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BACKGROUND Maternal mortality in the United States remains high, with cardiovascular (CV) complications being a

leading cause.

OBJECTIVES The purpose of this paper was to develop the PARCCS (Prediction of Acute Risk for Cardiovascular

Complications in the Peripartum Period Score) for acute CV complications during delivery.

METHODS Data from the National Inpatient Sample (2016-2020) and International Classification of Diseases, Tenth

Revision codes to identify delivery admissions were used. Acute CV/renal complications were defined as a composite of

pre-eclampsia/eclampsia, peripartum cardiomyopathy, renal complications, venous thromboembolism, arrhythmias, and

pulmonary edema. A risk prediction model, PARCCS, was developed using machine learning consisting of 14 variables and

scored out of 100 points.

RESULTS Of the 2,371,661 pregnant patients analyzed, 7.0% had acute CV complications during delivery hospitaliza-

tion. Patients with CV complications had a higher prevalence of comorbidities and were more likely to be of Black race

and lower income. The PARCCS variables included electrolyte imbalances (13 points [p]), age (3p for age <20 years),

cesarean delivery (4p), obesity (5p), pre-existing heart failure (28p), multiple gestations (4p), Black race (2p), gestational

hypertension (3p), low income (1p), gestational diabetes (2p), chronic diabetes (6p), prior stroke (22p), coagulopathy

(5p), and nonelective admission (2p). Using the validation set, the performance of the model was evaluated with an area

under the receiver-operating characteristic curve of 0.68 and a 95% CI of 0.67 to 0.68.

CONCLUSIONS PARCCS has the potential to be an important tool for identifying pregnant individuals at risk of acute

peripartum CV complications at the time of delivery. Future studies should further validate this score and determine

whether it can improve patient outcomes. (JACC Adv 2024;3:101095) © 2024 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
N 2772-963X https://doi.org/10.1016/j.jacadv.2024.101095

m the aDivision of Cardiovascular Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland,

egon, USA; bDivision of Cardiovascular Medicine, University of Wisconsin, Madison, Wisconsin, USA; cDepartment of Medicine,

gham, and Women’s Hospital, Boston, USA; dDivision of Cardiac Anesthesiology and Critical Care Medicine, Department of

esthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and the eDivision of Cardiology,

partment of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

e authors attest they are in compliance with human studies committees and animal welfare regulations of the authors’

titutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information,

it the Author Center.

nuscript received October 16, 2023; revised manuscript received May 13, 2024, accepted May 20, 2024.

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jacadv.2024.101095
https://www.jacc.org/author-center
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jacadv.2024.101095&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABBR EV I A T I ON S

AND ACRONYMS

AUC = area under the curve

CV = cardiovascular

HCUP = Healthcare Cost and

Utilization Project

HF = heart failure

ICD-10-CM = International

Classification of Diseases-10th

Revision-Clinical Modification

NIS = Nationwide Inpatient

Sample

NPV = negative predictive

value

PARCCS = Prediction of Acute

Risk for Cardiovascular

Complications in the

Peripartum Period Score

PPV = positive predictive value

PRC = precision-recall curve
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M aternal mortality continues to
rise in the United States, with a
rate higher than that of other

developed nations.1-3 Over the period of
1987 to 2019, there has been a gradual in-
crease in maternal mortality rates in the
United States, with cardiovascular (CV) dis-
ease being a leading cause of pregnancy-
related mortality, particularly among Black
women.2,4-8 Furthermore, the Centers for
Disease Control estimate that 4 out of 5
pregnancy-related deaths in the United
States are preventable.6 The rise in maternal
mortality is believed to be a consequence of
several factors, including an increase in
individuals of advanced maternal age under-
going pregnancy, pre-existing medical condi-
tions like diabetes mellitus and
hypertension, and more individuals with
congenital heart disease surviving to child-
bearing age.1 To address this issue, developing accu-
rate risk prediction models is crucial to identifying
individuals at high risk for adverse peripartum CV
events. These models have the potential to enable
health care professionals to implement appropriate
preventive measures and interventions to reduce
maternal mortality due to CV complications.

Therefore, the aim of this study is to develop a
machine learning risk prediction model using a na-
tionally representative U.S. dataset, the Nationwide
Inpatient Sample (NIS), to predict CV complications
during delivery admissions. We called this model
the PARCCS (Prediction of Acute Risk for Cardio-
vascular Complications in the Peripartum Period
Score).
METHODS

STUDY DATA. The study used data from the NIS
database between 2016 and 2020. The NIS is part of
the Healthcare Cost and Utilization Project (HCUP),
managed by the Agency for Healthcare Research and
Quality in partnership with the federal and state
governments and the health care industry.9 The NIS
contains administrative claims data from over 7
million inpatient hospitalizations annually in 47
states and the District of Columbia, representing
more than 97% of the U.S. population. The NIS data
are publicly available and de-identified, so institu-
tional review board approval and informed consent
were not necessary. The study adhered to the guide-
lines provided by the HCUP, and observations with a
cell count of less than 11 were reported as “<11.”
STUDY DESIGN AND DATA SELECTION. This study
employed the International Classification of Diseases-
10th Revision-Clinical Modification (ICD-10-CM)
claims codes to conduct an analysis of NIS data. The
initial step involved the identification of hospitaliza-
tions associated with delivery through the utilization
of ICD-10-CM codes (Supplemental Table 1). The
Supplemental Table 2 and Figure 1 present a
comprehensive overview of the critical study design
and findings and the methods employed
(Central Illustration).

STUDY DEFINITIONS. In this study, CV complications
were defined as a composite outcome consisting of
several conditions, including pre-eclampsia/
eclampsia, peripartum cardiomyopathy, acute heart
failure (HF), acute coronary syndrome, cardiac ar-
rhythmias, renal complications (acute kidney injury),
pulmonary edema, and venous thromboembolism at
the time of delivery. Due to the similarity in patterns
of risk factors associated with each of these compli-
cations and small numbers for several of the indi-
vidual outcomes, a decision was made to employ a
composite end point.10,11 Pre-existing comorbidities
were identified using the comorbidity software pro-
vided by the HCUP. Information on race/ethnicity was
obtained from the HCUP participating organizations.
Median household income was determined annually,
and low income in 2020 was defined as an annual
income less than $50,000 to $64,999. Electrolyte ab-
normalities were defined per the clinical classifica-
tion’s software provided by HCUP, which considers
secondary comorbidity diagnoses and includes pre-
existing hyponatremia, hypernatremia, and acid-
base disorders. The study variables were defined us-
ing ICD-10 codes and are listed in the supplementary
material (Supplemental Table 1).

PRIMARY OUTCOME. The primary outcome of the
study was acute peripartum CV complications during
delivery admission among pregnant individuals.

STATISTICAL ANALYSIS. In this study, the authors
utilized the R package called "AutoScore" to auto-
matically develop clinical scoring models for specific
outcomes.12 First, we split data randomly into three
subsets: training, validation, and testing subsets,
with a ratio of 0.7, 0.2, and 0.1, respectively. The
training set, validation set, and test set were all ob-
tained from the same dataset (the NIS). The training
set was used to create the scores, the validation set
was used for interim evaluation, and the test set was
used to determine the final model’s performance
metrics. Figure 1 provides an illustration of the
framework. All variables included in the model were
selected based on clinical preference, expert



FIGURE 1 Study Flow Diagram

Variable ranking and transformation: The described machine learning method employs a random forest algorithm to generate decision trees,

utilizing bootstrapping to reduce overfitting. Variable ranking based on mean decrease impurity measurement aids in selecting important

variables that undergo a transformation, such as stratifying continuous variables like age into categories. Intermediate model analysis: The

scoring model’s performance was evaluated by varying the number of variables, and the optimal trade-off between model complexity and

prediction accuracy was determined through a parsimony plot. Final model analysis: The performance of the chosen model was subse-

quently assessed using the testing dataset. ICD-10 ¼ International Classification of Diseases-10th Revision.
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knowledge, or real-world applications.10,13-15 The
initial step in the AutoScore framework involves
variable ranking, which is performed using the
random forest algorithm. In the AutoScore frame-
work, after variable selection, all chosen variables
undergo variable transformation. This involves con-
verting continuous variables into categorical vari-
ables, which enables the modeling of nonlinear
effects. After selecting and transforming the vari-
ables, a risk score was generated to predict the
outcome of interest. The score assigned an integer
point to each category of an individual variable, and
logistic regression was used to weigh the points. The
total score was computed by summing up all points (a
total of 100).

EVALUATION OF THE PREDICTIVE MODEL. The
scoring model’s performance was evaluated using
receiver operating characteristic analysis, with inter-
mediate evaluation based on the validation set. The
area under the curve (AUC) was used as the primary
metric for final model evaluation based on an unseen
test set. The precision-recall curve (PRC) was



CENTRAL ILLUSTRATION PARCCS: A Machine Learning Risk-Prediction Model

Zahid S, et al. JACC Adv. 2024;3(8):101095.

A total of 14 variables were selected based on predictive ability as well as clinical relevance. On performance evaluation using the same

testing dataset, an area under the curve of 0.68 (95% CI: 0.67-0.68) was achieved. The PARCCS has a total score range of 0 to 100.
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constructed because it is particularly useful when
dealing with imbalanced datasets, where the number
of negative instances significantly outweighs the
positive instances. In such cases, accuracy alone can
be misleading, and the precision-recall curve pro-
vides a more comprehensive evaluation of the
model’s ability to correctly identify positive instances
while minimizing false positives. Performance met-
rics such as sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV)
were calculated under optimal cutoffs, which were
defined as the points closest to the upper-left corner
of the receiver operating characteristic curves. The
model’s predictive performance was evaluated by
comparing performance metrics under different cut-
offs. The demonstration included cutoffs that allowed
sensitivity or specificity to reach around 95% to meet
certain requirements in clinical settings. The model’s



TABLE 1 Baseline Hospitalization Characteristics for Training Set, Testing Set, and Validation Set

Training Set
(N ¼ 1,660,163)

Testing Set
(N ¼ 237,166)

Validation Set
(N ¼ 474,332)

Without CV
Complications
(n ¼ 1,542,925)

With CV
Complications
(n ¼ 117,238) P Value

Without CV
Complications
(n ¼ 220,387)

With CV
Complications
(n ¼ 16,779) P Value

Without CV
Complications
(n ¼ 441,157)

With CV
Complications
(n ¼ 33,175) P Value

Age, y 29.09 � 5.64 29.35 � 6.12 <0.001 29.08 � 5.64 29.46 � 6.13 <0.001 29.09 � 5.64 29.38 � 6.12 <0.001

Mode of admission

Elective admission 777,596 (50.5) 51,400 (43.9) <0.001 111,256 (50.6) 7,311 (43.7) <0.001 222,695 (50.6) 14,682 (44.4) <0.001

Comorbidities

Prior MI 239 (0.0) 177 (0.2) <0.001 36 (0.0) 21 (0.1) <0.001 68 (0.0) 38 (0.1) <0.001

Alcohol use <11 (<0.01)a <11 (<0.01)a 0.001 <11 (<0.01)a <11 (<0.06)a 1.000 <11 (<0.01)a <11 (<0.01)a 0.511

Blood loss anemia 4,110 (0.3) 522 (0.4) <0.001 592 (0.3) 88 (0.5) <0.001 1,176 (0.3) 147 (0.4) <0.001

Pre-existing HF 63 (0.0) 773 (0.7) <0.001 9 (0.0) 106 (0.6) <0.001 <11 (<0.01) 220 (0.7) <0.001

Coagulopathy 27,786 (1.8) 5,085 (4.3) <0.001 3,970 (1.8) 712 (4.2) <0.001 7,846 (1.8) 1,432 (4.3) <0.001

COPD 79,934 (5.2) 9,352 (8.0) <0.001 11,344 (5.1) 1,354 (8.1) <0.001 22,712 (5.1) 2,677 (8.1) <0.001

Deficiency anemia 22,133 (1.4) 2,774 (2.4) <0.001 3,093 (1.4) 439 (2.6) <0.001 6,334 (1.4) 764 (2.3) <0.001

Depression 52,988 (3.4) 6,364 (5.4) <0.001 7,676 (3.5) 934 (5.6) <0.001 15,185 (3.4) 1780 (5.4) <0.001

Pre-existing diabetes 9,609 (0.6) 2,715 (2.3) <0.001 1,306 (0.6) 379 (2.3) <0.001 2,711 (0.6) 791 (2.4) <0.001

Drug use 38,825 (2.5) 4,139 (3.5) <0.001 5,669 (2.6) 613 (3.7) <0.001 11,144 (2.5) 1,135 (3.4) <0.001

Electrolyte abnormalities 5,139 (0.3) 4,444 (3.8) <0.001 738 (0.3) 663 (4.0) <0.001 1,540 (0.3) 1,239 (3.7) <0.001

HIV 257 (0.0) 46 (0.0) <0.001 36 (0.0) <11 (<0.06)a 0.01 63 (0.0) 13 (0.0) 0.001

Pre-existing hypertension 1,558 (0.1) 919 (0.8) <0.001 213 (0.1) 142 (0.8) <0.001 421 (0.1) 248 (0.7) <0.001

Hypothyroidism 56,572 (3.7) 5,835 (5.0) <0.001 7,953 (3.6) 881 (5.3) <0.001 16,053 (3.6) 1,672 (5.0) <0.001

Liver disease 5,163 (0.3) 831 (0.7) <0.001 743 (0.3) 114 (0.7) <0.001 1,483 (0.3) 246 (0.7) <0.001

Lymphoma 141 (0.0) 21 (0.0) 0.005 15 (0.0) <11 (<0.06)a 1.000 31 (0.0) <11 (<0.01)a <0.001

Metastatic cancer 77 (0.0) 18 (0.0) <0.001 10 (0.0) <11 (<0.06)a 0.009 24 (0.0) <11 (<0.01)a <0.001

Neurological disorders 8,827 (0.6) 1,508 (1.3) <0.001 1,329 (0.6) 204 (1.2) <0.001 2,530 (0.6) 416 (1.3) <0.001

Paralysis 201 (0.0) 83 (0.1) <0.001 24 (0.0) <11 (<0.06)a 0.658 60 (0.0) 17 (0.1) <0.001

Peptic ulcer disease 150 (0.0) 33 (0.0) <0.001 21 (0.0) <11 (<0.06)a 1.000 54 (0.0) <11 (<0.01)a 0.115

Peripheral vascular disease 140 (0.0) 54 (0.0) <0.001 29 (0.0) <11 (<0.06) 0.871 37 (0.0) 11 (0.0) <0.001

Psychosis 1834 (0.1) 261 (0.2) <0.001 243 (0.1) 42 (0.3) <0.001 529 (0.1) 74 (0.2) <0.001

Pulmonary hypertension 301 (0.0) 317 (0.3) <0.001 37 (0.0) 44 (0.3) <0.001 78 (0.0) 91 (0.3) <0.001

Kidney failure 1112 (0.1) 648 (0.6) <0.001 167 (0.1) 103 (0.6) <0.001 327 (0.1) 175 (0.5) <0.001

Connective tissue disease 5131 (0.3) 824 (0.7) <0.001 758 (0.3) 108 (0.6) <0.001 1,403 (0.3) 225 (0.7) <0.001

Solid organ tumor 460 (0.0) 64 (0.1) <0.001 85 (0.0) <11 (<0.06)a 0.457 134 (0.0) 19 (0.1) 0.013

Valvular disease 511 (0.0) 147 (0.1) <0.001 83 (0.0) 17 (0.1) <0.001 160 (0.0) 37 (0.1) <0.001

Weight loss 172 (0.0) 80 (0.1) <0.001 21 (0.0) 12 (0.1) <0.001 54 (0.0) 19 (0.1) <0.001

Anemia 162,744 (10.5) 17,589 (15.0) <0.001 22,958 (10.4) 2,548 (15.2) <0.001 46,493 (10.5) 4,869 (14.7) <0.001

History of CVA 141 (0.0) 539 (0.5) <0.001 27 (0.0) 64 (0.4) <0.001 48 (0.0) 129 (0.4) <0.001

Coronary artery disease 212 (0.0) 145 (0.1) <0.001 31 (0.0) 22 (0.1) <0.001 61 (0.0) 45 (0.1) <0.001

Smoking 68,691 (4.5) 5,640 (4.8) <0.001 9,813 (4.5) 793 (4.7) 0.102 19,590 (4.4) 1,611 (4.9) <0.001

End-stage kidney disease 61 (0.0) 51 (0.0) <0.001 <11 (<0.01)a <11 (<0.06)a <0.001 13 (0.0) 18 (0.1) <0.001

Chronic kidney disease 158 (0.0) 205 (0.2) <0.001 19 (0.0) 39 (0.2) <0.001 50 (0.0) 65 (0.2) <0.001

Hyperlipidemia 4,069 (0.3) 859 (0.7) <0.001 558 (0.3) 117 (0.7) <0.001 1,182 (0.3) 242 (0.7) <0.001

Continued on the next page
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predicted probability was compared to the actual
outcomes in the testing dataset by constructing a
calibration plot using the "givitiR" package.16

The dataset was inspected for missing data. Over-
all, the rate of missing data were small (<1%) and
recoded as a predominant category. Categorical
variables were presented as frequencies and per-
centages, and continuous variables were reported as
mean � SD. Baseline characteristics were compared
using Pearson’s chi-square and Fisher’s exact tests for
categorical variables and the Mann-Whitney U test for
continuous variables. For all analyses, a 2-tailed



TABLE 1 Continued

Training Set
(N ¼ 1,660,163)

Testing Set
(N ¼ 237,166)

Validation Set
(N ¼ 474,332)

Without CV
Complications
(n ¼ 1,542,925)

With CV
Complications
(n ¼ 117,238) P Value

Without CV
Complications
(n ¼ 220,387)

With CV
Complications
(n ¼ 16,779) P Value

Without CV
Complications
(n ¼ 441,157)

With CV
Complications
(n ¼ 33,175) P Value

Obstetric characteristics

Multiple gestation 25,018 (1.6) 5,386 (4.6) <0.001 3,581 (1.6) 778 (4.6) <0.001 7,204 (1.6) 1,598 (4.8) <0.001

Cesarean 469,377 (30.4) 58,284 (49.7) <0.001 67,283 (30.5) 8,395 (50.0) <0.001 134,547 (30.5) 16,704 (50.4) <0.001

Preterm birth 79,664 (5.2) 11,822 (10.1) <0.001 11,241 (5.1) 1,673 (10.0) <0.001 22,717 (5.1) 3,359 (10.1) <0.001

Assisted reproductive
technology

3354 (0.2) 518 (0.4) <0.001 439 (0.2) 72 (0.4) <0.001 946 (0.2) 155 (0.5) <0.001

Polycystic ovary syndrome 9,542 (0.6) 1,449 (1.2) <0.001 1,347 (0.6) 223 (1.3) <0.001 2,691 (0.6) 392 (1.2) <0.001

Gestational diabetes 118,775 (7.7) 14,305 12.2) <0.001 16,920 (7.7) 2013 (12.0) <0.001 33,811 (7.7) 4,014 (12.1) <0.001

Obesity 130,313 (8.4) 22,828 (19.5) <0.001 18,467 (8.4) 3,302 (19.7) <0.001 37,302 (8.5) 6,471 (19.5) <0.001

Gestational hypertension 79,664 (5.2) 11,822 (10.1) <0.001 11,241 (5.1) 1,673 (10.0) <0.001 22,717 (5.1) 3,359 (10.1) <0.001

Systemic lupus erythematosus 2084 (0.1) 405 (0.3) <0.001 276 (0.1) 57 (0.3) <0.001 541 (0.1) 111 (0.3) <0.001

Rheumatoid arthritis 2,114 (0.1) 266 (0.2) <0.001 330 (0.1) 27 (0.2) 0.797 617 (0.1) 67 (0.2) 0.005

Racial/ethnic and socioeconomic
characteristics

Black 214,654 (13.9) 24,448 (20.9) <0.001 30,489 (13.8) 3,438 (20.5) <0.001 61,158 (13.9) 6,898 (20.8) <0.001

Hispanic 297,876 (19.3) 22,654 (19.3) 0.889 42,298 (19.2) 3,202 (19.1) 0.737 85,086 (19.3) 6,403 (19.3) 0.957

Asian or Pacific Islander 94,088 (6.1) 5,315 (4.5) <0.001 13,431 (6.1) 849 (5.1) <0.001 26,697 (6.1) 1,526 (4.6) <0.001

Medicaid 646,686 (41.9) 52,009 (44.4) <0.001 92,292 (41.9) 7,461 (44.5) <0.001 184,176 (41.7) 14,656 (44.2) <0.001

Low income 417,662 (27.1) 36,736 (31.3) <0.001 59,662 (27.1) 5,247 (31.3) <0.001 119,090 (27.0) 10,413 (31.4) <0.001

Values are mean � SD or n (%). aObservations <11 are not reported as per HCUP guidelines.

COPD ¼ chronic obstructive pulmonary disease; CV ¼ cardiovascular; CVA ¼ cerebral vascular accident; HCUP ¼ Healthcare Cost and Utilization Project; HF ¼ heart failure; MI ¼ myocardial infarction.
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P ¼ 0.05 was considered statistically significant. An-
alyses were performed using R software for statistical
computing version 4.3.

RESULTS

BASELINE CHARACTERISTICS OF THE STUDY

SAMPLE. The analysis included a total of 2,371,661
pregnant patients at delivery hospitalization, of
whom 2,204,469 (93%) had no CV complications and
167,192 (7%) had CV complications. Supplemental
Table 3 details the hospitalization characteristics of
delivery admissions, categorized by the presence or
absence of CV complications in the overall sample.
The mean age of individuals with CV complications
was 29 years. The percentage of elective admissions
was higher among patients without CV complications
(50.5%) than those with CV complications (44.0%)
(P < 0.01). In the study, it was observed that in-
dividuals with peripartum CV complications were
more commonly Black patients and belonged to the
lowest zip code quartile of income. These individuals
also had a higher prevalence of comorbidities such as
HF, history of stroke, electrolyte abnormalities, ce-
sarean delivery, obesity, diabetes, coagulopathy,
gestational hypertension, and multiple gestation.
Table 1 compares the baseline characteristics of the
three different sets of patient data: the training set,
the validation set, and the testing set. The total
number of patients in the datasets was as follows: the
training set contained 1,660,163 patients, the valida-
tion set contained 474,332 patients, and the testing
set contained 237,166 patients (Table 1).

PARCCS. The scoring model includes 14 variables
that are used to predict the risk of CV complications
during delivery admission. For each variable, there
are specific intervals and point values assigned to
them based on their impact on CV complications, with
a score ranging from 0 to 100. The PARCCS variables
included measures such as electrolyte imbalances (13
points [p]), age (3p for age <20 years), a cesarean
delivery (4p), obesity (5p), pre-existing HF diagnosis
(28p), multiple gestations (4p), Black race (2p),
gestational hypertension (3p), low income (1p),
gestational diabetes (2p), chronic diabetes (6p), prior
stroke (22p), coagulopathy (5p), and nonelective
admission (2p).

Using the validation set, the performance of the
model was evaluated with an AUC of 0.68 and a
95% CI of 0.67 to 0.68. The best score threshold was
determined to be a value of 6 or higher, and



J A C C : A D V A N C E S , V O L . 3 , N O . 8 , 2 0 2 4 Zahid et al
A U G U S T 2 0 2 4 : 1 0 1 0 9 5 PARCCS: Machine Learning for Peripartum Cardiovascular Risk Prediction

7

performance indicators such as sensitivity, speci-
ficity, positive predictive value, and negative pre-
dictive value were calculated based on this threshold.
These indicators give an idea of how well the model is
able to correctly identify cases of peripartum CV
complications.

PERFORMANCE METRICS OF THE PARCCS. Table 2
shows the performance of the predictive model for
different predicted risk cutoffs. For example, at a
predicted risk cutoff of 5%, a score cutoff of 4, and
identification of 52% of patients as high-risk, the
model has an accuracy of 51.2% (95% CI: 51.1%-51.3%).
The sensitivity was 73.3% (95% CI: 72.8%-73.8%),
which means that 73.3% of high-risk patients were
correctly identified. The specificity was 49.5%
(95% CI: 49.4%-49.7%), which means that only 49.5%
of low-risk patients were correctly identified. The PPV
was 9.8% (95% CI: 9.8%-9.9%), which means that
among all patients identified as high-risk, only 9.8%
were truly high-risk. The NPV was 96.1% (95% CI:
96.0%-96.2%), which means that among all patients
identified as low-risk, 96.1% were truly low-risk.
However, the model’s accuracy and specificity
improve as the score cutoff is raised. For example, at
a cutoff of 13, the accuracy increased to 91.8%, and
the specificity rose to 97.7%.

Overall, Table 2 shows that as the predicted risk
cutoff increases, the proportion of patients identified
as high-risk decreases, but the specificity and PPV
increase. At the same time, the sensitivity and NPV
decrease. Therefore, choosing the appropriate cutoff
depends on the balance between the risks of false
positives (unnecessary interventions for low-risk pa-
tients) and false negatives (missed opportunities to
intervene for high-risk patients).

The parsimony plot shows ranking of variables
performed on the validation set. A higher AUC value
implies better performance, with a perfect classifier
having an AUC value of 1.0. The value of 0.68 sug-
gests that the model has a moderate ability to
distinguish between the positive and negative classes
(Figures 2 and 3). The PRC exhibits a steep decline at
the beginning, indicating a high recall with minimal
false positives. As the recall increases, precision de-
creases significantly, reflecting the model’s difficulty
in maintaining high accuracy while capturing more
positive instances (Supplemental Figure 1). The AUC
value for the PRC curve was 0.18. The range of pre-
dicted probability of acute CV complications and
score cutoff are given in Supplemental Figure 2. The
calibration belt is a region of the calibration plot that
shows the range of predicted probabilities for a given
range of actual probabilities (Supplemental Figure 3).

DISCUSSION

In this work, we newly describe a risk score generated
by machine learning, which we called the PARCCS.
PARCCS has the potential to be an important tool for
identifying pregnant individuals at risk of acute per-
ipartum CV and renal complications at the delivery
hospitalization.

The Centers for Disease Control’s Pregnancy Mor-
tality Surveillance System data spanning from 2017 to
2019 underscores a diverse array of causes contrib-
uting to pregnancy-related deaths.8 Noteworthy
findings reveal a significant prevalence of CV factors,
with 14.5% attributed to CV conditions and a closely
following 12.1% each for cardiomyopathy and hem-
orrhage. Infections or sepsis accounted for 14.3%,
while thrombotic pulmonary or other embolism
constituted 10.5%. Despite various factors playing a
role, a compelling argument emerges for the promi-
nence of CV causes in pregnancy-related mortality.
This assertion is further supported by the cumulative
impact of hypertensive disorders of pregnancy at
6.3% and cerebrovascular accidents at 5.8% on
maternal mortality. Even in cases of unknown causes,
where 7.0% of pregnancy-related deaths were recor-
ded, the possibility of CV involvement cannot be
discounted.8 Consequently, the data signal a critical
need for heightened attention to CV health in preg-
nant individuals, especially given the increasing
prevalence of chronic conditions like hypertension
and diabetes, which further amplify the risk of com-
plications during pregnancy and the postpartum
period.

Our study has developed a novel predictive model
for peripartum CV complications during delivery,
which incorporates both established and emerging
risk factors.17 While previous studies have examined
predictive models for adverse pregnancy outcomes,
our model is the first to specifically target CV com-
plications during delivery.18 Machine learning models
are particularly useful in handling large amounts of
complex data and identifying patterns that may not
be easily recognizable by human analysis.19 Unfortu-
nately, it is well known that machine learning algo-
rithms can produce biased predictions if the
underlying data used to train the model does not
include minority ethnic groups or account for socio-
economic disparities.20 However, our risk prediction
model has the advantage of being built on a diverse,



TABLE 2 Performance of the Predictive Model for Different Predicted Risk Cutoffs

Predicted
Risk, $ Score Cutoff, $

Percentage of
Patients Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

5% 4 52 51.2% (51.1%-51.3%) 73.3% (72.8%-73.8%) 49.5% (49.4%-49.7%) 9.8% (9.8%-9.9%) 96.1% (96%-96.2%)

10% 8 16 82.2% (82.1%-82.3%) 38.1% (37.6%-38.6%) 85.5% (85.4%-85.7%) 16.6% (16.3%-16.8%) 94.8% (94.8%-94.9%)

20% 13 3 91.8% (91.7%-91.8%) 12.8% (12.5%-13.2%) 97.7% (97.7%-97.7%) 29.5% (28.8%-30.2%) 93.7% (93.7%-93.7%)

50% 22 0 93.1% (93.1%-93.1%) 2.6% (2.5%-2.8%) 99.9% (99.9%-99.9%) 63.3% (60.8%-65.9%) 93.2% (93.2%-93.2%)

NPV ¼ negative predictive value; PPV ¼ positive predictive value.
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nationally representative U.S. dataset. Incorporating
socioeconomic and racial/ethnic variables into acute
peripartum CV complication risk prediction models
can improve risk prediction accuracy and address
health disparities in maternal health outcomes.21

Race is largely a social construct, and disparities in
maternal health outcomes experienced by Black pa-
tients likely reflect biases related to access to care and
structural racism, rather than biological/genetic dif-
ferences.13,22 Indeed, our machine learning algorithm
identified both Black race and low income as predic-
tive variables in the PARCCS model. By utilizing a
FIGURE 2 Parsimony Plot

In the initial stage, 20 variables were ranked. This was subsequently na

monious model. Additional variables beyond the chosen 14 did not cont

information regarding this selection process can be found in the method
large dataset of patients that includes socioeconomic
and racial/ethnic data, our machine learning model
can identify risk factors that may have been over-
looked in previous studies, with the goal of improving
patient outcomes and decreasing health disparities in
the United States. This approach has the potential to
enhance the accuracy and fairness of risk prediction
models and ultimately contribute to the goal of
achieving equitable health care for all.

In our model, beyond accounting for race/
ethnicity and socioeconomic characteristics, we
have incorporated cardiometabolic risk factors
rrowed down to 14 variables, which led to the creation of a parsi-

ribute significantly to improving the model’s performance. Detailed

s section. COPD ¼ chronic obstructive pulmonary disease.



FIGURE 3 Receiver Operating Characteristics Curve

AUC ¼ area under the curve.
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specific to pregnancy. These factors encompass
gestational hypertension, gestational diabetes, pre-
existing diabetes, a history of stroke, and obesity.
Extensive literature has previously established the
association of these risk factors with adverse
pregnancy outcomes, particularly concerning CV
complications.11,17,23,24 Specifically, gestational hy-
pertension and gestational diabetes have been shown
to be associated with a 2-fold higher risk of acute
peripartum CV complication at the time of delivery
admission.10,25 This inclusion serves to enhance the
comprehensiveness of our predictive framework,
acknowledging the multifaceted nature of influences
on pregnancy-related health outcomes. The consid-
eration of these factors not only aligns with existing
research but also reinforces the relevance of our
model in capturing a more nuanced understanding of
the interplay between maternal health and CV risks
during pregnancy.

We also used contemporary U.S. data to build this
model, from the years 2016 to 2020. Furthermore, our
model was developed using an inpatient dataset that
is representative of the diverse population of the
United States. This diversity in the dataset ensures
that our model can be applied in various health care
settings, potentially making it a valuable tool for cli-
nicians in predicting and managing peripartum CV
complications. Overall, our study could be an impor-
tant contribution to the field of cardio-obstetrics and
highlights the need for targeted predictive models for
specific adverse outcomes.

The development of risk prediction models for
acute peripartum CV complications can be easily
incorporated into electronic health records (EHRs)
and used in clinical practice, with the hope that
earlier identification of risk could lead to the imple-
mentation of strategies that improve patient out-
comes.26 The integration of these models allows for a
more comprehensive understanding of patient risk
factors, facilitating personalized care and communi-
cation and coordination of care between health care
professionals.27-29 EHR integration also aids in
tracking and monitoring patient outcomes, allowing
for continuous quality improvement initiatives.30

Moreover, the utilization of a composite outcome
seeks to enhance the model’s clinical applicability by
facilitating the recognition of a diverse array of acute
CV complications, thereby affording clinicians a
comprehensive and clinically pertinent viewpoint.
Nevertheless, it is imperative to recognize that this
decision may exert an influence on the performance
of the model. Overall, the development and integra-
tion of these risk prediction models in EHRs have the
potential to significantly impact maternal health
outcomes and improve the quality of care provided to
pregnant individuals.
STUDY LIMITATIONS. Risk prediction models based
on administrative datasets may have lower accuracy
compared to those that incorporate clinical and so-
cioeconomic variables, but they are still valuable in
clinical practice due to their broad applicability and
accessibility.31 The strength of the model is an NPV of
96% demonstrating its ability to correctly identify
individuals who do not have acute peripartum CV
complications at delivery. Our model exhibited
elevated positive rates. However, when assessing the
performance of a classification model, the choice of
the evaluation metric is contingent upon the specific
objectives and requirements of the task at hand. In
certain instances, prioritizing the identification of
true positives, even at the expense of some false
positives, may constitute a valid strategy. The
detection of an increased number of true positives
facilitates improved explication and intervention in
high-risk scenarios. By capturing a greater number of
true positives, the model affords an opportunity for
workup or intervention by the cardio-obstetrics team.
Nevertheless, the absence of granular data does
impact the model’s performance within extensive
datasets. Despite this limitation, the model harbors
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potential for integration into real-world EHR due to
its reliance on ICD-10 coding. Consequently, there is
potential for ongoing refinement of the model,
allowing it to evolve dynamically within the EHR
environment. Founded on an extensive dataset that
includes diverse samples, races/ethnicities, and so-
cioeconomic variables, our model represents an
initial stride in a promising trajectory.

The limitations of our model are intrinsically tied
to the constraints of the dataset. One notable
constraint stems from the absence of granular data
pertaining to the timing of outcomes. Unfortunately,
the dataset lacks detailed information on the tempo-
ral aspect of adverse CV events during pregnancy.
Consequently, we were compelled to adopt a binary
model, distinguishing only whether a peripartum CV
complication occurred or not. This limitation restricts
our ability to analyze the nuanced temporal dynamics
of these outcomes. Individual outcome data were not
presented due to a limited sample size (<11) in
compliance with HCUP guidelines, necessitating the
reporting of a composite outcome instead. Conse-
quently, future research endeavors are warranted to
formulate predictive models specifically tailored to
individual complications, thereby evaluating the po-
tential for enhanced model performance in such in-
stances. Additionally, while income was a variable
included in our model, the scope of socioeconomic
characteristics could be broadened. For instance,
incorporating educational level attainment and other
socio-economic indicators, such as occupation or
neighborhood characteristics, may offer a more
comprehensive understanding of the multifaceted
factors influencing CV outcomes during pregnancy.
Our model has identified electrolyte imbalances as a
significant predictor of acute CV complications.
However, it is noteworthy that electrolyte imbalances
are prevalent even among normal pregnancies,
raising questions regarding their role as markers of
disease severity or indicative of a predictive associa-
tion. To elucidate this, further longitudinal studies
are imperative. Unfortunately, due to inherent limi-
tations in the NIS database, data on other socioeco-
nomic variables were unavailable. Recognizing these
limitations underscores the need for future research
endeavors to encompass a more extensive array of
socioeconomic variables to enhance the precision and
applicability of predictive models in maternal CV
health. Finally, we did not include COVID-19 infec-
tion as a variable (available only in the 2020 NIS
dataset), although it has been associated with CV
complications during pregnancy,32 as this is a rapidly
changing field with the development of COVID vac-
cines and changes in COVID viral variants that influ-
ence CV outcomes.

CONCLUSIONS

PARCCS: A Machine Learning Risk-Prediction Model
for Acute Peripartum Cardiovascular Complications
during Delivery Admissions Score has the potential to
be a valuable tool in the fight against rising maternal
morbidity and mortality rates in the United States due
to CV causes. This easy-to-use risk prediction model
can be employed in diverse health care systems, and
its accuracy and specificity make it a useful tool for
identifying patients at risk for acute peripartum CV
and renal complications at the time of delivery.
However, future studies using longitudinal data are
required to further validate the PARCCS score and
determine whether its use does improve patient
outcomes and reduce maternal mortality rates in the
United States by providing an opportunity for earlier
intervention and targeted monitoring. Overall, the
development and implementation of risk prediction
models like PARCCS are crucial in addressing the
maternal health crisis and improving the quality of
care provided to pregnant women of diverse racial,
ethnic, and socioeconomic backgrounds in the United
States.
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PERSPECTIVES

COMPETENCY IN PRACTICE-BASED LEARNING

AND IMPROVEMENT: The study employed a nation-

wide dataset to construct a predictive model based on

machine learning techniques, aiming to identify acute CV

complications occurring during the peripartum period.

This user-friendly risk prediction model (PARCCS score) is

adaptable for implementation in various health care set-

tings, rendering it a valuable tool for the early identifi-

cation of individuals susceptible to acute peripartum CV

complications.

TRANSLATIONAL OUTLOOK: To establish the validity

of the risk prediction score and assess its potential impact

on enhancing patient outcomes and decreasing maternal

mortality rates in the United States, it is imperative for

forthcoming research endeavors to utilize longitudinal

data. These studies can ascertain whether the imple-

mentation of the PARCCS score leads to improved results

by enabling earlier intervention and precise monitoring

strategies.
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