) +𝐶 ⋅ (𝑃dc −𝐵)2 (1)

𝑃aco denotes the maximum AC power output under standard test conditions. Meanwhile, A, B, and C are coefficients that describe the 
inverter’s performance (refer to Eqs. (2), (3), and (4)). These coefficients were determined empirically and varied among the different 
inverter models. Eq. (1) considers the nonlinear relationship between the AC power output and DC power input, providing a more 
accurate reflection of real-world inverter behavior, particularly under varying operational conditions [25].

𝐴 = 𝑃dco ⋅
(
1 +𝐶1 ⋅ (𝑉dc − 𝑉dco)

)
(2)

𝐵 = 𝑃so ⋅
(
1 +𝐶2 ⋅ (𝑉dc − 𝑉dco)

)
(3)

𝐶 = 𝐶𝑜 ⋅
(
1 +𝐶3 ⋅ (𝑉dc − 𝑉dco)

)
(4)

Where:

𝑃ac: AC power output from inverter based on input power and voltage, (W).

𝑃dc: DC power input to inverter, typically assumed to be equal to the PV array maximum power, (W).

𝑉d: DC voltage input, typically assumed to be equal to the PV array maximum power voltage, (V).

𝑃aco: Maximum ac-power “rating” for inverter at reference or nominal operating condition, assumed to be an upper limit value, (W).

𝑃dco: DC power level at which the ac-power rating is achieved at the reference operating condition, (W).

𝑉dco: DC voltage level at which the AC-power rating is achieved at the reference operating condition, (V).

𝑃so: DC power required to start the inversion process, or self-consumption by inverter, strongly influences inverter efficiency at low 
power levels, (W).

𝑃nt : AC power consumed by the inverter at night (night tare) to maintain circuitry required to sense PV array voltage, (W).

𝐶o: Parameter defining the curvature (parabolic) of the relationship between ac-power and dc-power at the reference operating 
condition, a default value of zero gives a linear relationship, (1/W).

𝐶1: Empirical coefficient allowing Pdco to vary linearly with dc-voltage input, the default value is zero, (1/V).

𝐶2: Empirical coefficient allowing Pso to vary linearly with dc-voltage input, the default value is zero, (1/V).

𝐶3: Empirical coefficient allowing Co to vary linearly with dc-voltage input, the default value is zero, (1/V).

These eight parameters (𝑃𝑎𝑐𝑜, 𝑃𝑑𝑐𝑜, 𝑃𝑠𝑜, 𝑉𝑑𝑐𝑜, 𝐶0, 𝐶1, 𝐶2, and 𝐶3) need to be estimated to prove the Sandia model’s applicability for 
accurately modeling the behavior of inverters in photovoltaic systems.

2.2.2. Mathematical modeling based on PVWatt model

The California Energy Commission (CEC) provided data on inverters manufactured after 2010 to create the PVWatts V5 inverter 
model. This involved analyzing the average part-load efficiency curve based on the data and then selecting an inverter with the 
efficiency curve that closely matched this average. The efficiency data of the chosen inverter was then fitted to a quadratic loss 
model. The efficiency curve is scaled based on a user-specified nominal efficiency (𝜂nom), with the inverter’s reference efficiency 
(𝜂ref), (see Eq. (5)).

𝜂 =
𝜂nom

𝜂ref

(
−0.0162 ⋅ 𝜁 + 0.9858 ⋅ 𝜁 − 0.0059

𝜁

)
(5)

Where

𝑃𝑑𝑐
6

𝜁 =
𝑃𝑑𝑐𝑜

(6)
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𝑃𝑑𝑜 =
𝑃𝑎𝑐𝑜

𝜂nom

(7)

The AC power rating 𝑃𝑎𝑐𝑜 is determined from the system’s DC power rating and DC/AC ratio. This approach enables the PVWatts 
V5 model to be a flexible and accurate tool for simulating inverter performance in photovoltaic systems by incorporating real-world 
data and sophisticated statistical analysis [26].

𝑃AC =
⎧⎪⎨⎪⎩
𝜂𝑃dc if 0 < 𝑃dc < 𝑃dco

𝑃aco if 𝑃dc ≥ 𝑃dco

0 if 𝑃dc = 0
(8)

2.2.3. Mathematical modeling based on Driess model

The electrical conversion efficiency (𝜂) of an inverter is an indicator of the efficiency of converting input power (𝑃in) into output 
power (𝑃out), the difference corresponding to the power loss (𝑃loss), which is typically dissipated as heat inside the inverter. Hence, 
this efficiency is expressed mathematically as a power level function, frequently using a quadratic formula, as shown in Eq. (9) [27]:

𝑃loss = 𝑎0 + 𝑎1 ⋅ 𝑃out + 𝑎2 ⋅ 𝑃
2
out

(9)

This quadratic expression corresponds to empirical data and is interpretable by physical phenomena. In grid-connected inverters, 
where the output voltage is constant, 𝑃out is directly proportional to the output current 𝐼out. The quadratic equation terms are 
understood as follows:

1. Self-consumption 𝑎o refers to constant losses from internal inverter processes, such as drive and auxiliary circuits, regardless 
of output power.

2. Fixed voltage drop losses 𝑎1. Such losses correspond to 𝐼out resulting from constant voltage drops between the semiconductors 
inside the inverter.

3. Ohmic losses are denoted as 𝑎2 are characterized by their quadratic nature and proportionality to the square of the output 
current (𝐼out2 ). These losses arise due to the presence of resistance within the inverter circuits.

The linear term 𝑎1 accounts for switching losses occurring during the transition of power semiconductors from turning on to turning 
off and vice versa. These losses are approximately proportional to the current when the switch is on and the voltage when it is turned 
off. It is crucial to note that while each coefficient (𝑎0, 𝑎1, 𝑎2) typically identifies a different physical loss mechanism and is expected 
to be positive, there are several cases in which a negative value is observed 𝑎1. This pattern may arise in multistage inverters when 
an increase in power leads to a variation in the internal bus voltage. Furthermore, this challenges the assumption that the internal 
currents are consistently proportional to the power level. This could explain the negative coefficient [27]. To calculate the efficiency 
from 𝑃𝑙𝑜𝑠𝑠, Eq. (10) is applied.

𝜂 =
𝑃out

𝑃out + 𝑃loss

(10)

This equation reflects the proportion of input power converted to output power, with the remainder released mostly as heat due to 
various inefficiencies within the inverter’s components and operations.

3. Methodology and approach

3.1. Verification of the inverter sizing

A photovoltaic system’s optimal performance depends on several critical factors during inverter sizing. Initially, the inverter’s 
capacity should be aligned with the overall PV plant capacity. This ensures that the system’s energy output is unrestricted by under-

sizing, which may result in reduced efficiency and superfluous costs. Furthermore, the inverter’s efficiency and power monitoring 
capabilities influence the PV system’s global energy yield and performance ratio. Thus, measuring foreseeable variations in solar 
irradiation and ambient site temperature is essential to identify an inverter resistant to shading and temperature. Moreover, it is 
crucial to thoroughly evaluate the inverter’s compatibility with the grid standards and regulations of the particular nations to ensure 
seamless integration. In addition, the inverter’s protection characteristics, reliability, and maintenance requirements are essential 
to ensure photovoltaic systems’ long-term functionality and durability. Addressing these critical factors optimizes the PV system 
performance and profitability by deploying appropriate inverter sizing. Table 3 presents each system’s specifications to verify the 
inverter’s sizing.

3.2. Data filtering and quality check

The study’s dataset spans five years, from January 2018 to August 2023. The winter and autumn seasons are included in this 
dataset. During these times, there are significant changes in solar irradiance, temperature, and the difficulty of making predic-
7

tions. Figs. 4–9 illustrates a visual representation of the production of DC and AC power for each system between 2018 and 2023. 
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Table 3

PV systems characteristics.

Characteristics First system Second system Third system

𝑉𝑚𝑝𝑝 Voltage at Maximum Power (V) 44.9 30.6 37.1

𝐼𝑚𝑝𝑝 Current at Maximum Power (A) 2.68 7.84 5.25

𝑉𝑜𝑐 Open circuit voltage (V) 57.4 37.2 45.6

𝐼𝑠𝑐 Short circuit current (A) 3.13 8.37 5.56

Maximum mpp voltage (V) 538.8 703.8 704.9

Max. input current (A) 13.4 23.52 31.5

𝑃 Total maximum power (Wc) 7200 16 500 22 200

Max. DC power at the inverter level (W) 7300 15 260 20 450

Fig. 4. Visual representation of the production of DC and AC power for 7 kW System in 2018.

Fig. 5. Visual representation of the production of DC and AC power for 7 kW System in 2023.

Pre-processing raw data is essential for removing outliers and abnormal recordings before examining the recorded measurements. 
Implementing existing data preprocessing techniques requires in-depth knowledge of the data source architecture and setup. The 
initial step is to resample and synchronize the data sources. Next, a series of filters are implemented to purify the unprocessed data. 
The filters first eliminated negative PAC values and negative chain currents by replacing them with zero. Furthermore, whenever 
the PDC and PAC were equal to zero, the UDC values were replaced by zero. Subsequently, a filter was implemented to eliminate 
inaccurate data points, particularly those with power values that exceeded the system’s maximum peak power. Moreover, a standard 
behavior filter was implemented to eradicate the energy management system, restricting the inverter’s power. Fig. 10 provides an 
8

overview of these procedures.
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Fig. 6. Visual representation of the production of DC and AC power for 15 kW System in 2018.

Fig. 7. Visual representation of the production of DC and AC power for 15 kW System in 2023.
9

Fig. 8. Visual representation of the production of DC and AC power for 20 kW System in 2018.
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Fig. 9. Visual representation of the production of DC and AC power for 20 kW System in 2023.

Fig. 10. Data processing procedure.

3.3. Efficiency definition: CEC and EU

The efficiency of photovoltaic inverters is multifaceted and extends beyond the usual power converter’s output-to-input ratio. Effi-

ciency in conversion and maximum power point tracking (MPPT) are two separate aspects of the inverter technology. The conversion 
efficiency represents the ratio of AC output energy to DC input energy over a given period. MPPT efficiency is the ratio between the 
energy harvested by the inverter and the optimum energy that can be extracted at the maximum power point (MPP), as provided by 
the PV simulator. The product of these two options defines the total efficiency of the photovoltaic inverter. In addition, conversion 
efficiency is subdivided into peak and weighted (or average) efficiency, which can be classified as European or CEC efficiency.

3.3.1. Peak efficiency

Peak efficiency, commonly known as nominal output efficiency, indicates the efficiency of photovoltaic inverters. Although this 
is prominently shown in inverter casings and data sheets, it is rarely, indeed never, achieved in actual operation. Following the IEC 
61683:1999 standard, the maximum efficiency is defined as the ratio between the inverter’s rated output power and its input power 
at this rated output, expressed as a percentage [28]. Mathematically, Reak’s efficiency is represented by Eq. (11).

𝜂𝑅 =
𝑃𝑜

𝑃𝑖

⋅ 100 (11)

Where:

𝜂𝑅: Rated output efficiency (%).

𝑃𝑜: Rated output power from the inverter (W).

𝑃𝑖: Input power to inverter at rated output (W).

3.3.2. Weighted EU

Solar panel performance varies throughout the day. It typically decreases power production in the early morning and evening, 
whereas it increases in the afternoon. Consequently, inverters frequently fail to achieve their maximum efficiency. This finding led 
to the preference for weighted or average conversion efficiency as a more accurate indicator of photovoltaic inverter performance. 
10

Unlike peak efficiency, the weighted efficiency evaluates the inverter’s performance over its entire operating range. Unlike peak 
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efficiency, weighted efficiency assesses the inverter’s operation across its entire operating range. As proposed by R. Hotopp [28], 
[29] the European efficiency is calculated using a formula that takes into account efficiencies at various operational points [30]:

𝜂𝐸𝑈 = 0.03 ⋅ 𝜂5% + 0.06 ⋅ 𝜂10% + 0.13 ⋅ 𝜂20% + 0.10 ⋅ 𝜂30% + 0.48 ⋅ 𝜂50% + 0.20 ⋅ 𝜂100% (12)

This method offers a more comprehensive view of the inverter’s real-world efficiency.

3.3.3. Weighted CEC

California’s Energy Commission developed a mathematical formula for evaluating the efficiency of solar inverters, known as the 
CEC efficiency. This formula is adapted to California’s solar conditions, which involve a crucial solar potential similar to Morocco’s 
climate in this context. Eq. (13) describes the efficiency of CEC [28].

𝜂𝐶𝐸𝐶 = 0.04 ⋅ 𝜂10% + 0.05 ⋅ 𝜂20% + 0.12 ⋅ 𝜂30% + 0.21 ⋅ 𝜂50% + 0.53 ⋅ 𝜂75% + 0.05 ⋅ 𝜂100% (13)

This formula distinguishes from the European efficiency model by incorporating an extra efficiency point at 75% irradiation, enabling 
a more precise evaluation of efficiency in areas with abundant solar irradiation. Reference [28] provides a detailed description of the 
procedures used for these computations [31].

3.4. Performance analysis indicators

To objectively assess the performance of grid-connected photovoltaic systems. This necessitates adhering to the procedures laid 
forth in Task 13 of the International Energy Agency’s Photovoltaic Power Systems Program (PVPS) [28]. While also integrating the 
requirements outlined in IEC 61 724 [29]. These include Root mean square Error (RMSE), Normalized Root Mean Square Error 
(NRMSE), Coefficient of Determination (𝑅2), and Mean Absolute Error (MAE).

3.4.1. Root mean square error

In several research studies, the Root Mean Square Error is commonly used as a standard statistical metric to measure model 
performance. It is widely applied in regression analysis, quantifying the difference between predicted and actual values, and is 
calculated using Eq. (14).

RMSE =

√∑𝑛

𝑖=1(𝑌𝑖 − 𝑌𝑖)2

𝑛
(14)

Where:

𝑌𝑖: Actual observed values from the dataset.

𝑌𝑖: Predicted values.

𝑛: Total number of observations.

3.4.2. Normalized root mean square error

The normalized root-mean-square error is a normalized measure of the prediction error indicator of the root-mean-square devia-

tions between RMSE. Consequently, the model performed optimally when its NRMSE value is exceedingly low. Conversely, a model’s 
performance is diminished by a high NRMSE value. Eq. (15) is used to determine the NRMSE.

NMRSE = RMSE|𝑦max − 𝑦min| (15)

Where:

𝑦𝑚𝑎𝑥 represents the maximum value observed in the dataset.

𝑦𝑚𝑖𝑛 indicates the minimum value observed in the dataset.

3.4.3. Coefficient of determination

The coefficient of determination, is a statistical measure of fit quality. In the context of regression, it is a statistical measure of 
the approximation of the regression line to the actual data. It is graduated from 0 to 1, with 1 indicating a perfect match. Eq. (16)

perfectly describes the mathematical framework of 𝑅2 .

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌𝑖)2∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2
(16)

Where:
11

𝑌 : is the mean of the observed values 𝑌𝑖.
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Fig. 11. Measured AC output power vs. modeled power for a 7 kW system in 2018.

Fig. 12. Measured AC output power vs. modeled power for a 7 kW system in 2023.

3.4.4. Mean absolute error

Mean Absolute Error is a statistical measure used to evaluate the accuracy of a forecasting model, such as a regression or a time 
series model. It measures the average magnitude of errors between predicted and actual values in a dataset. It is expressed by Eq. (17).

MAE =
∑𝑛

𝑖=1 |𝑌𝑖 − 𝑌𝑖|
𝑛

(17)

The MAE provides a direct measure of the closeness of predictions to actual values, irrespective of the direction of the errors. A lower 
MAE indicates that the model can predict with lower errors.

4. Results and discussion

4.1. Comparative analysis of the three inverter models (Sandia, PVWatt and Driess) using the metrics

Following an in-depth analysis under semi-arid climatic conditions, a comparative study was carried out on three physical models 
(Sandia, PVWatt, and Driess) to identify the model most accurately reflecting measured inverter AC output power among three PV 
plants by examining several key performance indicators between 2018 and 2023. Further analysis of the data presented in Table 4

revealed that the Sandia model outperformed the other two models regarding its ability to predict inverter AC output power (see 
Figs. 11–16). The Sandia model showed a lower RMSE for all systems and demonstrated a lower RMSE for all systems, suggesting a 
more precise fit to actual data. This model also demonstrated superiority in terms of normalized root-mean-square error (NRMSE), 
which, despite an upward trend, remained lower than those of the PVWatt and Driess models. Furthermore, the Sandia model’s mean 
absolute error (MAE) is consistently lower, suggesting that its mean prediction errors were lower. Moreover, the Sandia model’s 
coefficient of determination (R2) was exceedingly high, approaching 1, indicating a robust correlation with the measured AC power. 
12

Overall, this comparative analysis shows unequivocally that the Sandia model outperforms the others in forecasting photovoltaic 
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Fig. 13. Measured AC output power vs. modeled power for a 15 kW system in 2018.

Fig. 14. Measured AC output power vs. modeled power for a 15 kW system in 2023.

Fig. 15. Measured AC output power vs. modeled power for a 20 kW system in 2018.

inverter performance, with lower error measures and higher R2 values. These data are critical for improving predictive maintenance 
techniques and increasing system efficiency in semi-arid regions, two areas where solar systems are particularly underdeveloped and 
13

understudied.
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Fig. 16. Measured AC output power vs. modeled power for a 20 kW system in 2023.

Fig. 17. Inverter efficiency and the correlation between AC and DC power over a five-year period for the 7 kW system in 2018.

4.2. Study of inverters efficiency over 5 years

In the context of assessing PV inverter degradation over five years (2018–2023), analysis of inverter efficiency using three differ-

ent efficiency indicators including 𝜂𝑅 (peak efficiency), 𝜂𝐶𝐸𝐶 (California energy commission efficiency) and 𝜂𝐸𝑈 (European Union 
efficiency) for 7 kW, 15 kW and 20 kW systems offers illuminating revelations (see Figs. 17–22). For the 7 kW system, a notable 
decrease was observed in all three-efficiency metrics: 𝜂𝑅 decreased from 95.38% to 94.70%, 𝜂𝐶𝐸𝐶 from 94.57% to 92.46%, and 𝜂𝐸𝑈

from 93.11% to 89.15%. This degradation equates to efficiency reductions of 0.68%, 2.11%, and 3.96%, respectively (see Table 5). 
The 15 kW system experienced a slight decrease, with 𝜂𝑅 dropping by 0.12% from 97.48% to 97.36%, 𝜂𝐶𝐸𝐶 decreasing by 0.41% 
and 𝜂𝐸𝑈 decreasing by 0.63% from 97.80% to 97.17%. Finally, the 20 kW system showed a similar trend, with 𝜂𝑅 reducing by 0.58% 
from 97.27% to 96.69%, 𝜂𝐶𝐸𝐶 by 0.63% from 97.69% to 97.06%, and 𝜂𝐸𝑈 by 1.29% from 97.23% to 95.94%. These results indicate 
a progressive decline in inverter efficiency over time owing to the gradual nature of inverter degradation, which is related to the 
maintenance and longevity of photovoltaic systems.

4.3. Study of inverter degradation over 5 years

In this semi-arid climate study scenario, examining inverter efficiencies over five years (2018–2023) for the three systems provided 
a fundamental understanding of inverter degradation. While the efficiency measurements 𝜂𝑅 , 𝜂𝐶𝐸𝐶 and 𝜂𝐸𝑈 indicate a gradual 
decline in performance, suggesting degradation, more accurate quantification of this degradation was sought through the application 
of the Sandia model, which demonstrated superior performance to other physical models. Applying the 2018 Sandia model fitting 
parameters to the 2023 inverter data enabled a more precise quantification of the degradation (see Figs. 24–26). This approach 
enabled a direct comparison between the AC power predicted by the model and the actual AC power measured for each inverter. 
This benchmarking study revealed a slight degradation over the five years. This slight degradation, quantified more precisely by 
14

the Sandia model, underlines the nuanced nature of inverter performance over time. The results of this methodical approach are 
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Fig. 18. Inverter efficiency and the correlation between AC and DC power over a five-year period for the 7 kW system in 2023.

Fig. 19. Inverter efficiency and the correlation between AC and DC power over a five-year period for the 15 kW system in 2018.
15

Fig. 20. Inverter efficiency and the correlation between AC and DC power over a five-year period for the 15 kW system in 2023.
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Fig. 21. Inverter efficiency and the correlation between AC and DC power over a five-year period for the 20 kW system in 2018.

Fig. 22. Inverter efficiency and the correlation between AC and DC power over a five-year period for the 20 kW system in 2023.

crucial for a variety of reasons. First and foremost, they provide a more nuanced understanding of UPS degradation, surpassing 
the fundamental efficiency measurements. Second, the quantification of degradation is based on a reliable and accurate modeling 
framework, resulting from using a robust, high-performance model such as Sandia in this analysis. Finally, this data is valuable for 
developing predictive maintenance strategies and informing decisions on optimizing photovoltaic systems’ long-term operation and 
efficiency. Traditional efficiency measurements indicated inverter degradation; applying the Sandia model for a more detailed analysis 
enabled more accurate quantification of this degradation, revealing a slight but substantial drop in inverter performance over five 
years. The main factors contributing to this degradation are dust and soiling, electrical stress, component aging, and a slight effect 
of humidity and corrosion, since the study takes place in a semi-arid climate. The accumulation of dust and particles on photovoltaic 
panels and inverters can obstruct air circulation, leading to overheating and inefficient cooling. Variations in the input power due to 
fluctuating solar irradiation can cause electrical stress on inverter components, particularly capacitors and semiconductor devices. 
In addition, natural wear and tear on internal components such as capacitors, insulated gate bipolar transistors (IGBTs), and diodes 
over extended periods of operation contributes significantly to performance degradation. While humidity fluctuations and exposure 
to moisture can lead to corrosion of electrical contacts and components, this effect is slight in a semi-arid environment. Notably, this 
study did not consider ambient temperature as a degradation factor, as all inverters are in an air-conditioned room (see Fig. 23).

5. Conclusion

The authors of this study effectively assessed the lifetime and degradation of three solar inverters connected to three PV stations. 
These stations are equipped with photovoltaic technology that varies in capacity and are connected to the grid of the Green Energy 
Park research platform. The authors applied these three inverter models (Sandia, PVWatt, and Driesse) to develop a reference model 
to serve as the foundation for their comparison. Moreover, weighted efficiency dropped by 3.96%, 0.63% and 1.29% respectively 
for 7 kW, 15 kW, and 20 kW photovoltaic systems over the five years. The authors of this study have derived several significant 
16

conclusions.
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Fig. 23. Inverters in a temperature-controlled environment for optimal performance.

Fig. 24. Analysis of AC power output degradation over time in PV systems: comparison of measured vs. predicted data in 2023 for 7 kW system.
17

Fig. 25. Analysis of AC power output degradation over time in PV systems: comparison of measured vs. predicted data in 2023 for 15 kW system.
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Fig. 26. Analysis of AC power output degradation over time in PV systems: comparison of measured vs. predicted data in 2023 for 20 kW system.

Table 4

Comparative performance analysis of photovoltaic systems: Sandia, PVWatts, and Driess models in 2018 and 2023.

PI Sandia model PVwatt model Driess model

7 kW system 15 kW system 20 kW System 7 kW system 15 kW system 20 kW system 7 kW system 15 kW system 20 kW system

2018 2023 2018 2023 2018 2023 2018 2023 2018 2023 2018 2023 2018 2023 2018 2023 2018 2023

RMSE 82.01 131.68 54.72 86.91 347.93 384.50 91.82 121.03 59.62 90.49 333.20 354.34 104.76 154.29 55.76 92.13 329.73 347.88

NRMSE 0.01 0.02 0.00 0.01 0.02 0.02 0.02 0.02 0.00 0.01 0.02 0.02 0.02 0.03 0.01 0.01 0.02 0.02

MAE 16.84 62.49 12.29 25.17 66.90 178.62 37.88 35.95 17.80 31.20 61.56 112.26 43.09 80.76 15.18 39.76 38.94 84.01

R2 0.997 0.993 0.991 0.995 0.996 0.993 0.997 0.994 0.992 0.996 0.997 0.992 0.996 0.99 0.993 0.99 0.997 0.992

Table 5

Efficiency metrics of PV inverters across different capacities (7 kW, 15 kW, 20 kW) 
in 2018 and 2023.

Inverter efficiency 7 kW System 15 kW System 20 kW System

2018 2023 2018 2023 2018 2023

𝜂𝑅 (%) 95.38 94.70 97.48 97.36 97.27 96.69%

𝜂𝐶𝐸𝐶 (%) 94.57 92.46 97.97 97.56 97.69 97.06

𝜂𝐸𝑈 (%) 93.11 89.15 97.80 97.17 97.23 95.94

• Sandia’s inverter performance model compared to others, including the PVWatt and Driesse model, predicting photovoltaic 
inverter failures with high accuracy in Morocco’s semi-arid climate as a use case.

• Implications of the obtained results for global maintenance strategies, including regular inspections, safety protocols and remote 
monitoring solutions.

Consequently, this research is more suitable for the analysis of failures in general. Such approaches are worth exploring to detect 
thermal stress, fouling, humidity, corrosion, electrical stress and component aging. However, a significant limitation of these ap-

proaches is their inability to be applied until accurate data are available for comparison with the predicted data. Consequently, our 
forthcoming research will endeavor to provide a powerful tool for accurately detecting and diagnosing PV inverter malfunctions. 
Additionally, incorporating these models into a digital twin with duplicated hardware will provide additional advantages in the solar 
inverter industry.
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