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Non-alcoholic fatty liver disease (NAFLD) is a hepatic presentation of obesity and metabolic syndrome. NAFLD includes 
a large spectrum of hepatic pathologies that range from simple steatosis and non-alcoholic steatohepatitis (NASH), 
to liver cirrhosis without an all-encompassing approved therapeutic strategy. Mitochondrial dysfunction is a key compo-
nent of many metabolic diseases, such as obesity, type 2 diabetes, cancer, NAFLD, and aging. Sirtuin 3 (SIRT3) is a 
NAD+-dependent deacetylase that regulates many of the mitochondrial proteins that are involved with metabolic homeo-
stasis, oxidative stress, and cell survival. This review discusses the association between mitochondrial dysfunction and 
insulin resistance and later explore the possibility that SIRT3 plays a protective role against NAFLD by improving 
mitochondrial dysfunction.
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INTRODUCTION

The combination of easily available high-calorie food and 

physical inactivity is driving the rising prevalence of obesity 

and metabolic syndrome. Non-alcoholic fatty liver disease 

(NAFLD) is more than simply a “hepatic disease.” Rather, 

it is a hepatic presentation of obesity with metabolic impair-

ment by the metabolically active organ triad that comprises 

the liver, adipose tissue, and skeletal muscle. NAFLD covers 

a large spectrum of hepatic pathologies, which range from 

simple steatosis and non-alcoholic steatohepatitis (NASH) to 

liver cirrhosis. By definition, NAFLD affects 10-24% of the 

general population in many countries[1]. Because of its as-

sociation with obesity and insulin resistance, the prevalence 

of NAFLD is increasing worldwide, including in Korea. 

However, there is currently no broadly approved therapeutic 

strategy for treating NAFLD. 

There is growing evidence that mitochondrial dysfunction 

is a common underlying feature of obesity [2], type 2 dia-

betes [3], NAFLD [4,5], and cancers [6]. Identification of 

the causes of mitochondrial dysfunction, as well as of poten-

tial target molecules that protect cells from mitochondrial 

dysfunction, will be crucial for treating mitochondria-medi-

ated diseases. Sirtuin 3 (SIRT3) is a NAD
+-dependent pro-

tein deacetylase that regulates numerous mitochondrial pro-

teins involved in metabolic homeostasis, oxidative stress, and 

cell survival. SIRT3 is emerging as a promising therapeutic 

target against mitochondrial dysfunction.

This review discusses mitochondrial dysfunction as an un-

derlying feature of NAFLD and evaluate the potential for 

SIRT3 to enhance mitochondrial function and, thus, act as 

a therapeutic target against NAFLD. 

MITOCHONDRIAL DYSFUNCTION AND 
INSULIN RESISTANCE

Mitochondria are the main source of cellular energy pro-
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duction, mostly in the form of ATP and intracellular re-

active oxygen species (ROS); they are encased in a double 

membrane and contain their own unique DNA [7-9]. 

Increasingly, mitochondria are being seen as the hearts of 

cells because they regulate various homeostatic processes, 

such as cell proliferation, apoptosis, oxidative stress, and cal-

cium homeostasis. They are also capable of inherent mor-

phological and metabolic plasticity and can respond to cel-

lular stresses and nutrient demand [10-13].

A large and growing body of literature has demonstrated 

that long-chain fatty acids (LCFAs) induce mitochondrial 

dysfunctions that lead to insulin resistance and type 2 dia-

betes [11,14-17]. Generally, LCFAs induce excessive mi-

tochondrial ROS production by partial inhibition of mi-

tochondrial respiratory chain activities and depolarization of 

mitochondrial inner membranes (weak uncouplers) [18]. 

High LCFA intake may lead to an accumulation of ROS, 

lipotoxicity, alteration of mitochondrial gene expression, 

and activation of inflammatory signaling in peripheral tis-

sues, resulting in mitochondrial dysfunction [11]. There are 

also reports that free fatty acids can induce hepatic lip-

otoxicity and insulin resistance through mitochondrial dys-

function [19-21].

Another hypothesis is that mitochondrial dysfunction 

causes insulin resistance; consequently, the defects in mi-

tochondrial beta-oxidation induce an increase in intra-

cellular fatty acid metabolites that disrupt insulin signaling 

[22-24]. Petersen et al. found that skeletal insulin resistance 

in the insulin-resistant offspring of patients with type 2 dia-

betes was accompanied by an increase of intramyocellular 

fatty-acid content, compared with insulin-sensitive control 

subjects. This may be because of an inherited defect asso-

ciated with mitochondrial oxidative phosphorylation [3]. 

Another study showed that intrinsic mitochondrial dysfunc-

tion at the level of both electron-transport chain capacity 

and the oxidative phosphorylation system is implicated as 

the etiology of type 2 diabetes [25]. There is an impairment 

of mitochondrial function and structure in the skeletal mus-

cle of patients with type 2 diabetes and obesity [24], sug-

gesting that impaired mitochondrial function in muscle and 

other tissue can lead to lipid accumulation, which in turn 

can induce insulin resistance. As a consequence of defective 

mitochondrial fatty acid oxidation, intracellular levels of 

lipid metabolites (long-chain fatty acyl-coenzyme A and di-

acylglycerol) are increased in skeletal muscle, which dis-

rupts insulin signaling [22]. 

Growing evidence has demonstrated an association be-

tween mitochondrial dysfunction and insulin resistance. 

Nevertheless, the overall picture of insulin resistance remains 

murky. Herein, mitochondrial dysfunction is postulated as a 

causal factor for the regulation of insulin resistance.

SIRTUINS IMPROVE MITOCHONDRIAL 
FUNCTION

The silent information regulation-2 (SIR2) gene has been 

found to promote longevity in Saccharomyces cerevisiae [26] 

and SIR2 was identified as a NAD+-dependent deacetylase 

for histone proteins that induces calorie restriction and 

life-span extension in yeast [27].

The mammalian sirtuins are a family of NAD
+
-dependent 

deacetylases and/or ADP-ribosyltransferases that are homol-

ogous to the Saccharomyces cerevisiae gene, SIR2 [28]. 

Humans have seven sirtuins, SIRT1-SIRT7 [28,29], that 

share a catalytic domain with SIR2 and act as cellular en-

ergy sensors that modulate metabolic processes [28]. 

The mammalian sirtuins all have different subcellular dis-

tributions, with a subset of sirtuins residing predominantly in 

nuclear (SIRT1, SIRT6, and SIRT7), cytosolic (SIRT2), or mi-

tochondrial (SIRT3, SIRT4, and SIRT5) compartments [30,31]. 

Defects in the pathways controlled by SIRT1 and SIRT3 are 

known to result in various metabolic and neurodegenerative 

diseases, such as obesity, type 2 diabetes, nonalcoholic fatty 

liver disease, Alzheimer disease, and cancer [8,32-35]. 

SIRT1 and SIRT3 are known to increase mitochondrial 

biogenesis and improve mitochondrial function [36-39]. 

SIRT3 is a major regulator of mitochondrial protein acetyla-

tion levels and its biological activities [40]. Consistent with 

this framework, mice lacking SIRT3 showed increased hy-

peracetylation of mitochondrial proteins and, in contrast, 

mice lacking either SIRT4 or SIRT5 showed no obvious 

changes in mitochondrial protein acetylation [41]. SIRT4 

regulates ATP homeostasis via adenine nucleotide trans-

locator 2 (ANT2) and a feedback loop involving AMP-acti-

vated protein kinase (AMPK) [42] and resveratrol induces 

a mitochondrial NADH oxidation via SIRT3 in hepG2 cells 
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Fig. 1. Schematic representation of SIRT3’s primary regulation 
pathway for mitochondrial dysfunction.

[43]. Take collectively, these reports suggested that sirtuins 

may improve mitochondrial dysfunction. 

SIRT3 AND MITOCHONDRIAL 
FUNCTION IN NAFLD

SIRT3 is the most studied member of the mitochondrial 

sirtuins family; it is nuclear encoded and expressed as a 

45-kDa protein containing an N-terminal mitochondrial target-

ing sequence that is cleaved off after import into the mitochon-

dria, leaving an enzymatically active 28-kDa protein [44].

SIRT3 is highly expressed in the brain, heart, kidney, brown 

adipose tissue, and liver with high oxidative capacity and is 

preferentially localized to the mitochondrial matrix [28]. 

SIRT3 plays an important role in mitochondrial metabolism 

through a reversible acetylation process of mitochondrial 

proteins [28,41,45]. SIRT3 expression in the liver increases 

after fasting [46] and SIRT3 expression in muscle tissue in-

creases after exercise [47], fasting, and caloric restriction 

and it decreases with chronic high fat eating [48].

The germline knockout of the Sirt3 mouse model has 

been utilized extensively to elucidate the physiological role 

of SIRT3 in metabolism. Heber et al. quantified 1,578 mi-

tochondrial acetyl sites during caloric restriction and ob-

served loss of SIRT3 using mass spectrometry, suggesting 

that SIRT3 is an important regulator in caloric restriction 

adaptation [49]. Additionally, it was recently discovered 

that Sirt3 can regulate amino acid metabolism and mi-

tochondrial integrity, including mtDNA transcription and 

translation, compared to wild-type mice [49]. 

One particular observational study demonstrated that 

Sirt3-deficient mice are metabolically unremarkable under 

both fed and fasted conditions and that Sirt3 increased glob-

al hyperacetylation of mitochondrial proteins [41]. Another 

study demonstrated that mice lacking Sirt3 had diminished 

fatty acid oxidation during fasting, hyperacetylated long- 

chain acyl CoA dehydrogenase (LCAD) [46], reduced basal 

levels of ATP in the heart and liver and increased acetyla-

tion of mitochondrial proteins, including Complex I [50].

Mice fed a chronic high-fat diet had low Sirt3 activity, 

impaired mitochondrial function, and hyperacetylation of 

proteins in their livers [51]. In another study, mice lacking 

Sirt3 who were fed a chronic high-fat diet developed accel-

erated obesity, insulin resistance, and steatohepatitis, com-

pared to wild-type mice [52]. However, mice with liver- or 

muscle-specific Sirt3 deficiency showed no significant meta-

bolic differences to wild-type mice, except that, even after 

being fed a high-fat diet, wild-type mice still experienced 

hyper-acetylation of mitochondrial proteins [53]. In yet an-

other study of a transgenic mouse with muscle-specific Sirt3 

expression increased oxygen consumption, lipid utilization, 

and reduced muscle strength were observed compared to 

wild-type mice [54]. Further studies are needed to clarify 

the tissue-specific actions of Sirt3.

The study data from Sirt3-deficient mice suggest that tar-

get mitochondrial proteins, which are in a hyperacetylated 

form possess sufficient activity to achieve metabolic homeo-

stasis under basal normal conditions, however, under con-

ditions of oxidative stress, such as having a high-fat diet, 

SIRT3-target enzyme activity required for protection cannot 

be sufficiently increased to meet the demand resulting from 

metabolic derangement due to obesity and steatohepatitis [8].

SIRT3 regulates carbohydrate metabolism, ketogenesis [55], 

β-oxidation [46], and amino-acid metabolism [41] by re-

versible enzyme deacetylation and activity of specific mi-

tochondrial complexes [50] and stress-related pathways [13].

Overall these studies indicate that SIRT3 acts as a master 

switch that is an adaptive response to energy shortages 
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(fasting) in the catabolic pathway and plays a key role in 

protecting against mitochondrial stress through regulation of 

acetylation status (Fig. 1). These observations suggest that 

SIRT3 could be a potential therapeutic target of metabolic 

syndrome, including NAFLD.

However, there has been little investigation of SIRT3’s 

gain-of-function effect. It is also unclear which specific tis-

sues play a dominant role in mediating the whole-body ef-

fects of SIRT3 [13]. In this regard, liver- and muscle-specif-

ic Sirt3-knockout animals show no detectable changes in 

their metabolic phenotype in response to a high-fat diet [53], 

suggesting new questions to explore. During the period dur-

ing which test animals were fed a high-fat diet (8 weeks 

or 12 months), the genetic background of the animals and 

the developmental onset of SIRT3 deletion may have led to 

disparate findings [13,53].

Additionally, compared to caloric restriction, relatively 

little is known about the role of SIRT3 and NAFLD under 

conditions of caloric excess, such as receiving a high-fat diet. 

Palmitate modulates oxygen consumption and enhanced ROS 

levels and apoptosis in the primary hepatocytes of Sirt3 defi-

cient mice and Sirt3 siRNA-depleted hepatocytes [56].

Overall, these studies demonstrate that there is still much 

to learn about the metabolic role of SIRT3, including the 

tissue-specific (liver, muscle, and adipose tissue) and con-

dition-specific (caloric restriction, fasting, and high-fat diet) 

role of SIRT3 in model animals, as well as the beneficial 

effects of sirtuin enhancers that have been shown to treat 

metabolic diseases. 

CONCLUSIONS

SIRT3 has emerged as a pivotal therapeutic target in the 

regulation of mitochondrial dysfunction and signaling that 

arise, via protein deacetylation, in response to changes in 

nutrient flux. However, the exact tissue-specific and con-

dition-specific metabolic role of SIRT3 and the beneficial 

effects of SIRT3 for treating metabolic diseases are still not 

completely understood. Additionally, there are still concerns 

about the long-term effects of chronic SIRT3 activation and 

the yet undiscovered SIRT3-specific activators. 
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