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One of the significant topics in systems biology is to develop control theory of gene regulatory networks (GRNs). In typical control
of GRNs, expression of some genes is inhibited (activated) by manipulating external stimuli and expression of other genes. It is
expected to apply control theory of GRNs to gene therapy technologies in the future. In this paper, a control method using a
Boolean network (BN) is studied. A BN is widely used as a model of GRNs, and gene expression is expressed by a binary value
(ON or OFF). In particular, a context-sensitive probabilistic Boolean network (CS-PBN), which is one of the extended models of
BNs, is used. For CS-PBNs, the verification problem and the optimal control problem are considered. For the verification problem,
a solution method using the probabilistic model checker PRISM is proposed. For the optimal control problem, a solution method
using polynomial optimization is proposed. Finally, a numerical example on the WNT5A network, which is related to melanoma,
is presented. The proposed methods provide us useful tools in control theory of GRNs.

1. Introduction

Control of gene regulatory networks (GRNs) is one of the sig-
nificant topics in the field of systems biology, and is also one
of the basics of therapeutic interventions (see, e.g., [1]) in the
future. Furthermore, in recent years, the experimental result
on control of GRNs has been obtained in [2].That is, feedback
control of synthetic biological circuits has been implemented,
and the experimental result in which cellular behavior is
regulated by control has been obtained. This result suggests
that control methods of GRNs can be realized. Motivated by
the above backgrounds, we study a control method of GRNs.

GRNs are in general modeled by ordinary/partial differ-
ential equations with high nonlinearity and high dimension-
ality. In order to deal with such a system, it is important
to consider a simple model, and various models such as
Bayesian networks, Boolean networks (BNs) [3], hybrid
systems (piecewise affine models), and Petri nets have been
developed so far (see, e.g., [4] for further details). In control
problems, BNs and hybrid systems are frequently used [5–
10]. In the hybrid systems-based approach, the classes of

GRNs are limited to low-dimensional systems, because the
computation time to solve the control problem is too long.
In a BN, gene expression is expressed by a binary value
(ON or OFF), and dynamics such as interactions between
genes are expressed by Boolean functions [3]. In, for example,
[11], it is pointed out that a BN is too simple as a model
of GRNs. However, there is an advantage that a BN can be
relatively applied to large-scale systems. Furthermore, since
the behavior of GRNs is stochastic by the effects of noise, it
is appropriate that a Boolean function is randomly decided at
each time among the candidates of Boolean functions. Thus,
a probabilistic Boolean network (PBN) has been proposed in
[12], and further, a context-sensitive PBN (CS-PBN) has been
proposed as a general form of PBNs [13, 14]. In a CS-PBN, the
deciding time is also randomly selected.

In this paper, a CS-PBN is adopted as a model of GRNs,
and for CS-PBNs, the verification problem and the optimal
control problem are considered. In the verification of PBNs,
a solution method using the probabilistic model checker
PRISM [15] has been proposed in [16]. However, this PRISM-
based method for PBNs has not been extended to that for
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CS-PBNs. In optimal control of PBNs and CS-PBNs, many
results have been obtained so far (see, e.g., [13, 14, 17–24]).
In many existing results, state transition diagrams with 2

𝑛

nodes (i.e., 2𝑛 × 2
𝑛 transition probability matrices) must be

computed for a (CS-)PBN with 𝑛 genes. In order to compute
state transition diagrams, several issues such as memory
consumption must be considered in implementation, and it
is desirable to directly use a given Boolean function. The
authors have proposed in [22, 23] control methods in which
state transition diagrams are not computed. Comparing the
methods in [22, 23] with other existing results [13, 14, 17–
21, 24], the methods in [22, 23] can relatively handle more
large-scale GRNs. The method in [22] can be applied to
PBNs and CS-PBNs, but the expected value of a given
nonnegative function cannot be evaluated as a cost function
(objective function). In the method in [23], the expected
value of a given nonnegative function can be used as a cost
function, and the optimal control problem is reduced to a
polynomial optimization problem. However, this method has
been proposed for PBNs, and an extension to CS-PBNs has
not been discussed so far. Thus, for verification of CS-PBNs,
the PRISM-based method for PBNs [16] is extended to that
for CS-PBNs. For optimal control of CS-PBNs, a solution
method using polynomial optimization [23] is extended
to that for CS-PBNs. Furthermore, the effectiveness of the
proposed methods is presented by a numerical example on
the WNT5A network, which is related to melanoma. The
proposed methods provide us useful tools in control theory
of GRNs.

This paper is organized as follows. In Section 2.1, a CS-
PBN is explained. In Section 2.2, a solution method for the
verification problem is proposed. In Section 2.3, a solution
method for the optimal problem is proposed. In Section 3,
a numerical example is presented. In Section 4, we conclude
this paper.

Notation. Let R denote the set of real numbers. Let {0, 1}𝑛
denote the set of 𝑛-dimensional vectors, which consists of
elements 0 and 1. For a matrix𝑀,𝑀⊤ denotes the transpose
of𝑀.

2. Materials and Methods

2.1. Context-Sensitive Probabilistic Boolean Networks. First,
we introduce a probabilistic Boolean network (PBN). Con-
sider the following PBN:

𝑥
1
(𝑘 + 1) = 𝑓

(1)

(𝑘, 𝑥 (𝑘) , 𝑢 (𝑘)) ,

𝑥
2
(𝑘 + 1) = 𝑓

(2)

(𝑘, 𝑥 (𝑘) , 𝑢 (𝑘)) ,

...

𝑥
𝑛
(𝑘 + 1) = 𝑓

(𝑛)

(𝑘, 𝑥 (𝑘) , 𝑢 (𝑘)) ,

(1)

where 𝑥 = [𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
]
⊤

∈ {0, 1}
𝑛 is the state (e.g., the

expression of genes), 𝑢 = [𝑢
1
𝑢
2
⋅ ⋅ ⋅ 𝑢
𝑚
]
⊤

∈ {0, 1}
𝑚 is

the control input (e.g., the expression of genes), that is, the

TNF, u
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Figure 1: Simplified model of an apoptosis network. Activation
(solid), inhibition (broken).

value of 𝑢 can be arbitrarily given, and 𝑘 = 0, 1, 2, . . . is the
discrete time. For a fixed 𝑘 ∈ {0, 1, . . .}, 𝑓(𝑖) : {0, 1, . . .} ×

{0, 1}
𝑛

× {0, 1}
𝑚

→ {0, 1}
1 is a given Boolean function

consisting of logical operators such as AND (∧), OR (∨),
and NOT (¬). In deterministic Boolean networks, 𝑥(𝑘 + 1)

is uniquely determined for given 𝑘, 𝑥(𝑘), and 𝑢(𝑘). In PBNs,
the candidates of 𝑓(𝑖)(𝑘, 𝑥(𝑘), 𝑢(𝑘)) are given, and for each
𝑥
𝑖
, selecting one Boolean function is probabilistically inde-

pendent at each time. Let 𝑓(𝑖)
𝑗
(𝑥(𝑘), 𝑢(𝑘)), 𝑗 = 1, 2, . . . , 𝑙(𝑖),

denote the candidates of 𝑓(𝑖)(𝑘, 𝑥(𝑘), 𝑢(𝑘)). The probability
that 𝑓(𝑖)

𝑗
(𝑥(𝑘), 𝑢(𝑘)) is selected is defined by

𝑐
(𝑖)

𝑗
:= Prob (𝑓(𝑖) (𝑘, 𝑥 (𝑘) , 𝑢 (𝑘)) = 𝑓

(𝑖)

𝑗
(𝑥 (𝑘) , 𝑢 (𝑘))) . (2)

Then, the following relation:

𝑙(𝑖)

∑

𝑗=1

𝑐
(𝑖)

𝑗
= 1 (3)

must be satisfied. Probabilistic distributions are derived from
experimental results, but details are one of the future works.
Then, a method for inferring a probabilistic Boolean network
will be useful (see, e.g., [25]).

Example 1. As a simple example, consider the following
deterministic Boolean network of an apoptosis network [26,
27] (see also Figure 1):

𝑥
1
(𝑘 + 1) = ¬𝑥

2
(𝑘) ∧ 𝑢 (𝑘) ,

𝑥
2
(𝑘 + 1) = ¬𝑥

1
(𝑘) ∧ 𝑥

3
(𝑘) ,

𝑥
3
(𝑘 + 1) = 𝑥

2
(𝑘) ∨ 𝑢 (𝑘) ,

(4)

where the concentration level (high or low) of the inhibitor of
apoptosis proteins (IAP) is denoted by 𝑥

1
, the concentration

level of the active caspase 3 (C3a) by𝑥
2
, and the concentration

level of the active caspase 8 (C8a) by 𝑥
3
. The concentration

level of the tumor necrosis factor (TNF, a stimulus) is
denoted by 𝑢 and is regarded as the control input. Although
Boolean dynamics in the above system are synchronous, both
synchronous and asynchronous dynamics will be included.
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Figure 2: Discrete-time Markov chain in 𝑓
(3).

From this viewpoint, we consider the following PBN induced
by the above system:

𝑓
(1)

=

{

{

{

𝑓
(1)

1
= ¬𝑥
2
(𝑘) ∧ 𝑢 (𝑘) , 𝑐

(1)

1
= 0.6,

𝑓
(1)

2
= 𝑥
1
(𝑘) , 𝑐

(1)

2
= 0.4,

(5)

𝑓
(2)

=

{

{

{

𝑓
(1)

1
= ¬𝑥
1
(𝑘) ∧ 𝑥

3
(𝑘) , 𝑐

(2)

1
= 0.7,

𝑓
(1)

2
= 𝑥
2
(𝑘) , 𝑐

(2)

2
= 0.3,

(6)

𝑓
(3)

=

{

{

{

𝑓
(3)

1
= 𝑥
2
(𝑘) ∨ 𝑢 (𝑘) , 𝑐

(3)

1
= 0.8,

𝑓
(3)

2
= 𝑥
3
(𝑘) , 𝑐

(3)

2
= 0.2,

(7)

where 𝑙(1) = 𝑙(2) = 𝑙(3) = 2, and we give 𝑐
(𝑖)

𝑗
satisfying

∑
𝑙(𝑖)

𝑗=1
𝑐
(𝑖)

𝑗
= 1. In addition, all state trajectories can be

expressed as the state transition diagram with 23 nodes.

In PBNs, we suppose that selecting one Boolean function
is probabilistically independent at each time. However, it will
be natural to consider the situation that switches of Boolean
functions do not occur frequently. From this viewpoint, a
context-sensitive PBN (CS-PBN) has been proposed in [13,
14]. In CS-PBNs, the deciding time of Boolean functions is
also selected randomly. Hereafter, let 𝑞 ∈ [0, 1] denote the
probability that Boolean functions are switched at time 𝑘, and
a pair of the system (1) and 𝑞 is called a CS-PBN.

To compare CS-PBNs with PBNs, consider (7) as a simple
example. In PBNs, a switch of𝑓(3)

1
and𝑓(3)
2

functions does not
depend on the Boolean function at time 𝑘 − 1. In CS-PBNs, a
switch of𝑓(3)

1
and𝑓(3)
2

is decided by the discrete-timeMarkov
chain in Figure 2. In other words, this switch depends on the
Boolean function at time 𝑘 − 1. Owing to this difference, a
control/verification method for CS-PBNs cannot be directly
derived from that for PBNs.

2.2. Verification Using Model Checking. First, the reachability
problem is formulated as the verification problem studied
in this paper. The reachability problem is one of the typical
verification problems. For a given CS-PBN, the output 𝑦(𝑘) =
[𝑦
1
(𝑘) 𝑦

2
(𝑘) ⋅ ⋅ ⋅ 𝑦

𝑝
(𝑘)]
⊤

∈ {0, 1}
𝑝 is defined, where 𝑦

𝑖
=

𝑥
𝑗
, 𝑖 = 1, 2, . . . , 𝑝, 𝑗 ∈ J ⊆ {1, 2, . . . , 𝑛}. We remark that

the output does not mean the measured signal. First, the
reachability problem is formulated as follows.

Problem 2 (reachability problem). Suppose that, for CS-PBN
with the output, the initial state 𝑥(0) = 𝑥

0
, the initial Boolean

function 𝑓
(𝑖)

(0, 𝑥(0), 𝑢(0)) = 𝑓
(𝑖)

𝑗0(𝑖)
(𝑥(0), 𝑢(0)) (𝑗

0
(𝑖) ∈

{1, 2, . . . , 𝑙(𝑖)}), the control time 𝑁, and the target output 𝑦
𝑓

are given (𝑢(0) is not given).Then, find amaximumprobabil-
ity 𝑃max that 𝑦(𝑘) = 𝑦

𝑓
holds within time𝑁 by manipulating

a control input sequence 𝑢(0), 𝑢(1), . . . , 𝑢(𝑁 − 1).

In the standard reachability problem, only terminal time
is focused, and it is checked whether 𝑦(𝑁) = 𝑦

𝑓
holds or

not. In this paper, we focus on not only terminal time 𝑁

but also other times 0, 1, . . . , 𝑁 − 1. Furthermore, since a
CS-PBN has the control input, which can be regarded as a
nondeterministic variable, we find a maximum probability
satisfying the condition.

Next, we will propose a solution method for Problem 2.
As a preparation, the following lemma [28] is introduced.

Lemma 3. Consider two binary variables 𝛿
1
, 𝛿
2
. Then, the

following relations hold.

(i) ¬𝛿
1
is equivalent to 1 − 𝛿

1
.

(ii) 𝛿
1
∨ 𝛿
2
is equivalent to 𝛿

1
+ 𝛿
2
− 𝛿
1
𝛿
2
.

(iii) 𝛿
1
∧ 𝛿
2
is equivalent to 𝛿

1
𝛿
2
.

For example, 𝛿
1
∨ ¬𝛿
2
is equivalently transformed into 𝛿

1
+

(1 − 𝛿
2
) − 𝛿
1
(1 − 𝛿

2
) = 1 − 𝛿

2
+ 𝛿
1
𝛿
2
. By using this lemma,

a Boolean function can be transformed into a polynomial on
the real number field.

To solve Problem 2, the probabilistic model checker
PRISM [15] is used. PRISM supports a discrete-time Markov
chain (DT-MC), a continuous-time Markov chain (CT-MC),
and a Markov decision process (MDP). PRISM consists of
three parts: “Model,” “Properties,” and “Simulator.” In the
“Model” part, a given probabilistic system is described using
the PRISM language. In the “Properties” part, the property
specification language incorporates temporal logic such as
PCTL (probabilistic computation tree logic) [29], and we can
verify if a given PCTL formula holds. In the “Simulator,” the
state trajectories can be simulated.

Now, using PRISM, we propose a method for modeling
a given CS-PBN. By modeling a given CS-PBN via PRISM,
Problem 2 can be solved. In the PRISM-based method,
Boolean functions in a given PBN can be directly used. To
explain the PRISM-based method, consider the PBN (5)–(7)
in Example 1 and 𝑞 = 0.5. Suppose that the initial state and
the initial Boolean function are given by 𝑥

0
= [1 1 1]

⊤,
𝑓
(1)

(0) = 𝑓
(1)

1
, 𝑓(2)(0) = 𝑓

(2)

1
, and 𝑓(3)(0) = 𝑓

(3)

1
(i.e., 𝑗

0
(1) =

𝑗
0
(2) = 𝑗

0
(3) = 1), respectively. By using Lemma 3, each

Boolean function can be transformed into some polynomial
on the field of real numbers.Then, the PRISMcode describing
this CS-PBN is shown in Figure 3.

In line 1, it is described that a given system is a MDP; that
is, the control input (in other words, the nondeterministic
variable) that must decide is included. In line 2, the probabil-
ity 𝑞 is given by 𝑞 = 0.5. In lines 3–7, the discrete-timeMarkov
chain such as Figure 2 is modeled for 𝑓(1). The probabilistic
variable d1 corresponds to 𝑗 ∈ {1, 2} in 𝑓

(𝑖)

𝑗
. In line 4, 𝑓(1)(0)

is given by 𝑓(1)(0) = 𝑓
(1)

1
. In lines 5-6, the behavior of d1 is

modeled. In line 5, it is described that if 𝑑
1
= 1 holds, then
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(1) mdp

(2) const double q=0.5;

(3) module CSPBNm1

(4) d1:[1..2] init 1;

(5) [CSPBN] d1 = 1 -> 0.6∗q+(1-q):(d1 󸀠 = 1) + 0.4∗q:(d1 󸀠 = 2);

(6) [CSPBN] d1 = 2 -> 0.6∗q:(d1 󸀠 = 1) + 0.4∗q+(1-q):(d1 󸀠 = 2);

(7) endmodule

(8) module CSPBN1

(9) [CSPBN] x1:[0..1] init 1;

(10) [CSPBN] d1 = 1 -> 1.0:(x1 󸀠 = u-x2∗u);

(11) [CSPBN] d1 = 2 -> 1.0:(x1 󸀠 = x1);

(12) endmodule

(13) module CSPBNm2

(14) d2:[1..2] init 1;

(15) [CSPBN] d2 = 1 -> 0.7∗q+(1-q):(d2 󸀠 = 1) + 0.3∗q:(d2 󸀠 = 2);

(16) [CSPBN] d2 = 2 -> 0.7∗q:(d2 󸀠 = 1) + 0.3∗q+(1-q):(d2 󸀠 = 2);

(17) endmodule

(18) module CSPBN2

(19) [CSPBN] x2:[0..1] init 1;

(20) [CSPBN] d2 = 1 -> 1.0:(x2 󸀠 = x3-x1∗x3);

(21) [CSPBN] d2 = 2 -> 1.0:(x2 󸀠 = x2);

(22) endmodule

(23) module CSPBNm3

(24) d3:[1..2] init 1;

(25) [CSPBN] d3 = 1 -> 0.8∗q+(1-q):(d3 󸀠 = 1) + 0.2∗q:(d3 󸀠 = 2);

(26) [CSPBN] d3 = 2 -> 0.8∗q:(d3 󸀠 = 1) + 0.2∗q+(1-q):(d3 󸀠 = 2);

(27) endmodule

(28) module CSPBN3

(29) [CSPBN] x3:[0..1] init 1;

(30) [CSPBN] d3 = 1 -> 1.0:(x3 󸀠 = x2+u-x2∗u);

(31) [CSPBN] d3 = 2 -> 1.0:(x3 󸀠 = x3);

(32) endmodule

(33) module input

(34) u:[0..1] init 0;

(35) [CSPBN] u = 0 -> (u 󸀠 = 0);

(36) [CSPBN] u = 0 -> (u 󸀠 = 1);

(37) [CSPBN] u = 1 -> (u 󸀠 = 0);

(38) [CSPBN] u = 1 -> (u 󸀠 = 1);

(39) endmodule

Figure 3: PRISM code expressing the CS-PBN.

the next state 𝑑󸀠
1
is 1 with the probability 0.6𝑞 + (1 − 𝑞) and 2

with the probability 0.4𝑞. In lines 8–12, 𝑓(1) is modeled. In
line 9, it is described that 𝑥

1
takes a binary value, and the

initial value of 𝑥
1
is given by 1. In line 10, 𝑓(1)

1
is modeled.

In line 11, 𝑓(1)
2

is modeled. In a similar way, 𝑓(2) is modeled
in lines 13–22, and 𝑓

(3) is modeled in lines 23–32. In CS-
PBNs, a discrete probabilistic distribution is given for each
𝑓
(𝑖). Hence, 𝑓(𝑖), 𝑖 = 1, 2, 3, must be modeled separately. To

associate with eachmodule, [CSPBN] is described. Finally, in
lines 33–39, the property of the control input is described as
a nondeterministic variable. Note that the initial value of the
control input 𝑢(0)must be given (see line 34). Hence, PRISM
must be executed for two cases of 𝑢(0) = 0 and 𝑢(0) = 1.

The above explanation is the outline of the PRISM-based
modelingmethod. Based on the above example, we propose a
procedure for deriving the PRISM code expressing a general
CS-PBN.

2.2.1. Procedure for Modeling CS-PBNs

Step 1. Transform each Boolean function into a polynomial
on the real number field by using Lemma 3. The obtained
Boolean functions are denoted by 𝑓(𝑖)

𝑗
.

Step 2. Describe that a given system is a MDP, and give 𝑞.

Step 3. Describe modules CSPBNm 𝑖 and CSPBN 𝑖, 𝑖 =

1, 2, . . . , 𝑛, as follows:
module CSPBNm 𝑖

𝑑
𝑖
: [1..𝑙(𝑖)] init 𝑗

0
(𝑖);

[CSPBN] 𝑑
𝑖
= 1 → 𝑐

(𝑖)

1
𝑞 + (1 − 𝑞) : (𝑑

󸀠

𝑖
=

1) + 𝑐
(𝑖)

2
𝑞 : (𝑑
󸀠

𝑖
= 2) + ⋅ ⋅ ⋅ + 𝑐

(𝑖)

𝑙(𝑖)
𝑞 : (𝑑
󸀠

𝑖
= 𝑙(𝑖));

[CSPBN] 𝑑
𝑖
= 2 → 𝑐

(𝑖)

1
𝑞 : (𝑑
󸀠

𝑖
= 1) + 𝑐

(𝑖)

2
𝑞 + (1 −

𝑞) : (𝑑
󸀠

𝑖
= 2) + ⋅ ⋅ ⋅ + 𝑐

(𝑖)

𝑙(𝑖)
𝑞 : (𝑑
󸀠

𝑖
= 𝑙(𝑖));
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...
[CSPBN] 𝑑

𝑖
= 𝑙(𝑖) → 𝑐

(𝑖)

1
𝑞 : (𝑑

󸀠

𝑖
= 1) + 𝑐

(𝑖)

2
𝑞 :

(𝑑
󸀠

𝑖
= 2) + ⋅ ⋅ ⋅ + 𝑐

(𝑖)

𝑙(𝑖)
𝑞 + (1 − 𝑞) : (𝑑

󸀠

𝑖
= 𝑙(𝑖));

endmodule
module CSPBN 𝑖

𝑥
𝑖
: [0..1] init 𝑥

𝑖
(0);

[CSPBN] 𝑑
𝑖
= 1 → 1.0 : (𝑥󸀠

𝑖
= 𝑓
(𝑖)

1
(𝑥, 𝑢));

[CSPBN] 𝑑
𝑖
= 2 → 1.0 : (𝑥󸀠

𝑖
= 𝑓
(𝑖)

2
(𝑥, 𝑢));

...
[CSPBN] 𝑑

𝑖
= 𝑙(𝑖) → 1.0 : (𝑥󸀠

𝑖
= 𝑓
(𝑖)

𝑙(𝑖)
(𝑥, 𝑢));

endmodule

Step 4. Describe the control input 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, as

follows:

module input 𝑖

𝑢
𝑖
: [0..1] init 𝑢

𝑖
(0);

[PBN1] 𝑢
𝑖
= 0 → (𝑢

󸀠

𝑖
= 0)

[PBN1] 𝑢
𝑖
= 0 → (𝑢

󸀠

𝑖
= 1)

[PBN1] 𝑢
𝑖
= 1 → (𝑢

󸀠

𝑖
= 0)

[PBN1] 𝑢
𝑖
= 1 → (𝑢

󸀠

𝑖
= 1)

endmodule

Finally, consider solving Problem 2. For solving this problem,
we use Pmax prepared in PRISM. For example, suppose that
𝑦 = [𝑦

1
𝑦
2
]
⊤ and 𝑦

𝑓
= [0 1]

⊤. Then, in PRISM, Problem 2
can be described by

Pmax =? [F <= N (y1 = 0)& (y2 = 1)] . (8)

Therefore, we see that Problem 2 can be solved using
PRISM. The control input sequence 𝑢(0), 𝑢(1), . . . , 𝑢(𝑁 − 1)

is obtained simultaneously, but in PRISM 4.0.3, the obtained
control input sequence cannot be displayed except for the
case of 𝑁 = ∞. In the case of 𝑁 = ∞, the discrete-time
Markov chain can be obtained as the closed-loop system of a
given CS-PBN.

2.3. Optimal Control Using Polynomial Optimization. Con-
sider the following problem.

Problem 4 (optimal control problem). Suppose that, for CS-
PBN, the initial state 𝑥(0) = 𝑥

0
, the initial Boolean function

𝑓
(𝑖)

(0, 𝑥(0), 𝑢(0)) = 𝑓
(𝑖)

𝑗0(𝑖)
(𝑥(0), 𝑢(0))(𝑗

0
(𝑖) ∈ {1, 2, . . . , 𝑙(𝑖)}),

and the control time 𝑁 are given (𝑢(0) is not given).
Then, find a control input sequence 𝑢(0), 𝑢(1), . . . , 𝑢(𝑁 − 1)

minimizing the cost function

𝐽 = 𝐸[

𝑁−1

∑

𝑘=0

{𝑄𝑥 (𝑘) + 𝑅𝑢 (𝑘)} + 𝑄
𝑓
𝑥 (𝑁) | 𝑥 (0) = 𝑥

0
] , (9)

where 𝑄,𝑄
𝑓
∈ R1×𝑛, 𝑅 ∈ R1×𝑚 are weighting vectors whose

element is a nonnegative real number and 𝐸[⋅ | ⋅] denotes a
conditional expected value.

According to the following two reasons, the linear cost
function (9) is appropriate. (i) For a binary variable 𝛿 ∈ {0, 1},
the relation 𝛿

2

= 𝛿 holds. That is, in the cost function, the
quadratic term such as 𝑥2

𝑖
(𝑘) is not necessary. (ii) In control

of GRNs, expression of a certain gene is frequently focused
(see, e.g., [19]).That is, in the cost function, the quadratic term
such as 𝑥

𝑖
(𝑘)𝑥
𝑗
(𝑘), 𝑖 /= 𝑗, is not necessary.

For a PBN, the authors have derived the following
recursive representation of the expected value of the state:

𝐸 [𝑥
𝑖
(𝑘 + 1)] =

𝑙(𝑖)

∑

𝑗=1

𝑐
(𝑖)

𝑗
𝑓
(𝑖)

𝑗
(𝐸 [𝑥 (𝑘)] , 𝑢 (𝑘)) , (10)

where the condition 𝑥(0) = 𝑥
0
in the expected value

is omitted. See [23] for further details. In this paper, this
representation is extended to that in CS-PBNs.

First, we present a simple example. Consider the PBN (5)–
(7) in Example 1. Suppose that the initial state and the initial
Boolean function are given by 𝑥

0
= [1 1 1]

⊤, 𝑓(1)(0) = 𝑓
(1)

1
,

𝑓
(2)

(0) = 𝑓
(2)

1
, and 𝑓(3)(0) = 𝑓

(3)

1
, respectively.

Consider deriving the expected value of the state at time
𝑘 = 1. Suppose that 𝑢(0) = 0. Since the Boolean function at
time 𝑘 = 0 is given, the state at time 𝑘 = 1 is uniquely derived
as

𝐸 [𝑥 (1) | 𝑥 (0) = 𝑥
0
, 𝑢 (0) = 0] = 𝑥 (1) = [0 0 1]

⊤

. (11)

Hereafter, the condition such as 𝑥(0) = 𝑥
0
, 𝑢(0) = 0 in

the expected value is omitted. Next, consider deriving the
expected value of the state at time 𝑘 = 2. We remark that, for
each 𝑥

𝑖
, the discrete-time Markov chain such as Figure 2 can

be obtained. For example, the probability that 𝑓(1)
1

is selected
at time 𝑘 = 1 is 0.6𝑞 + (1 − 𝑞), and the probability that 𝑓(1)

2

is selected at time 𝑘 = 1 is 0.4𝑞. Suppose that 𝑢(1) = 1. Then,
we can obtain

𝐸 [𝑥
1
(2)] = 𝐸 [𝑓

(1)

(1, 𝑥 (1) , 𝑢 (1))]

= (0.6𝑞 + (1 − 𝑞)) 𝐸 [𝑓
(1)

1
(𝑥 (1) , 𝑢 (1))]

+ 0.4𝑞𝐸 [𝑓
(1)

2
(𝑥 (1) , 𝑢 (1))]

= (0.6𝑞 + (1 − 𝑞)) ⋅ (1 − 0) ⋅ 1 + 0.4𝑞 ⋅ 0

= 0.6𝑞 + (1 − 𝑞) ,

𝐸 [𝑥
2
(2)] = 𝐸 [𝑓

(2)

(1, 𝑥 (1) , 𝑢 (1))]

= (0.7𝑞 + (1 − 𝑞)) 𝐸 [𝑓
(2)

1
(𝑥 (1) , 𝑢 (1))]

+ 0.3𝑞𝐸 [𝑓
(2)

2
(𝑥 (1) , 𝑢 (1))]

= (0.7𝑞 + (1 − 𝑞)) ⋅ (1 − 0) ⋅ 1 + 0.3𝑞 ⋅ 0

= 0.7𝑞 + (1 − 𝑞) ,



6 The Scientific World Journal

𝐸 [𝑥
3
(2)] = 𝐸 [𝑓

(3)

(1, 𝑥 (1) , 𝑢 (1))]

= (0.8𝑞 + (1 − 𝑞)) 𝐸 [𝑓
(3)

1
(𝑥 (1) , 𝑢 (1))]

+ 0.2𝑞𝐸 [𝑓
(3)

2
(𝑥 (1) , 𝑢 (1))]

= (0.8𝑞 + (1 − 𝑞)) ⋅ (0 + 1 − 0 ⋅ 1) + 0.2𝑞 ⋅ 1

= 1.0.

(12)

Finally, we remark that the probability that some Boolean
function 𝑓

(𝑖)

𝑗
is selected is time-varying. For example, the

probability that 𝑓(1)
1

is selected at time 𝑘 = 2 is (0.6𝑞 + (1 −

𝑞))
2

+ 0.4𝑞 ⋅ 0.6𝑞, and the probability that 𝑓(1)
2

is selected at
time 𝑘 = 2 is (0.6𝑞 + (1 − 𝑞)) ⋅ 0.4𝑞 + 0.4𝑞 ⋅ (0.2𝑞 + (1 − 𝑞)).

Next, consider a general case. From the observation of
the above example, we can obtain the following recursive
representation:

𝐸 [𝑥
𝑖
(𝑘 + 1)] =

𝑙(𝑖)

∑

𝑗=1

𝑑
(𝑖)

𝑗
(𝑘) 𝑓
(𝑖)

𝑗
(𝐸 [𝑥 (𝑘)] , 𝑢 (𝑘)) ,

𝑑
(𝑖)

(𝑘 + 1) = 𝑃
(𝑖)

𝑑
(𝑖)

(𝑘) ,

(13)

where 𝑑(𝑖)(𝑘) = [𝑑
(𝑖)

1
(𝑘) 𝑑

(𝑖)

2
(𝑘) ⋅ ⋅ ⋅ 𝑑

(𝑖)

𝑙(𝑖)
(𝑘)]
⊤

and

𝑃
(𝑖)

=

[
[
[
[
[
[
[
[
[
[

[

𝑐
(𝑖)

1
𝑞 + (1 − 𝑞) 𝑐

(𝑖)

2
𝑞 ⋅ ⋅ ⋅ 𝑐

(𝑖)

𝑙(𝑖)
𝑞

𝑐
(𝑖)

1
𝑞 𝑐

(𝑖)

2
𝑞 + (1 − 𝑞) ⋅ ⋅ ⋅ 𝑐

(𝑖)

𝑙(𝑖)
𝑞

...
... d

...

𝑐
(𝑖)

1
𝑞 𝑐

(𝑖)

2
𝑞 ⋅ ⋅ ⋅ 𝑐

(𝑖)

𝑙(𝑖)
𝑞 + (1 − 𝑞)

]
]
]
]
]
]
]
]
]
]

]

.

(14)

Therefore, Problem 4 can be reduced to the following poly-
nomial optimization problem:

find 𝐸 [𝑥 (𝑘 + 1)] ∈ R
𝑛

, 𝑢 (𝑘) ∈ R
𝑚

,

𝑘 = 0, 1, . . . , 𝑁 − 1,

min Cost function (9) ,

subject to System (13) , 𝑖 = 1, 2, . . . , 𝑛,

𝑥 (0) = 𝑥
0
,

𝑢
𝑖
(𝑘) (𝑢

𝑖
(𝑘) − 1) = 0.

(15)

The constraint 𝑢
𝑖
(𝑘)(𝑢
𝑖
(𝑘) − 1) = 0 guarantees that 𝑢(𝑘) is a

binary variable. A polynomial optimization problem can be
solved by using a suitable solver such as SparsePOP [30].

3. Results and Discussion

In this section, we present a numerical example on the
WNT5A network. First, the WNT5A network is explained.
Next, computational results are presented.

3.1. WNT5A Network. Consider the GRN with the gene
WNT5A, which is related to melanoma. A Boolean network
model is given by

𝑥
1
(𝑘 + 1) = ¬𝑥

6
(𝑘) ,

𝑥
2
(𝑘 + 1) = (¬𝑥

2
(𝑘) ∧ 𝑥

4
(𝑘) ∧ 𝑥

6
(𝑘))

∨ {𝑥
2
(𝑘) ∧ (𝑥

4
(𝑘) ∨ 𝑥

6
(𝑘))} ,

𝑥
3
(𝑘 + 1) = ¬𝑥

7
(𝑘) ,

𝑥
4
(𝑘 + 1) = 𝑥

4
(𝑘) ,

𝑥
5
(𝑘 + 1) = 𝑥

2
(𝑘) ∨ ¬𝑥

7
(𝑘) ,

𝑥
6
(𝑘 + 1) = 𝑥

3
(𝑘) ∨ 𝑥

4
(𝑘) ,

𝑥
7
(𝑘 + 1) = ¬𝑥

2
(𝑘) ∨ 𝑥

7
(𝑘) ,

(16)

where the concentration level (high or low) of the gene
WNT5A is denoted by 𝑥

1
, the concentration level of the gene

pirin by 𝑥
2
, the concentration level of the gene S100P by 𝑥

3
,

the concentration level of the gene RET1 by 𝑥
4
, the concen-

tration level of the geneMART1 by 𝑥
5
, the concentration level

of the gene HADHB by 𝑥
6
, and the concentration level of the

gene STC2 by 𝑥
7
. See [31] for further details.

Next, suppose that the control input 𝑢 is given by 𝑥
2

(the concentration level of the gene pirin), according to the
discussion in [19]. By replacing 𝑥

2
and 𝑥

3
, 𝑥
4
, . . . , 𝑥

7
with 𝑢

and 𝑥
2
, 𝑥
3
, . . . , 𝑥

6
, respectively, we can obtain the following

model:

𝑥
1
(𝑘 + 1) = 𝑓

(1)

𝑑
(𝑥 (𝑘) , 𝑢 (𝑘)) = ¬𝑥

5
(𝑘) ,

𝑥
2
(𝑘 + 1) = 𝑓

(2)

𝑑
(𝑥 (𝑘) , 𝑢 (𝑘)) = ¬𝑥

6
(𝑘) ,

𝑥
3
(𝑘 + 1) = 𝑓

(3)

𝑑
(𝑥 (𝑘) , 𝑢 (𝑘)) = 𝑥

3
(𝑘) ,

𝑥
4
(𝑘 + 1) = 𝑓

(4)

𝑑
(𝑥 (𝑘) , 𝑢 (𝑘)) = ¬𝑥

6
(𝑘) ∨ 𝑢 (𝑘) ,

𝑥
5
(𝑘 + 1) = 𝑓

(5)

𝑑
(𝑥 (𝑘) , 𝑢 (𝑘)) = 𝑥

2
(𝑘) ∨ 𝑥

3
(𝑘) ,

𝑥
6
(𝑘 + 1) = 𝑓

(6)

𝑑
(𝑥 (𝑘) , 𝑢 (𝑘)) = 𝑥

6
(𝑘) ∨ ¬𝑢 (𝑘) .

(17)

Furthermore, we add the probabilistic behavior as fol-
lows:

𝑥
𝑖
(𝑘 + 1)

= {
𝑓
(𝑖)

𝑑
(𝑥 (𝑘) , 𝑢 (𝑘)) , with the probability 𝑐

1
,

𝑥
𝑖
(𝑘) , with the probability 𝑐

2
,

(18)

where 𝑙(𝑖) = 2 holds. Thus, we can obtain the PBN model
expressing a WNT5A network.

3.2. Computational Result on Verification. Consider solving
Problem 4. For the PBN (18), we assume that 𝑐

1
and 𝑐
2
are

given by 𝑐
1
= 0.5 and 𝑐

2
= 0.5, respectively. In the WNT5A

network, it is important to inhibit the concentration level 𝑥
1

of the gene WNT5A [32]. From this fact, we set 𝑦 = 𝑥
1
and

𝑦
𝑓
= 0. The initial state is given by 𝑥

0
= [1 0 0 1 0 0]

⊤.
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The initial Boolean function is given by 𝑓(𝑖)
𝑑
. In addition, we

set𝑁 = 5.
Next, we show the computation result. Then, we can

obtain 𝑃max = 0.7215 for 𝑞 = 0.3, 𝑃max = 0.6587 for 𝑞 = 0.5,
and 𝑃max = 0.6489 for 𝑞 = 0.7. It is desirable that 𝑃max is close
to 1. Hence, we see that the performance is degraded for a
larger 𝑞.

3.3. Computational Result on Optimal Control. Consider
solving Problem 4. For the PBN (18), we assume that 𝑐

1
and

𝑐
2
are given by 𝑐

1
= 0.8 and 𝑐

2
= 0.2, respectively. Since the

concentration level 𝑥
1
must be inhibited, the weights 𝑄,𝑄

𝑓
,

and 𝑅 in Problem 4 are given by

𝑄 = [1 0 0 0 0 0] , 𝑅 = 1,

𝑄
𝑓
= [10 0 0 0 0 0] ,

(19)

respectively. The initial state is given by 𝑥
0

=

[1 1 0 1 0 0]
⊤. The initial Boolean function is given

by 𝑓(𝑖)
𝑑
. In addition, we set𝑁 = 5 and 𝑞 = 0.3.

Next, we show the computation result. By solving Prob-
lem 4, we can obtain 𝑢(0) = 𝑢(1) = 1, 𝑢(2) = 𝑢(3) = 𝑢(4) = 0.
The expected value of the state at each time is obtained as

𝐸 [𝑥 (1)] = [1 1 0 1 1 0]
⊤

,

𝐸 [𝑥 (2)] = [0.06 1 0 1 1 0]
⊤

,

𝐸 [𝑥 (3)] = [0.0061 1 0 1 1 0]
⊤

,

𝐸 [𝑥 (4)] = [0.0008 0.22 0 0.22 1 0.9866]
⊤

,

𝐸 [𝑥 (5)] = [0.0001 0.0448 0 0.0448 0.3385 0.998]
⊤

.

(20)

Hence, we see that the concentration level 𝑥
1
of the gene

WNT5A is inhibited with time.
In addition, the optimal value 𝐽∗ of the cost function was

5.23. For 𝑞 = 0.5 and 𝑞 = 0.7, we can obtain 𝐽
∗

= 5.41 and
𝐽
∗

= 5.57, respectively. From these values, we see that the
performance is degraded for a larger 𝑞.

4. Conclusions

In this paper, we discussed verification and optimal control
for a context-sensitive probabilistic Boolean network (CS-
PBN), which is one of the models for gene regulatory net-
works (GRNs). In verification, the PRISM-based method for
PBNs [16] was extended to that for CS-PBNs. In optimal con-
trol, the optimal control method for PBNs [23] was extended
to that for CS-PBNs. A CS-PBN is a generalized version of a
PBN, and it enables us to consider several situations. Further-
more, as a numerical example, we considered the WNT5A
network, which is related to melanoma. The proposed meth-
ods provide us useful tools in control theory of GRNs.

In recent years, a stochastic Boolean network [33] has
been proposed as a new representation of PBNs. In addition,
to simplify a given Boolean network, the Karnaugh map

realization of a Boolean network has been proposed in [34].
These modeling methods will be useful for reducing the
computational burden. Future efforts will focus on applying
these modeling methods to the control problem and the
verification for CS-PBNs.
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