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INTRODUCTION 
 
Glioblastoma (GBM) ranks the most common and 
aggressive primary brain tumor worldwide [1]. It is a 
fast-growing malignant tumor that arises from multiple 
cell types with neural stem-cell-like properties. Besides 
conventional therapy, current approaches such as small  

 

molecules and gene therapy are developed in recent years 
[2, 3]. New synthetic small molecules were discovered as 
promising anti-GBM agents [3]. Although with various 
treatments, patient outcomes remain between 12 and 15 
months survival rate, and with five-year survival rates at 
only 10% [4]. Therefore, advances in the field of 
molecular oncology of GBM are urgently needed. 
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ABSTRACT 
 
Glioblastoma (GBM) ranks the most common and aggressive primary brain malignant tumor worldwide. However, 
the survival rates of patients remain very poor. Therefore, molecular oncology of GBM are urgently needed. In 
this study, we performed an integrative analysis of DNA methylation and gene expression to identify key 
epigenetic genes in GBM. The methylation and gene expression of GBM patients in The Cancer Genome Atlas 
(TCGA) database were downloaded. After data preprocessing, we identified 4,881 differentially expressed genes 
(DEGs) between tumor and normal samples, including 1,111 upregulated and 3,770 downregulated genes. Then, 
we randomly separated all samples into training set (n = 69) and testing set (n = 69). We next obtained 11,269 
survival-methylation sites by univariate and multivariate Cox regression analyses. In the correlation analysis, we 
defined 198 low promoter methylation with high gene expression as epigenetically induced (EI) genes and 111 
high promoter methylation with low gene expression as epigenetically suppressed (ES) genes. Key markers 
including C1orf61 and FAM50B were selected with a Pearson correlation coefficient greater than 0.75. Further, we 
chose the 20 CpG methylation sites of above two genes in unsupervised clustering analysis using the Euclidean 
distance. We found that the prognosis of the hypomethylated group was significantly better than that in the 
hypermethylated group (log-rank test p-value = 0.011). Based on the validation in the TCGA testing set and GEO 
dataset, we validated the prognostic value of our signature (p-value = 0.02 in TCGA and 0.012 in GEO). In 
conclusion, our findings provided predictive and prognostic value as methylation-based biomarkers for the 
diagnosis and treatment of GBM. 
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The major factors contributing to the pathogenesis of 
human cancers were epigenetic molecular mechanisms, 
including GBM [5]. With the help of gene microarray and 
RNA-seq, the aberrant expression profiles of GBM in 
genome and transcriptome level were increasing reported. 
Using the gene expression data from Gene Expression 
Omnibus (GEO) database, Bo et al. [6] identified a total 
of 431 differentially expressed genes (DEGs) between 
GBM and normal samples. After various bioinformatics 
analysis, 69 DEGs were identified significantly  
associated with GBM prognosis. Another study found  
486 DEGs based on the gene expression profile of  
GSE50161 [7]. CDK1, CCNB1 and CDC20 were selected 
in survival analysis and high expression was significantly  
associated with poor survival in GBM. However,  
numerous identified DEGs will not contribute to the  
clear understandings of biological pathogenesis of GBM. 
 
DNA methylation was found in the dinucleotides of 
nearly eighty percent of the CpG islands in the genome 
[8]. It was catalyzed by DNA methyltransferases that 
controls various cell activities such as proliferation, 
apoptosis, and differentiation. As for human cancers, 
methylation was known to be abnormal in all forms of 
cancers [9] and abnormal methylation of promoters could 
lead to silence of tumor suppressor genes, affecting 
transcriptional pathways and resulting in the cancer 
development [10]. In addition, targeted drugs about DNA 
methyltransferase inhibitors have been approved for the 
treatment of chronic myelomonocytic leukemia and acute 
myelogenous leukemia as well as a second generation of 
DNA methyltransferase inhibitors [11]. Intra-tumor DNA 
methylation heterogeneity has been proved a feature  
of GBM [12]. Moreover, the promoter methylation  
status of the O6-methylguanine-DNA methyltransferase 
(MGMT) gene has been described as the predictor of 
chemotherapeutic response and patients’ survival in  
GBM [13]. Wang et al. [14] developed a signature with 
three genes (FPR3, IKBIP and S100A9) signature for 
prognosis in patients with MGMT promoter-methylated 
GBM using data from Chinese Glioma Genome Atlas 
(CGGA) and TCGA. In another study, Wen et al. [15] 
performed analysis of methylated genes as potential 
biomarkers in evaluating malignant degree of GBM. In 
this study, they found a total of 668, 412, 470, and 620 
methylation or demethylation genes associated with the 
degree of GBM from grades 1 to 4. Therefore, abnormal 
methylation genes can act as potential oncogenes or anti-
oncogenes in the development and progression of 
cancers, suggesting their potential roles as biomarkers. 
 
In the present study, we performed an integrative analysis 
of DNA methylation and gene expression identified key 
epigenetic genes in GBM. The methylation and gene 
expression of GBM patients in TCGA database were 
downloaded. After data preprocessing, we identified 

4,881 DEGs between tumor and normal samples, 
including 1,111 upregulated and 3,770 downregulated 
genes. Then, we randomly separated all samples into 
training set and testing set. We next obtained 11,269 
survival-methylation sites by univariate and multivariate 
Cox regression analyses. In the correlation analysis, we 
defined 198 low promoter methylation with high gene 
expression as EI genes and 111 high promoter methy-
lation with low gene expression as ES genes. Key 
markers including C1orf61 and FAM50B were selected 
with a Pearson correlation coefficient greater than 0.75. 
Further, we chose the 20 CpG methylation sites of above 
two genes in unsupervised clustering analysis using the 
Euclidean distance. We found that the prognosis of the 
hypomethylated group was significantly better than that 
in the hypermethylated group (log-rank test p-value = 
0.011). Based on the validation in the TCGA testing set 
and GEO dataset, we validated the prognostic value of 
our signature (p-value = 0.02 in TCGA and 0.012 in 
GEO). In conclusion, our findings provided predictive 
and prognostic value as methylation-based biomarkers 
for the diagnosis and treatment of GBM. 
 
RESULTS 
 
DNA methylation data selection and characteristics 
 
In this study, we performed an integrative analysis of 
DNA methylation and gene expression identified key 
epigenetic genes in GBM (Figure 1). We used the gene 
expression and DNA methylation profiles from TCGA 
database. A total of 138 GBMs and normal samples 
with clinical information data were obtained. Moreover, 
there were 20,530 genes were downloaded from the 
TCGA database for subsequent analysis. Because DNA 
methylation in promoter regions strongly influences 
gene expression, we selected CpGs in promotor regions 
that were defined as 2 kb upstream to 0.5 kb downstream 
from TSS. After preprocessing data, we finally  
obtained 145,907 methylation sites for downstream 
analysis. 
 
Clinical patient characteristics 
 
We obtained the clinical information including sample 
ID, vital status, age at initial pathologic diagnosis, days 
to death, days to last follow up, and grade. All samples 
were randomly divided into two groups: the training set 
(n = 69) and the testing set (n = 69). The training set and 
test set are required to meet the following criteria: first, 
samples are randomly assigned to training set and testing 
set; second, the age distribution, follow-up time and 
patient death rate should be similar in these two groups. 
The expression profiles and clinical information of 
training set were shown in Supplementary Tables 1 and 
2, respectively. In addition, the expression profiles and 
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clinical information of testing set were shown in 
Supplementary Tables 3 and 4, respectively. 
 
Determining DEGs of GBM 
 
According to the screening criteria, a total of 4,881 
significant DEGs were obtained from all the tumor  
and normal samples (Supplementary Table 5). There 

were 1,111 genes were upregulated and 3,770 genes 
downregulated. The expression profiles of the most 
significant 100 genes were shown in Figure 2. 
 
Survival analysis of methylation sites in the training set 
 
In order to determine methylation sites associated  
with survival outcomes, we performed univariate and 

 

 
 

                                                                  Figure 1. The workflow of the present study. 
 

 
 

                                    Figure 2. The heatmap expression profiles of the most significant 100 genes. 
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multivariate Cox regression analyses of the obtained 
methylation sites of GBM. There were a total of 11,269 
methylation sites and we generated a new survival-
methylation expression profiles for further analysis 
(Supplementary Table 6). 
 
Correlation analysis of DEGs and survival-
methylated genes 
 
DNA methylation level can affect the gene expression. 
High methylation expression often inhibits downstream 
gene expression, and low methylation level tends  
to increase the downstream gene expression. The 
correlation analysis steps for calculating differentially 
expressed genes and differentially methylated genes  
were as follows: 1) Calculating the intersection of 
differentially methylated genes and DEGs. 2) Identifying 
the number of genes whose differential expression was 
up-regulated and differentially methylated was down-
regulated. In addition, identifying the number of genes 
whose differential expression was down-regulated and 
differential methylation was up-regulated. Therefore, a 
total of 324 up-regulated genes, 162 down-regulated 
genes, 249 methylated down-regulated genes, and  
237 methylated up-regulated genes were obtained 
(Supplementary Table 7). 
 
We then analyzed the Pearson correlations between 
upregulated DEGs and downregulated survival-
methylated genes, as well as downregulated DEGs and 
upregulated survival-methylated genes. As shown in 
Figure 3A, we found that there were a total of 198 genes 
between upregulated DEGs and downregulated survival-
methylated genes. In addition, 111 genes were selected 
between downregulated DEGs and upregulated survival-
methylated genes. Next, we performed analysis of the 
promoter methylation distribution of DEGs between 
tumor samples and normal samples. The results  
showed that highly expressed genes in tumors had  
lower promoter methylation in normal samples,  
indicating a negative correlation between promoter DNA 
methylation and gene expression in normal and tumor 
tissues (Figure 3B). 
 
Pathway enrichment analysis of EI and ES genes 
 
We found a total of 198 low promoter methylation with 
high gene expression (EI genes), as well as a total of 111 
high promoter methylation with low gene expression (ES 
genes) (Supplementary Table 8). 
 
Next, we used online tools “Metascape” to performed 
pathway enrichment analysis. As shown in Figure 4A, 
we found that EI and ES genes were significantly 
enriched in pathways including Signaling by WNT, 
negative regulation of cell differentiation, regulation of 

extracellular matrix organization, and cellular response to 
cAMP. The “Metascape” also provided the interactions 
of genes based on these pathways (Figure 4B). These 
results suggested that EI and ES genes screened in our 
study were involved in the biological process of the 
occurrence and development of GBM. 
 
Construction of the prognosis risk model based on 
methylation genes 
 
In order to further screen potential EI and ES genes, 
Pearson correlation analysis was used to calculate the 
correlation between promoter methylation and gene 
expression of EI and ES genes. There were 16 key 
genes with negative correlations. Next, we selected 
genes with a correlation coefficient greater than 0.75 as 
key markers. They were C1orf61 and FAM50B. 
 
Further, we chose the 20 CpG methylation sites of above 
two genes (Table 1) in unsupervised clustering analysis. 
Using the Euclidean distance to calculate the similarity 
between samples, we found that all samples can be 
divided into two groups Cluster 1 and Cluster 2 according 
to the 20 CpG methylation sites. Moreover, the samples in 
Cluster 1 were with high methylation level, but samples in 
Cluster 2 were with low methylation level (Figure 5A). 
Further analysis was performed to explore the prognosis 
between two groups. As shown in Figure 5B, we found 
that the prognosis of the hypomethylated group was 
significantly better than that in the hypermethylated group 
(log-rank test p-value = 0.011). Moreover, we compared 
the ages of patients in these two groups and found  
that the age distribution of patients in the hypomethylated 
group was lower than that in the hypermethylated  
group (Figure 5C). 
 
IDH1 mutation and DNA methylation in GBM 
 
IDH mutation is a phenomenon that occurs in the early 
stage of tumor and IDH mutation is considered as  
an important marker of low-grade glioma and GBM.  
IDH mutation can promote the hypermethylation of  
CpG in the promoter of most genes which contributes  
to the epigenetic instability of tumor cells. To explore 
the association between IDH1 mutation and DNA 
methylation in GBM, all samples were divided into IDH 
mutation group (n = 7) and IDH non-mutation group  
(n = 131) according to the IDH1 gene mutation. As 
shown in Figure 6, samples in IDH mutation group 
exhibited lower methylation level than that in IDH non-
mutation group. 
 
Then, we compared the expression of each methylation 
site in two groups. As shown in Figure 7, we found  
that 19 of the 20 sites were significantly expressed  
between IDH mutation and IDH non-mutation groups 
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Figure 3. Correlation analysis of DEGs and survival-methylated genes. (A) The intersection results of DEGs and survival-methylated 
genes. (B) Distribution of promoter methylation levels in tumor and normal samples. 

 

 
 

Figure 4. Pathway enrichment analysis of EI and ES genes. (A) The pathway enrichment results of EI and ES genes. (B) The network 
diagram of interacting genes. 
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Table 1. The annotation of 20 CpG sites. 

cg probe Gene Chrom Site 
cg09938227 C1orf61 1 156390124 
cg18197332 FAM50B 6 3849458 
cg01570885 FAM50B 6 3849272 
cg04447621 FAM50B 6 3849475 
cg21740964 FAM50B 6 3849331 
cg07898446 FAM50B 6 3849294 
cg18487516 FAM50B 6 3849542 
cg18872973 FAM50B 6 3849095 
cg25195497 FAM50B 6 3849327 
cg13101072 FAM50B 6 3849818 
cg21177626 FAM50B 6 3849411 
cg18656763 FAM50B 6 3849235 
cg27445347 FAM50B 6 3849801 
cg03954573 FAM50B 6 3849434 
cg01905633 FAM50B 6 3849391 
cg23835083 FAM50B 6 3849536 
cg12840312 FAM50B 6 3849381 
cg12497786 FAM50B 6 3849577 
cg13289019 FAM50B 6 3849350 
cg17739279 FAM50B 6 3849190 

 

(p-value < 0.01). Above results suggested that these 
methylation sites were closely associated with IDH1 
mutation. 
 
Validation in the TCGA testing set and GEO dataset 
 
To validate the results of our methylation data and 
prognostic model, we used the testing set (n = 69) based 

on TCGA data. We used the expression of 20 
methylation sites and further used hierarchical cluster 
analysis. We found that the 20 CpG methylation sites 
can also clearly divide all samples into two groups 
(Figure 8A). The methylation levels of Cluster 1 group 
were significantly higher than Cluster 2. Moreover, the 
prognosis of samples in the hypomethylated group was 
significantly better than that in the hypermethylated 
group (log-rank test p-value = 0.02) (Figure 8B). It can 
also be seen that the age distribution in hypomethylated 
group was lower than that in the hypermethylated 
group, which was consistent with the results of the 
training set (Figure 8C). 
 
In addition, the DNA methylation (GSE36278) [16] of 
GBM was downloaded with a total of 142 patients. First, 
we selected the expression profiles of 20 methylation 
sites (Supplementary Table 9) and clinical information 
(Supplementary Table 10). Next, we divided all samples 
into two groups using hierarchical cluster method 
(Figure 9A). Results showed that significant survival 
difference was found in two groups (log-rank test  
p-value = 0.012) (Figure 9B). Moreover, we compared 
the age distribution between two groups and found that 
high methylation group was higher than low methylation 
group (Figure 9C). These results were consistent with 
TCGA dataset, suggesting that this model can be applied 
to other samples. 
 
DISCUSSION 
 
In the present study, we performed an integrative 
analysis of DNA methylation and gene expression 
identified key epigenetic genes in GBM. We obtained 
11,269 survival-methylation sites by univariate and 
multivariate Cox regression analyses. In the correlation

 

 
 

Figure 5. Construction of the prognosis risk model based on methylation genes. (A) The heatmap of 20 methylation sites in the 
training set. (B) The K-M plot of the hypomethylated and hypermethylated groups. (C) The age distribution of patients in the hypomethylated 
and hypermethylated groups. 
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analysis, we defined 198 low promoter methylation with 
high gene expression as EI genes and 111 high promoter 
methylation with low gene expression as ES genes. 
Further, we chose the 20 CpG methylation sites of above 
two genes in unsupervised clustering analysis using the 
Euclidean distance. We found that the prognosis of the 
hypomethylated group was significantly better than that 
in the hypermethylated group. Based on the validation in 
the TCGA testing set and GEO dataset, we validated the 
prognostic value of our signature. Our findings provided 
predictive and prognostic value as methylation-based 
biomarkers for the diagnosis and treatment of GBM. 
 
The occurrence and proliferation of cancer is regulated  
by epigenetic and genetic events, as well as epigenetic 
modifications. They are increasingly identified as 
important targets for cancer research [10]. DNA 
methylation catalyzed by DNA methyltransferases 
(DNMTs) is one of the important epigenetic mechanisms 
for controlling cell proliferation, apoptosis, differentiation, 
cell cycle and transformation in eukaryotes. Abnormal 

DNA methylation in cancer can be produced by mutation 
before or after cell transformation [9]. Moreover, it can 
regulate normal gene expression and facilitate chromatin 
organization within cells, which are accompanied by 
alterations in chromatin structure at gene regulatory 
regions [17]. Also, there were many literatures about the 
use of DNA methylation measurements for cancer 
diagnosis through examples of methylated genes [18]. 
 
In GBM, there are several studies about the molecular 
roles of DNA methylation. For examples, Wang et al. 
[19] used the gene expression and methylation profiles 
from TCGA as well as the Chinese Glioma Genome 
Atlas (CGGA) database. A total of 3,365 DEGs were 
identified with 2,940 genes expressed hypomethylation 
and high expression, while 425 genes showed 
hypermethylation and low expression in GBM. The 
eight genes (C9orf64, OSMR, MDK, MARVELD1, 
PTRF, MYD88, BIRC3, RPP25) were characterized to 
divide GBM patients into two groups with different 
survival outcomes. In addition, different clinical and 

 

 
 

                                      Figure 6. The heatmap of IDH1 mutation and DNA methylation in GBM. 
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      Figure 7. The expression profiles of 20 methylation sites between IDH1 mutation and non-mutation groups. 
 

 
 

Figure 8. Validation in the TCGA testing set. (A) The heatmap of 20 methylation sites in the testing set. (B) The K-M plot of the 
hypomethylated and hypermethylated groups in the testing set. (C) The age distribution of patients in the hypomethylated and 
hypermethylated groups in the testing set. 
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molecular characteristics were also shown between the 
two groups. In another study, the positive prognostic 
value of MGMT promoter hypermethylation has been 
demonstrated in adult GBM, and the MGMT promoter 
methylation status is a clinically relevant predictor of 
the newly diagnosed GBM elderly population [19]. The 
roles of MGMT promoter methylation in GBM were 
also reported in various studies [20–22]. Ma et al. [23] 
reported that the hypermethylation of CXCR4 can 
predict patients’ OS in GBM. Besides, the methylation 
of AURKA, KIF4A, and NUSAP1 in GBM was also 
investigated [24]. 
 
In our study, key markers including C1orf61 and 
FAM50B were selected with a Pearson correlation 
coefficient greater than 0.75. Chromosome 1 open 
reading frame 61 (C1orf61) was reported to be up-
regulated in hepatic cirrhosis tissues and up-regulated in 
primary hepatocellular carcinoma. Moreover, hepatitis B 
virus (HBV)-positive patients exhibited significantly 
higher levels of C1orf61 expression than HBV-negative 
patients. The overexpression of C1orf61 promoted  
cell proliferation and colony formation, as well as cell 
cycle progression. In addition, the overexpression  
of C1orf61 facilitated cellular invasion and metastasis. 
The overexpression of C1orf61 induced the epithelial-
mesenchymal transition (EMT) that is linked to 
metastasis [25]. FAM50B (family with sequence 
similarity 50, member B) was shown that average 
methylation level of FAM50B was lower in astheno-
zoospermia group than in control group [26]. CpG sites 
(mapped to gene FAM50B) were also reported to be 
differentially expressed in the study of 24-hour exposure 

to air pollution [27]. DNA methylation changes of 
FAM50B in individuals with developmental delay/ 
intellectual disability were observed [28]. How-ever, 
these two genes were not reported in GBM. 
 
DNA methylation patterns can predict prognosis and 
survival of human cancers [29]. The utility of methylation 
biomarkers for the molecular characterization of cancer 
with implications for patients’ prognosis. In one study, 
researchers identified and validated biomarkers for 
melanoma development (HOXA9 DNA methylation) and 
tumor progression (TBC1D16 DNA methylation). In 
addition, this study determined a prognostic signature 
with potential clinical value [30]. Gastric cancers  
showed significantly lower LINE-1 methylation levels 
compared to matched normal gastric mucosa and 
hypomethylation of LINE-1 was significantly associated 
with shorter overall survival [31]. Moreover, in the  
study of esophageal squamous cell carcinoma, LINE-1 
hypomethylation is associated with a poor prognosis 
among patients [32]. Its methylation level was also 
associated with hepatocellular carcinomas [33]. Based on 
TCGA methylation expression profiles of gastric cancer, 
Hu et al. performed a DNA methylation gene signature 
consisting of five genes (SERPINA3, AP000357.4, 
GZMA, AC004702.2, and GREB1L) [34]. In addition, in 
other human cancers, there were also various studies 
about DNA methylation and prognostic signature, such 
as head and neck squamous cell carcinoma [35], 
cutaneous melanoma [36], glioma [37], and lung cancer 
[38]. Above results suggested that significant DNA 
methylation genes may be a new predictor and prognostic 
biomarker for cancers. 

 

 
 
Figure 9. Validation in the GEO dataset. (A) The heatmap of 20 methylation sites in GSE36278. (B) The K-M plot of the hypomethylated 
and hypermethylated groups in GSE36278. (C) The age distribution of patients in the hypomethylated and hypermethylated groups in 
GSE36278. 
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The prognostic ability of this methylation signature may 
improve the risk stratification of patients with GBM. In 
the future clinical application, this methylation signature 
may help people accurately guide clinical treatments and 
determine prognosis of patients. However, whether this 
signature can improve GBM diagnosis or treatment, it 
still remains unknown and this is what we will study in 
our future work. Besides, considering that C1orf61 was 
closely associated with cell proliferation, colony 
formation, cell cycle progression, and EMT, we assumed 
that this gene can participate in the occurrence and 
development of GBM through the above pathways. 
However, how methylation impacts the two key genes 
and their downstream effects are still the work we need 
to explore in the future. 
 
In our study, we established a prognosis risk model 
based on methylation genes in GBM using the 20 CpG 
methylation sites of above two genes for GBM. In 
conclusion, our findings provided predictive and 
prognostic value as methylation-based biomarkers for 
the diagnosis and treatment of GBM. 
 
MATERIALS AND METHODS 
 
Data selection from TCGA database and 
preprocessing 
 
All data were downloaded from the TCGA database 
(https://cancergenome.nih.gov/) [39] based on RNA-seq 
including DNA methylation, gene expression and IDH1 
mutation expression profiles. The methylation data 
generated with the Illumina Infinium HumanMethylation 
450 BeadChip array. The methylation level of each probe 
was represented by the β-value (from 0 to 1). First, the 
CpG sites with missing value > 70% of all samples were 
removed. Then, we used impute R package by k-nearest 
neighbors (KNN) method for the missing values of 
methylation data. We further removed the genomic 
unstable sites including CpGs in sex chromosomes and 
single nucleotide polymorphisms. We selected CpGs in 
promotor regions, which were defined as 2 kb upstream 
to 0.5 kb downstream from transcription start sites (TSS) 
[40]. Finally, we selected samples with gene expression 
profiles including a total of 138 tumor and normal 
samples. 
 
All samples were separated into two cohorts: a training 
set (n = 69) and a testing set (n = 69). The methylation 
data of training set and clinical information (survival 
status, time, and age) was used to select CpG sites with 
prognostic value by univariate and multivariate COX 
proportional risk regression models. Last, according to 
the relationship between CpG sites and genes, we 
obtained key genes that significantly associated with 
survival. 

Determining DEGs of GBM and methylated sites 
 
We used paired T-test as a statistical method to screen 
DEGs and methylated sites between tumor and normal 
samples, and multiple tests were performed for p-value 
correction. Finally, genes with false discovery rate 
(FDR) < 0.01 were screened as significant DEGs and 
methylated sites. 
 
Correlation analysis of DEGs and survival-
methylated genes 
 
To explore the association between DEGs and 
methylation, first, we used univariate Cox proportional 
risk regression model to analyze each methylation site 
and survival data. Then, clinical factors including grade 
and age were added as covariables for multivariate Cox 
regression analyses. Finally, the intersection results of 
univariate and multivariate Cox regression (p-value < 
0.05) were obtained. Here, we defined genes with 
downregulated methylation in promoter region as 
downregulated survival-methylated genes, and genes 
with upregulated methylation in promoter region as 
upregulated survival-methylated genes. 
 
We next performed the correlation analysis between 
upregulated DEGs and downregulated survival-
methylated genes, as well as downregulated DEGs and 
upregulated survival-methylated genes. We used Venny 
software to screen the intersected genes. The average 
expression level of all methylated sites associated with 
survival represented the final expression level of this 
survival-methylated gene. 
 
Pathway enrichment analysis of epigenetically 
induced and epigenetically suppressed genes 
 
In order to further identify the mutex genes, we defined 
low promoter methylation with high gene expression as 
EI genes. High promoter methylation with low gene 
expression as ES genes. Then, we used online tools 
“Metascape” (http://metascape.org) to performed pathway 
enrichment analysis of EI and ES genes. 
 
Construction of the prognosis risk model based on 
methylation genes 
 
In order to further screen potential EI and ES genes, 
Pearson correlation analysis was used to calculate the 
correlation between promoter methylation and gene 
expression of EI and ES genes. We selected genes with a 
correlation coefficient greater than 0.75 as key markers. 
Hierarchical clustering algorithm was used to cluster the 
samples of the training set, and Euclidean distance was 
used to calculate the similarity between the samples. We 
used survival R package to observe whether the survival 

https://cancergenome.nih.gov/
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difference between the high-risk and low-risk groups by 
K-M survival analysis. 
 
IDH1 mutation and DNA methylation in GBM 
 
To explore the association between IDH1 mutation and 
DNA methylation in GBM, according to the IDH1 gene 
mutation, all samples were divided into IDH mutation 
group (n = 7) and IDH non-mutation group (n = 131). 
20 methylation sites were used to compare methylation 
differences between two groups. 
 
Validation in the TCGA testing set and GEO dataset 
 
To validate the results of our methylation data and 
prognostic model, we used the testing set (n = 69) based 
on TCGA data. In addition, the DNA methylation 
(GSE36278) [18] of GBM was downloaded from NCBI 
GEO database (https://www.ncbi.nlm.nih.gov/geo/). A 
total of 142 patients with DNA methylation profiling were 
included for further validation. This dataset was carried on 
Illumina HumanMethylation450 BeadChip platform. 
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