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Abstract: Genipin has attracted much attention for its hepatoprotective, anti-inflammatory, and
neuroprotection activities. However, poor water solubility and active chemical properties limit
its application in food and pharmaceutical industries. This article aimed to develop a lipid-based
microemulsion delivery system to improve the stability and bioavailability of genipin. The excipients
for a genipin microemulsion (GME) preparation were screened and a pseudo-ternary phase diagram
was established. The droplet size (DS), zeta potential (ZP), polydispersity index (PDI), physical and
simulated gastrointestinal digestion stability, and in vitro drug release properties were characterized.
Finally, the effect of the microemulsion on its cellular uptake by Caco-2 cells and the protective effect
on PC12 cells were investigated. The prepared GME had a transparent appearance with a DS of
16.17 ± 0.27 nm, ZP of −8.11 ± 0.77 mV, and PDI of 0.183 ± 0.013. It exhibited good temperature,
pH, ionic strength, and simulated gastrointestinal digestion stability. The in vitro release and cellular
uptake data showed that the GME had a lower release rate and better bioavailability compared with
that of free genipin. Interestingly, the GME showed a significantly better protective effect against
amyloid-β (Aβ1-42)-induced PC12 cell cytotoxicity than that of the unencapsulated genipin. These
findings suggest that the lipid-based microemulsion delivery system could serve as a promising
approach to improve the application of genipin.

Keywords: genipin; microemulsion; pseudo-ternary phase diagram; cellular uptake; Aβ1-42; PC12 cell

1. Introduction

Gardenia jasminoides J. Ellis (also named Zhi-Zi in China), an evergreen shrub that
belongs to the Rubiaceae family, is widely distributed in China and Eastern Asia. Its ripe
fruit has been used as yellow natural colorants and in Chinese traditional medicine for
thousands of years [1,2]. As an important Chinese traditional medicine, G. jasminoides’
fruit has been used to treat many different diseases due to its hepatoprotective, cholagogic,
sedative, anti-hypertension, hemostasis, and detumescence properties [2]. Geniposide, an
iridoid glucoside, is one of the major bioactive compounds in this medicinal plant and
its content is used as the quality control marker of crude G. jasminoides fruit in Chinese
Pharmacopeia [1].

Recently, multiple pharmacological activities of geniposide and its aglycone genipin
have been reported, including its hepatoprotective effect [3], hypoglycemic [4] and anti-
inflammatory activity [5], protection of cerebral ischemic injury [6], neuroprotection [7], and
anti-depressant effects [8]. Although geniposide has been widely considered as the main
active component, some studies suggested that genipin was a more active ingredient [9–11].
The pharmacokinetic studies showed that geniposide is converted into its aglycone genipin
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by the β-D-glucosidase of intestinal bacteria after being orally administered [12]. However,
the poor water solubility is a significant barrier for genipin to cross cell membranes in
the small intestine. Moreover, genipin can spontaneously react with primary ammonia
compounds such as amino acids and proteins [13]. The poor water solubility and active
chemical properties limit its application in food and pharmaceutical industries. Oral
administration is the most common, ideal, and convenient route for many drugs or bioactive
molecule administration [14]. To improve the bioavailability of genipin through oral
administration, nanocrystals [15], cyclodextrin embedding [16], and hydrogel [17] were
reported to improve its water solubility and intestinal absorption.

Lipid-based emulsion systems, including microemulsion, nanoemulsion, niosomes,
SMEDDS (self microemulsifying drug delivery systems), and SNEDDS (self-nanoemulsifying
drug delivery systems), have been proven to promote solubility and bioavailability, high-
lighting the potential value of this type of delivery approach for water-insoluble bioactive
molecules [18–20]. Furthermore, encapsulating drugs in emulsion can also protect it from
degeneration, control the release, and minimize the side effects [14,21].

Microemulsion is a thermodynamically stable system formed by mixing oil phase,
surfactant, co-surfactant, and water phase, with a particle size of 10–200 nm [22]. The
microemulsion has a small particle size and uniform dispersion, and can significantly
improve the solubility of fat-soluble drugs and the stability of bioactive substances. Studies
have shown that microemulsions with a specific composition can improve the oral bioavail-
ability of poorly soluble drugs [23,24]. As a new type of drug carrier, microemulsion is
widely used in a variety of clinical diseases. In clinical studies, microemulsion displays the
pharmacokinetics and biodistribution of therapeutic drugs, and is able to maximize the
therapeutic effects through increasing the accumulation in target tissues [25]. Accordingly,
microemulsion preparations have been utilized to improve the solubility and bioavailability
of various drugs, such as paclitaxel [26], quercetin [27], and lycopene [28].

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the pro-
gressive loss of memory and cognition in clinical aspects. According to epidemiological
data, it is estimated that there will be more than 100 million AD patients in the world
in 2050 [29]. The pathological features of AD are mainly senile plaques formed by the
abnormal deposition of amyloid-β (Aβ) and neurofibrillary tangles formed by the hyper-
phosphorylation of tau protein. Amyloid β-protein (Aβ), which exerts neurotoxicity and
synaptotoxicity, is thought to play a vital role in the pathological sequence of AD [30]. Inter-
estingly, genipin and its derivatives have significant protective effects against Aβ-induced
neurotoxicity [7,11].

In this study, genipin was encapsulated in oil-in-water microemulsion (ME) to improve
the solubility and bioavailability of genipin. The stability, in vitro release, and simulated
gastrointestinal digestion of genipin-containing microemulsions (GMEs) were evaluated.
The cellular uptake of the GME was compared with that of free genipin using Caco-2
cells. Furthermore, the protective effect of the GME on Aβ1-42 damaged PC12 cells was
investigated. Our data show that the microemulsion carrier makes genipin more resistant
to gastrointestinal digestion and improves its cellular uptake and neuroprotective role.

2. Materials and Methods
2.1. Materials

Genipin (98%), medium chain triglycerides (MCT), isopropyl myristate (IPM), ethyl
oleate (EO), ethoxylated hydrogenated castor oil (CO-40), labrasol, and coumarin 6 were
purchased from Shanghai Yuanye Biological Technology Co, Ltd. (Shanghai, China).
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), DAPI, Western and
IP cell lysate kit, and a BCA protein assay kit were obtained from Beyotime Biotechnology
(Shanghai, China). Dimethyl sulfoxide (DMSO), human amyloid-β (Aβ1-42, SCP0048),
pepsin from porcine gastric mucosa (P7000, ≥250 units/mg), pancreatin from porcine
pancreas (P7545, 8 USP), and bile salts mixture (B3426) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). DMEM, 0.25% trypsin, 0.02% ethylenediaminetetraacetic acid (EDTA),
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fetal calf serum, and phosphate buffered solution (PBS) were obtained from Gibco (Carlsbab,
CA, USA). All other chemicals were analytical reagent grade.

2.2. Screening the Oils, Surfactants and Co-Surfactants on the Solubility of Genipin

The solubility of genipin in different oils, surfactants, or co-surfactants was investi-
gated using the method described by Pangeni et al. [27] with some modifications. Briefly,
excess genipin was mixed with 1 g of oils (soybean oil, olive oil, IPM, MCT, and EO),
surfactants (Tween 20, Tween 80, Labrasol, EL-35, CO-40, and Span 80), and co-surfactants
(ethanol, ethylene glycol, glycerol, and PEG 400). The mixtures were vortexed and then
held at 25 ± 1.0 ◦C in an isothermal shaker for 24 h to allow attainment of equilibrium.
After being centrifuged (10,000 rpm, 15 min), the supernatants were filtered through a
0.45 µm membrane.

The concentration of genipin was analyzed using the HPLC method as we previously
described [31], with some modifications. HPLC was carried out on an Essentia LC-16 liquid
chromatography system using an Ultimate XB-C18 column (250 × 4.6 mm, 10 µm, Welch
Materials, Inc., Shanghai, China). After injecting 10 µL of sample, genipin was eluted
isocratically with a mobile phase containing 0.15% phosphoric acid, 60% methanol, and
40% water (v/v) at a constant flow rate of 1 mL/min and detected at 238 nm. The content
of genipin was calculated according to the calibration curve (peak area concentration).

2.3. Construction of Pseudo-Ternary Phase Diagrams and Formulation of Microemulsions

To investigate the effect of each component and the concentration on the formation
of the microemulsion, the pseudo-ternary phase diagrams were constructed using the
water titration method [32] at ambient temperature (25 ± 1 ◦C). The surfactants were
blended with the co-surfactant with the ratios of 1:1, 2:1, 3:1, and 4:1 (w/w) to form the
surfactant/co-surfactant mixtures (Smix). In each ternary phase diagram, the ratios of oil
phase and surfactant/co-surfactant mixture used were 1:9, 2:8, 3:7, 4:6, 5:5, 6: 4, 7:3, 8:2,
and 9:1. The total amount of oil phase and surfactant/co-surfactant mixture was 10 g. The
resultant solutions were mixed by a magnetic stirrer (450 rpm) and distilled water was
added in a dropwise manner until the mixtures turned transparent. The mass fraction
of each component was calculated at the critical point. The oil phase, water phase, and
mixed surfactant were taken as the three vertices, and a pseudo-ternary phase diagram
was drawn using Origin software (version 2018) (OriginLab, Northampton, MA, USA) [27],
and the area of the microemulsion area was used as the inspection index to investigate
the influence of each component and ratio on the formation of the microemulsion, and
determined the composition.

2.4. Characterization of GME
2.4.1. Entrapment Efficiency (EE) and Drug Loading Efficiency (DL)

The encapsulation efficiency (EE) (%) and drug loading capacity (DL) (%) of the
GME were studied by centrifugation [33]. The GMEs were transferred to an ultrafiltration
centrifuge tube (MWCO 10 kDa, Millipore, Burlington, MA, USA) and centrifuged at
10,000 rpm for 15 min. The centrifuge (1 mL) was taken from the outer tube, diluted
with 60% methanol aqueous solution, passed through a 0.45 µm organic filter membrane,
and the free genipin measured according to the chromatographic conditions of Section 2.2.
Another GME (1 mL) without centrifugation was taken, diluted with 60% methanol aqueous
solution, and the total genipin content was measured according to the chromatographic
conditions in Section 2.2.

The EE (%) and DL (%) were calculated using the following equations, respectively:

EE (%) =
Wtotal drug − Wfree drug

Wtotal drug
× 100%

DL (%) =
Wtotal drug − Wfree drug

WTotal amount of GME
× 100%
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where Wtotal drug is the total genipin content in GME, Wfree drug is the free genipin content
after centrifugation, and WTotal amount of GME is the total amount of GME, including carrier
and genipin (2 mL).

2.4.2. Particle Size, Polydispersity Index (PDI), Zeta Potential, and TEM Analysis

The microemulsions of genipin were analyzed in terms of mean particle size, particle
size distribution (polydispersity index), and surface charge (zeta potential) by a Zetasizer
(Malvern Panalytical Technologies, Malvern, UK). To avoid multiple scattering effects, the
samples were diluted with 9 volume of deionized water (DI). All measurements were
carried out in triplicate at a temperature of 25 ± 1 ◦C.

The morphology of the GME was determined by TEM. A drop of the GME was placed
on a holey carbon 400 mesh copper grid. After negative staining with 2% phosphotungstic
acid solution, the copper grids were dried overnight and the morphology of the GME was
observed by TEM (FEI Tecnai F20, Hillsboro, OR, USA) at an operating voltage of 80 kV.

2.4.3. Differential Scanning Calorimeter (DSC) Analysis

The DSC experiments were carried out using a DSC25 (TA Instruments, New Castle,
DE, USA), as per the method described by Hart et al. [34], with modifications. The empty
microemulsion and GME (3 mg) were added to the aluminum pans and sealed immediately.
The sample was rapidly cooled to −20 ◦C by liquid nitrogen, and then heated to 80 ◦C at
10 ◦C/min. A blank aluminum pot was used as a reference.

2.5. Evaluation the Effect of Ionic Strength, Temperature and pH on GME Stability

To evaluate the effects of ionic strength on GME stability, genipin microemulsions were
prepared using the method described by Chen et al. [35]. A total of 1 mL GME was mixed
with 9 mL NaCl solutions to obtain the mixtures with different final NaCl concentrations (0,
100, 200, 300, 400, and 500 mM). The effect of temperature on GME stability was examined
using the method described by Shi et al. [36], with a slight modification. The GMEs were
placed in a water bath at different temperatures (20, 30, 40, 50, 60, and 70 ◦C) for 2 h. The pH
stability of the GMEs was evaluated using the method previously described by Mohammed
et al. [37]. The pH of the GME dispersions was adjusted with HCl or NaOH (0.1 M) to
final values of 2.0, 4.0, 6.0, 8.0, 10.0, and 12.0. Ultrapure water was then added to the GME
dispersions to obtain a tenfold dilution. After treatment, all samples were stored at room
temperature for 24 h and the particle size, PDI, and zeta potential were measured by a
Zetasizer (Malvern Panalytical Technologies, Malvern, UK), as described in Section 2.4.2.

2.6. Characteristics of GME during Simulated Gastrointestinal Digestion

The GME were sequentially digested in the simulated gastro fluid (SGF) and simulated
intestinal fluid (SIF) to explore the fate of genipin encapsulated in microemulsions in gas-
trointestinal digestion, according to a protocol described previously [38]. All experiments
were carried out at 37 ◦C in a shaker at 120 rpm and all solutions were preheated to this
temperature prior to use.

For the gastric phase, simulated gastric fluid (SGF) was firstly prepared by dissolving
2 g NaCl in 1 L ultrapure water and adjusting the pH value to 2.0 ± 0.1 with 5 M HCl.
Porcine pepsin was dispersed in the SGF to a final concentration of 3.2 mg/mL. The GME
(2 mL) was mixed with 20 mL SGF and the mixture was incubated in the incubator shaker
for 1 h at 37 ◦C to mimic stomach digestion.

For intestinal digestion, 20 mL of the stomach phase sample was withdrawn and the
pH was adjusted to 7.0 with 1.0 M NaOH. Then, the resultant samples were mixed with
simulated intestinal fluid consisting of 120 mM NaCl, 10 mM CaCl2, 20 mg/mL bile salts
mixture, and 2 mg pancreatin, and the pH of the mixtures was readjusted to 7.0 with 0.1 M
NaOH. The digestion mixtures were incubated in the incubator shaker at 37 ◦C for 2 h.

At end of each digestion stage, the sample was withdrawn and filtered with 0.45 µm or-
ganic filter membrane. The particle size, PDI, and zeta potential of the digested GMEs were
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measured by a Zetasizer (Malvern Panalytical Technologies, Malvern, UK), as described in
Section 2.4.2.

2.7. In Vitro Release Studies

In vitro release behaviors of the genipin from GMEs and unencapsulated genipin solu-
tion were conducted using the dialysis bag method, as described by Subongkot et al. [39].
Briefly, 2 mL of each sample was transferred to the dialysis bag (with a molecular weight
cut-off of 8000 Da) and dialyzed with 100 mL of aqueous hydrochloric acid (pH 1.2), ul-
trapure water, and PBS (pH 7.4) [40–42] in a beaker. To facilitate the diffusion of genipin,
Tween 80 was added to all dialysis mediums to a final concentration of 0.5%. The test was
maintained at 37 ◦C under stirring of 450 rpm. At predetermined time intervals (0.25, 0.5, 1,
2, 4, 6, 8, 10, 12, and 24 h), 1 mL of samples were taken out from the dialysis mediums and
an equal volume of fresh dialysis medium was supplemented into the dialysis medium to
maintain a constant volume. Eventually, all samples were then diluted with 60% methanol,
filtered, and subjected to analysis by the HPLC method. Each sample was taken three times
for parallel determination.

The cumulative release contents of genipin (Qn) were calculated as per the following equation:

Qn =
(

WCn + ∑n − 1
i = 1 Ci

)
/W

where Cn is the drug mass concentration measured at point n, and W is the total amount
of administration.

In order to study the release kinetics of genipin, the zero-order, first-order, Higuchi,
and Weibull models were employed to fit the release profiles.

Q represents the cumulative fraction of genipin released at time t.

(1) Zero-order model
Q = a + K0 * t,

where K0 is the zero-order release rate constant;
(2) First-order model

Q = a * (1 − exp (−K1 * t)),

where K1 is the first-order release rate constant;
(3) Higuchi model

Q = KH * t1/2 + a

where KH represents the Higuchi release rate constant;
(4) Weibull model

Q = a * (1 − exp (−(KW * (t − tc)) d)),

where KW represents the Weibull release rate constant.

2.8. Cell Culture and Cell Cytotoxic Studies

A Caco-2 human colorectal adenocarcinoma cell line and a PC12 rat adrenal pheochro-
mocytoma cell line were purchased from the Cell Bank of the Chinese Academy of Sciences
(Kunming, China). Caco-2 and PC12 cells were cultured in DMEM high glucose medium
supplemented with 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, and 1%
L-glutamine at 37 ◦C atmosphere containing 5% CO2.

The cytotoxicity of empty microemulsion, unencapsulated genipin, and GME were
examined using an MTT cell viability assay before the cellular uptake experiments. Caco-2
and PC12 cells (5000 cells per well) were incubated in 96-well plates for 24 h to allow
attachment. The cells were then cultured in 100 µL fresh medium containing free genipin
or GMEs with various concentrations (1.25–100 µg/mL) of genipin. For the empty mi-
croemulsion group, the cells were cultured in 100 µL of fresh medium containing empty
microemulsion at various concentrations (50–6000 µg/mL). After 24 h incubation, 10 µL
MTT solution (5 mg/mL in PBS) was added to each well and incubated for a further 4 h
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at 37 ◦C. The MTT solution was then removed and the formed insoluble purple formazan
crystals were dissolved in 150 µL DMSO. The absorbance was measured at 490 nm using
a microplate reader (SpectraMax, Molecular Devices, CA, USA). The cell viability was
expressed as the percent of living cells compared with the control wells.

Cell viability (%) =
ODsample − ODblank

ODcontrol − ODblank
× 100%

2.9. Cellular Uptake Studies

Confocal laser scanning microscopy (CLSM) and HPLC were conducted to evaluate
the influence of encapsulated genipin by microemulsion on the cellular uptake of genipin
by Caco-2 cells. To prepare the coumarin 6-labeled GME, both coumarin 6 and genipin
were dissolved in EO, and then the oil phase was mixed with surfactant/co-surfactant
mixtures and the GME was formed as per the method described in Section 2.3.

For the analysis of the cellular uptake of genipin by CLSM, Caco-2 cells (2 × 105 cells/well)
were incubated in 12-well plates for 24 h. Subsequently, the culture media were supple-
mented with free coumarin 6 (C6 group), coumarin 6, and GME mixture (mix group),
and coumarin 6-labeled GME (GME group), respectively. After incubation at 37 ◦C for
0.5, 1, 2, and 4 h, the cells were gently washed three times using PBS and fixed with 4%
paraformaldehyde (w/v in PBS pH 7.2) for 15 min. The cell nuclei were stained with DAPI.
The cellular uptake was examined using CLSM 510 Meta (Olympus, FV3000, Tokyo, Japan)
with an oil immersion objective (40×) [43].

For the quantitative analysis of the cellular uptake of genipin, Caco-2 cells (2 × 105 cells/well)
were incubated in 12-well plates for 24 h. The culture media were then replaced by fresh
medium supplemented with free genipin or GMEs to the final concentration of genipin
10 µg/mL. The cells were collected at 0.5, 1, 2, and 4 h and gently washed three times
using PBS. The harvested cells were lysed with cell lysate for Western and IP (Beyotime
Biotechnology, Shanghai, China) on ice for 15 min. After being centrifuged at 12,000 rpm
for 15 min, the supernatants of cell lysate were filtered and genipin were measured by
HLPC. The total protein content of the cell lysate was determined using a BCA protein
assay kit. The cellular uptake of genipin was calculated and expressed as the amount of
genipin (µg) per mg cell protein (µg/mg protein) [44,45].

2.10. Protective Effect on Aβ1-42-Induced PC12 Cell Cytotoxicity

Beta amyloid (Aβ1-42) was dissolved in DMSO to obtain a 2 mM stock solution. PC12
cells were cultured in 96-well plates at a density of 5000 cells per well. After incubation
for 24 h, the cells were injured by various Aβ1-42 concentrations (2.5, 5, 10, 20, and 40 µM)
for 24 h and the cell viabilities were determined using the MTT method. The proper
concentration of Aβ1-42 to induce PC12 cell cytotoxicity was chosen according to the
cell viability.

To determine the influence of encapsulated genipin by microemulsion on its neuropro-
tection effects, the protective effects of free genipin and GMEs on Aβ1-42-induced PC12 cell
cytotoxicity were compared. The PC12 cells were cultured in 96-well plates at a density of
5000 cells per well for 24 h. The cultured medium was replaced with 100 µL fresh medium
containing free genipin or GMEs with various genipin concentrations (1.25, 2.5, 5.0, and
10 µg/mL) for 2 h. The cells were further subjected to treatment with 20 µM Aβ1-42 for
24 h and the cell viability was examined by MTT assay. The cell viability of cells without
the treatment with 20 µM Aβ1-42 was defined as 100%.

2.11. Statistical Analysis

The experimental results were analyzed by one-way ANOVA with post hoc Tukey’s
HSD test or Student’s t-test (SPSS version 24.0, IBM, Armonk, USA). All experiments were
carried out in triplicate (n = 3), with data expressed as mean ± standard deviation (SD).
The significance levels were determined using p values as indicated in the legends.
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3. Results and Discussion
3.1. Solubility of Genipin in Oils, Surfactants, and Co-Surfactants

The excipients have a major role for microemulsion formation. It was revealed that
excipients with the best solubilizing capability for the drug ensured the maximum drug
loading and the stability of the final formulation [46]. To select the excipients, the solubility
of genipin in different oils, surfactants, and co-surfactants was investigated. As presented
in Table 1, genipin was more soluble in MCT, IPM, and EO than in soybean oil and olive
oil. MCT, IPM, and EO were therefore chosen as the oil phases for the construction of the
pseudo-ternary phase diagrams. To select the surfactant phases, the equilibrium solubility
of genipin in Tween 20, Tween 80, Labrasol, EL-35, CO-40, Span 80, and Tween 80: CO-40
(1:1, w/w) was compared (Table 1). The dissolved amount of genipin in Tween 80, CO-
40, Labrasol, and Tween 80: CO-40 (1:1, w/w) was higher than that of other surfactants.
Therefore, Tween 80, CO-40, Labrasol, and Tween 80: CO-40 (1:1, w/w) were selected as
the surfactant phases. As for the co-surfactant, the solubility of genipin in ethanol was
higher than that of ethylene glycol, glycerol, and PEG 400 (Table 1). During microemulsion
formation, the lower molecular weight of the co-surfactant could easily induce the opening
of the tight junction of the surfactant and bring the interface film closer [25,32,35]. In
addition, ethanol is a co-surfactant suitable for oral preparations, and thus was selected as
the co-surfactant.

Table 1. Solubility of genipin in different oils, surfactants, and co-surfactants.

Phases Solubility (mg/mL)

Oils

MCT 0.603 ± 0.007
EO 0.570 ± 0.010
IPM 0.446 ± 0.008

Soybean 0.249 ± 0.017
Olive 0.291 ± 0.006

Surfactants

Tween 20 2.494 ± 0.116
Tween 80 3.327 ± 0.208
Span 80 0.808 ± 0.078
Labrasol 3.206 ± 0.064
CO-40 2.863 ± 0.062
EL-35 2.755 ± 0.087

Tween80: CO-40 (1:1) 3.353 ± 0.158

Co-surfactants

Glycerol 22.29 ± 0.579
Ethanol 36.59 ± 0.922
PEG400 29.35 ± 0.840
Ethylene 27.28 ± 1.175

3.2. Construction of Pseudo-Ternary Phase Diagrams and Formulation of Microemulsions

Pseudo-ternary phase diagrams were constructed to determine the excipient ratios of
genipin microemulsion formation. By using Tween 80/ethanol as a surfactant/co-surfactant
mixture (surfactant/co-surfactant ratio 3:1), the influence of MCT, IPM, and EO on genipin
microemulsion formation was compared. As shown in Figure 1A, the microemulsion area
formed by EO was the largest, indicating that EOis the most suitable oil phase for preparing
the genipin microemulsion. It needs to be noted that, as one of the harmless oil phases
designated by the US Food and Drug Administration, EO is well-tolerated in terms of
digestion and has been widely used in topical medicines [47,48].
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Figure 1. Pseudo-ternary phase diagram in different components. Oil phases (A), surfactant phases
(B), and surfactant/co-surfactant ratios (C).

The effects of Tween 80, CO-40, Labrasol and Tween80: CO-40 (1:1, w/w) on genipin
microemulsion formation were conducted using EO as oil phase. As shown in Figure 1B,
the pseudo-ternary phase diagram area of the Tween 80/CO-40 composite surfactant was
larger than that of the single surfactant, demonstrating a synergistic effect between Tween
80 and CO-40. The composite surfactant was proposed to improve the emulsification
efficiency and stability of the microemulsion by reducing the molecular steric hindrance
of the surfactant and increasing the flexibility of the oil–water interface [49], which may
explain the better emulsification efficiency of Tween 80: CO-40 composite surfactant.

The surfactant and co-surfactant contribute to the reduction in the interfacial tension
between water and oil and the proper surfactant/co-surfactant ratio is important for the
stability of the microemulsion. To evaluate the influence of the Tween 80:CO-40/ethanol
ratio on microemulsion formation, Smix with surfactant/co-surfactant ratios of 1:1, 2:1, 3:1,
and 4:1 was prepared and the microemulsion areas were measured. As shown in Figure 1C,
the area of the microemulsion gradually increased along with the surfactant/co-surfactant
ratio from 1:1 to 3:1. However, the microemulsion area decreased when the surfactant/co-
surfactant ratio reached 4:1. Excessive ethanol and surfactants would reduce the strength
and stability of the interface film by the attractive force between the surfactant head groups,
which are not conducive to the formation of microemulsion [35,50]. This may be the reason
for the surfactant/co-surfactant ratio of 3:1 being the best Tween 80: CO-40/ethanol ratio
for microemulsion formation. While excessive surfactant may cause safety problems and
increase the viscosity of the sample, the surfactant/co-surfactant ratio of 2:1 was selected
here for microemulsion formation.
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Based on the above pseudo-ternary phase diagram results, the GMEs were eventually
developed using EO as the oil phase, Tween 80: CO-40 (surfactant)/ethanol (co-surfactant)
(surfactant/co-surfactant ratio 2:1) as Smix, with oil: Smix ratio of 9:1.

3.3. Characterization of Genipin-Containing Microemulsions (GME)

The encapsulation efficiency (EE) (%) and drug loading capacity (DL) (%) are the
crucial parameters to evaluate the performance of microemulsion formulation. The EE
and DL of the GMEs were 64.11 ± 0.58% and 3.21 ± 0.03%, respectively. The EE (%)
of the GMEs was higher than that of the geniposide liposomes (44.87%) prepared with
lecithin/cholesterol, but its DL (%) was lower than that of the geniposide liposomes
(5.16%) [51]. Microemulsions developed by EO, Tween 80: CO-40, and ethanol can effec-
tively embed genipin.

The particle size and PDI are critical to drug release and oral absorption. The particle
size and PDI of the GME were measured by a laser particle size analyzer. As shown in
Figure 2A, the mean particle size was 16.17 ± 0.27 nm and the PDI was 0.183 ± 0.013.
The results indicated that the GME had small droplets with homogeneous dispersibility.
Its zeta potential was −8.11 ± 0.77 mV. Particles with higher absolute value of charge
(negative or positive) repulse each other, which contributes to the microemulsion stability
in solution [52,53]. The GME had negative zeta potentials, indicating its stability in low
ionic-strength aqueous solutions. The morphology of the GME was observed by TEM. As
shown in Figure 2B, the surface of the GME was smooth, quasi-spherical, and rounded in
appearance. The GME was uniformly dispersed and had a narrow size distribution with
an average diameter of 16.48 nm, which was consistent with the results obtained by the
laser particle size analyzer.
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DSC experiments were conducted to investigate the physical state of the empty mi-
croemulsion and GME. As shown in Figure 2C, the empty microemulsion and GME did not
show an absorption peak with temperatures ranging from −20 ◦C to 80 ◦C, indicating that
microemulsions were in an amorphous state in the formulation. A similar observation was
reported by Hart et al. [34]. Here, ethanol was used as co-surfactant for the microemulsion
formation. Due to the relative polarity, co-surfactants are usually distributed between the
oil and surfactant tail in the microemulsion; this can reduce the interfacial tension and
break liquid crystalline structures [54,55].

3.4. Effect of Environmental Stresses on GME Stability

Microemulsion-based delivery systems may experience a variety of environmental
stresses (e.g., pH, ionic strength, or temperature changes) during storage, transportation,
and utilization. Therefore, the influence of pH, ionic strength, and temperature on the
physical stabilities of GMEs was examined and the results are shown in Table 2.

Table 2. The effect of different factors on the stability of GMEs. Different letters (a,b,c,d) in the same
column indicate that there is a signifcant difference between each condition group. (p < 0.05).

Average
Particle Size/nm PDI Zeta

Potential/mV

Temperature/(◦C)

20 16.69 ± 0.27 a 0.183 ± 0.013 a −8.11 ± 0.77 a
30 16.31 ± 0.35 a 0.172 ± 0.011 a −7.86 ± 1.59 a
40 16.52 ± 0.54 a 0.161 ± 0.022 a −9.55 ± 0.83 a
50 16.11 ± 0.65 a 0.175 ± 0.005 a −6.72 ± 1.39 a
60 16.15 ± 0.38 a 0.157 ± 0.017 a −7.94 ± 0.90 a
70 16.43 ± 0.38 a 0.162 ± 0.016 a −9.41 ± 0.62 a

pH

2 17.62 ± 0.07 cd 0.135 ± 0.029 b −1.50 ± 1.33 a
4 17.64 ± 0.40 cd 0.153 ± 0.034 ab −1.66 ± 0.22 a

5.6 16.53 ± 0.60 d 0.057 ± 0.005 c −7.25 ± 0.67 b
6 16.77 ± 0.27 d 0.139 ± 0.015 b −7.14 ± 0.38 b
8 18.54 ± 0.62 c 0.192 ± 0.003 a −10.63 ± 0.35 c
10 22.21 ± 0.53 b 0.203 ± 0.007 a −11.43 ± 0.68 c
12 28.43 ± 0.41 a 0.169 ± 0.093 ab −12.40 ± 0.72 c

NaCl concentration
/(mM)

0 17.76 ± 0.27 d 0.204 ± 0.013 b −7.25 ± 0.67 b
100 21.01 ± 0.99 d 0.226 ± 0.023 b −2.59 ± 0.62 a
200 25.02 ± 0.26 c 0.220 ± 0.019 b −3.06 ± 0.13 a
300 27.27 ± 1.05 c 0.230 ± 0.026 b −2.36 ± 0.33 a
400 33.19 ± 2.02 b 0.244 ± 0.013 b −2.01 ± 1.76 a
500 41.36 ± 1.61 a 0.325 ± 0.019 a −1.66 ± 1.78 a

The GMEs were placed in a water bath at different temperatures (20, 30, 40, 50, 60, and
70 ◦C) for 2 h and the particle size, PDI, and zeta potential were measured. The temperature
did not have a significant effect on the particle size, PDI, or zeta potential (p > 0.05) of
the GME, in the range of 20–70 ◦C. In fact, the surfactants were proposed to be stable at
high temperature. Moreover, heat treatment can enhance the interaction between Tween
80 and CO-40 and form a strong protective barrier [36]. Tween 80 and CO-40 may form
a stable mixture with water and ethanol in GMEs, which can ensure a perfect fit at high
temperatures and ensure that the entire system is in a balanced state.

In contrast, the particle size and zeta potential of the GME varied along with the
increase in the pH value (p < 0.01) (Table 1). The mean particle size increased from
17.62 ± 0.07 nm at pH 2.0 to 28.43 ± 0.41 nm, and the zeta potential decreased from
−1.50 ± 1.33 mV at pH 2.0 to −12.40 ± 0.72 mV. The phenomenon was consistent with the
results found in stearic acid-based lipid nanoparticles by Ife et al. [56]. As a non-ionic sur-
factant, the surface charge of Tween 80 is not affected by H+ concentration, which can make
the system more stable and therefore confer its stability under acidic conditions. However,
the surfactant (Tween 80) and the oil phase (EO) of the microemulsion were esters, which
undergo hydrolysis under alkaline conditions. With the increase of hydrolysis, the surface
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charge of the microemulsion changed and the distance between the surfactants increased,
which reduced the repulsive force between the microemulsion particles. Therefore, as the
pH increased, the microemulsion polymerized and the particle size increased [37,41,56].
The PDI of the GMEs did not vary significantly within the pH range of 2–12, indicating
that it has an ideal pH stability.

To investigate the effect of ionic strength on its stabilities, the GMEs were prepared
by dilution with different final concentrations of NaCl solution (0, 100, 200, 300, 400, and
500 mM) and the particle size, PDI, and zeta potential were measured. As illustrated
in Table 2, the average particle size and zeta potential of the GMEs increased in a NaCl
concentration-dependent manner. The average particle size of the GME under 500 mM
NaCl was 41.16 ± 1.21 nm, which was more than twice the size of the GME without NaCl.
The zeta potential of the GMEs increased from −7.25 ± 0.69 mV to −1.66 ± 1.78 mV with
the increase of NaCl concentration from 0 to 500 mM. The influence of ionic strength on the
PDI was relatively weak. The PDI increased significantly until concentrations of NaCl up
to 500 mM. This may be attributed to the fact that, with the increase of NaCl concentration,
the ion gradient between the inner and extra microemulsion membranes is increased, and
the surface charge is reduced by the electrostatic shielding effect, which compromises the
solubility of the surfactants and causes the microemulsion particles to coagulate [36,57,58].
In addition, the absorbency of electrolytes on the surface of the microemulsion can affect the
hydration of the surfactant head group and cause a low surface tension, thereby exerting
influence on the stability of the microemulsion [59].

In summary, although the zeta potential of the GMEs varied with pH and ionic
strength, the PDI remained stable under most of the test conditions. The results indicated
that the GMEs had good stability under different pH, temperature, and ionic strength environments.

3.5. Stability of GME in Simulated Gastrointestinal Digestion

In order to examine whether microemulsion could improve the stability of genipin,
the GMEs were digested with simulated gastrointestinal digestive juice and its particle
size, PDI, and zeta potential were measured. The particle size of the GME increased from
17.01 ± 0.53 nm untreated, to 32.44 ± 3.07 nm under digestion with simulated gastric juice,
and finally to 62.93 ± 4.56 nm under intestinal digestion (Figure 3A). Accordingly, the
simulated gastrointestinal digestion also exerted a significant impact on the PDI of the GME,
which increased from 0.143 ± 0.018 to 0.577 ± 0.034 under digestion (Figure 3B). In contrast,
the zeta potential of the GME increased from −9.13± 1.22 mV to 1.49 ± 0.68 mV after sim-
ulated digestion in gastric juice, while the zeta potential was reversed to −2.38 ± 1.14 mV
under simulated intestinal conditions (Figure 3C).

The results showed that the microemulsion system could significantly improve the
stability of genipin under simulated gastrointestinal digestion. Genipin can directly react
with primary ammonia compounds [13]. The encapsulation of genipin in microemulsion
prevents the reaction with amino acids or proteins, which might enhance its bioavailabil-
ity [60]. EO was reported to resist lipolysis in simulated gastrointestinal conditions [61],
and the non-ionic surfactant Tween 80 remained stable in gastric conditions [62], which
may contribute to the stability of the GME in simulated gastrointestinal digestion.
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Figure 3. The effects of simulated gastrointestinal tract digestion on the physical characteristics of
GME. Mean particle size in nm (A), polydispersity index (B), and zeta potential (mV) (C) of GME at
the initial, gastric, and intestinal phases., ** p ≤ 0.01.

3.6. In Vitro Release Kinetics of GME

To investigate the in vitro release behaviors of genipin from GME, the GME and
unencapsulated genipin were dialyzed with pH 1.2 hydrochloric acid aqueous solution,
ultrapure water, and PBS (pH 7.4), respectively, and the release of genipin was measured
by HPLC. Microemulsion demonstrated a significant effect on delaying the release of
genipin. As shown in Figure 4A–C, the cumulative released fraction of unencapsulated
genipin reached the equilibrium state at approximately 2 h, while the genipin cumulative
released equilibrium state of the GME in hydrochloric acid solution, ultrapure water, and
PBS was 8 h, 6 h, and 6 h, respectively. The release rate of the GME in hydrochloric acid
solution (Figure 3A) showed a slow-release behavior compared with that in ultrapure water
(Figure 4B) and PBS (Figure 4C). Non-ionic surfactants, like Tween 80 and CO-40, were
barely affected by pH, which may render it stable under acidic conditions. On the other
hand, the salt ions compete for water molecules in the solution and reduce the solubilization
ability of the surfactant, which may alter the microemulsion structure [59]. This may also
contribute to a delay of genipin release in PBS.

The kinetics models can be used to reveal the release mechanism of the drug from
the microemulsion [63]. To gain an insight into the release mechanism of GME in different
media, the zero-order, first-order, Higuchi, and Weibull models were employed to fit the
GME release profiles (Figure 4D–G). The equations and correlation coefficient (R2) of the
different models are shown in Table 3. The model with the highest correlation coefficient
(R2) was generally considered the most suitable [64]. As can be seen in Table 3, except free
genipin dialyzed with PBS, the release profiles of the other samples fitted well with the
Weibull model, with the R2 values above 0.97942. In contrast, the first-order model fitted
well with all of the in vitro release profiles of genipin, with the R2 values above 0.92898,
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indicating that the first-order model accurately describes the release mechanism as the drug
release from liposomes [65]. According to the first order model, the value of the release
rate constant K1 represented the release rate [66]. The K1 of the GME for dialysis with
hydrochloric acid aqueous solution, ultrapure water, and PBS (pH 7.4) was 0.41, 0.70, and
0.75, respectively, which were significantly lower than that of free genipin, suggesting that
encapsulation could dramatically reduce its release rate.
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Figure 4. In vitro release of genipin in different dialysis media and the models’ fitting curves.
pH = 1.2 aqueous hydrochloric acid (A), water (B), pH = 7.4PBS (C), zero-order model (D), first-order
model (E), Higuchi model (F), and Weibull model (G); * p < 0.05, ** p < 0.01.

3.7. In Vitro Cellular Uptake of GME Study

To evaluate the effect of lipid encapsulation on the genipin bioavailability, the cellular
uptake was carried out using Caco-2 cells. An MTT assay was conducted first to establish
the potential toxicity of the empty microemulsion, free genipin, and GME on the Caco-2
cells. The empty microemulsion did not significantly influence the cell viability within
concentrations below 1500 µg/mL (Figure 5A). As shown in Figure 5B, unencapsulated
genipin and GME had no significant influence on the cell viability of Caco-2 cells within
the concentration range of 0–10 µg/mL. Compared with genipin, the GME did indeed have
an appreciable impact on the Caco-2 cell viability when the concentrations increased up to
25 µg/mL. The cell viability of the control group was approximately 89.97% at 25 µg/mL
of genipin concentration, but for GME treatment, the cell viability decreased to 77.31% at
the same concentration. It has been reported that microemulsions have a dose-dependent
cytotoxicity [67], which may lead to reduced cell viability at high GME concentrations. For
this reason, we selected 10 µg/mL of genipin concentration to evaluate the cell uptake,
ensuring that the GME did not exert a significant effect on the cell viability of Caco-2.
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Table 3. The equations and correlation coefficients (R2) of different release models.

Sample
Release Kinetic Models

Zero-Order First-Order Higuchi Weibull

Genipin (pH = 1.2
hydrochloric acid) Q = 73.95 + 1.80 × t Q = 87.86 × (1 − exp (−2.33 × t)) Q = 10.58 × (tˆ(1/2)) + 61.62 Q = 88.76 × (1 − exp( − (3.55 ×

(t − 0.13))ˆ0.64))

R2 = 0.1672 R2 = 0.98524 R2 = 0.39335 R2 = 0.9889

GME (pH = 1.2
hydrochloric acid) Q = 16.70 + 4.19 × t Q = 80.67 × (1 – exp (−0.41 × t)) Q = 22.67 × (tˆ(1/2)) − 1.37 Q = 78.75 × (1 − exp( − (0.71 ×

(t − 0.17))ˆ0.98))

R2 = 0.59977 R2 = 0.99077 R2 = 0.84307 R2 = 0.99972

Genipin
(water) Q = 80.78 + 0.70 × t Q = 93.13 × (1 – exp (−2.93 × t)) Q = 5.61 × (tˆ(1/2)) + 74.35 Q = 93.43 × (1 − exp( − (0.40 ×

(t + 2.13))ˆ4.48))

R2 = 0.00827 R2 = 0.96665 R2 = 0.17475 R2 = 0.97942

GME
(water) Q = 69.91 + 8.85 × t Q = 92.91 × (1 − exp (−0.70 × t)) Q = 13.38 × (tˆ(1/2)) + 50.35 Q = 92.06 × (1 − exp( − (0.57 ×

(t + 0.25))ˆ1.26))

R2 = 0.09699 R2 = 0.9938 R2 = 0.36512 R2 = 0.99458

Genipin
(pH = 7.4 PBS) Q = 94.74 + 0.16 × t Q = 98.51 × (1 − exp (−3.04 × t)) Q = 1.34 × (tˆ(1/2)) + 91.95 Q = 89.74 × (1 − exp( − (0.05 ×

(t + 40.19))ˆ3.05))

R2 = −0.02465 R2 = 0.92898 R2 = 0.05309 R2 = −25.8365

GME
(pH = 7.4 PBS) Q = 55.46 + 2.93 × t Q = 90.30 × (1 − exp (−0.75 × t)) Q = 19.49 × (tˆ(1/2)) + 29.19 Q = 90.09 × (1 − exp( − (0.72 ×

(t−0.05))ˆ1.08))

R2 = 0.28428 R2 = 0.99861 R2 = 0.61602 R2 = 0.99834
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Figure 5. Cytotoxicity of empty microemulsion, free genipin, and GME on Caco-2 cells. Empty
microemulsion (A); free genipin and GME (B). Error bars are SD (n = 6); ** p ≤ 0.01; ## p ≤ 0.01.
Compared with the group treated with the same concentration of free genipin.

The cellular uptake of unencapsulated genipin and GME was evaluated through the
Caco-2 cells. It was first investigated indirectly using CLSM. The cells were treated with
free coumarin 6 (C6 group), coumarin 6 and genipin mixture (mix group), and coumarin
6-labeled GME (GME group) for 0.5 h, 1.0h, 2.0 h, and 4.0 h. As shown in Figure 6A, the
coumarin 6-labeled GME group showed an obvious fluorescence signal at 1.0 h, while the
fluorescence signal of the other two groups appeared at 2 h. Moreover, the fluorescence
intensity of the GME (GME group) was much stronger than that of the other groups. The
results indicated that microemulsion could improve the cellular uptake rate and quantity
of genipin. The cellular quantities of genipin were further analyzed using HPLC. As
demonstrated in Figure 6B, the intracellular accumulation of genipin in the drug-loaded
microemulsion group was much higher than that of the free genipin group (p < 0.05) at all
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test times. Specifically, the Caco-2 intracellular accumulation of genipin was dependent on
the incubation time within 2 h (Figure 6B), while the quantities of genipin increased at 4 h.
Genipin can react spontaneously with amino acids, and chemical instability may be the
reason for its decrease in concentration [13].

The findings showed that with the microemulsion system, genipin was effectively
internalized into the Caco-2 cells and accumulated in the cytoplasm. This enhanced
penetration may be due to the presence of surfactants, which increased the permeability
of the cell membrane and was conducive to the entry of genipin. In addition, the small
particle size of the GME promoted better hydrophobic interaction with the Caco-2 cell
membrane. The formation of a small particle size emulsion in the cell enhanced the uptake
of genipin, thereby increasing the bioavailability. The GME was an anionic nanoparticle,
which can be endocytosed by interacting with the positive site of the protein in the cell
membrane [68,69]. Due to the repulsive interaction with the negatively charged cell surface,
genipin can be readily captured by the cell [70]. In addition, the GME was an anionic
nanoparticle, which can be endocytosed by interacting with the positive site of the protein
on the cell membrane, and can be captured by the cell due to the repulsive interaction
with the negatively charged cell surface. For the cell lines studied, the internalization
of nanoparticles was highly dependent on size. The particles were only allowed to pass
through the cell membrane when the size was between 10 and 30 nm. Therefore, the
small droplet size of the surfactant in the microemulsion and the amphiphilic nature of the
surfactant promoted genipin diffusion and receptor-mediated endocytosis. In this study,
the GME droplets were smaller than 30 nm. A similar mechanism may cause the increase
of genipin uptake by cells [71].
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Figure 6. Cellular uptake of GME quantified with CLSM and HPLC. Confocal microscopy images
of Caco-2 cells. Scale bar = 20 µm (A); HPLC quantification of genipin uptake by Caco-2 cells
treated by free genipin and GME at 37 ◦C for 0.5, 1, 2, and 4 h (B). Different letters (a,b) indicate
a significant difference at different time in the Genipin group; different letters (A,B,C) indicate a
significant difference at different time in the GME group. * p < 0.05, ** p ≤ 0.01. Compared with the
group treated with the same concentration of free genipin.

3.8. Protective Effect of GME on Aβ-Induced Cytotoxicity of PC12 Cells

Accumulated research data show that genipin possesses therapeutic potential for
central neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s
disease (PD) [72]. To evaluate the influence of microemulsion on its biological activity, the
protective effect of the GME on Aβ-induced PC12 cell cytotoxicity was investigated. First,
the potential toxicity of the GME on PC12 was examined using an MTT assay. Although
the cell viability declined with the increase in GME concentrations, the cell viability was
more than 85% at the concentration of genipin within the range of 0–10 µg/mL (Figure 7).
Therefore, we selected the concentration of genipin within the range of 0–10 µg/mL in our
PC12 cell protection studies.
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Figure 7. Cytotoxicity of GME on PC12 cells. Error bars are SD (n = 6); ** p ≤ 0.01. Compared with
control group.
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To select an appropriate Aβ1-42 concentration for inducing cell damage, the PC12
cells were exposed to different concentrations of Aβ1-42 for 24 h and the cell viability was
examined. As shown in Figure 8A, the survival rate of the PC12 cells declined in a Aβ1-42
dose-dependent manner. At 40 µM, the cell survival rate dropped below 50%. Considering
the cells’ ability, 20 µM Aβ1-42 was used to perform the cellular uptake experiments.
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Figure 8. Neuroprotective effect of GME. Aβ1-42 damage concentration (A), and the effect of free
genipin and GME (B). Different letters (a,b,c,d) indicate a significant difference in the Genipin group;
different letters (A,B,C,D,E) indicate a significant difference in the GME group. * p < 0.05, ** p < 0.01.

To evaluate the protective effect of GMEs on Aβ-induced PC12 cell cytotoxicity, the
PC12 cells were pre-protected by different concentrations of free genipin or GME (with the
final concentration of genipin at 1.25, 2.5, 5, and 10 µg/mL) for 2 h, and were then treated
with β-amyloid (Aβ1-42, 20 µM) for 24 h. As shown in Figure 8B, both free genipin and
GMEs exhibited a protective effect for Aβ1-42-induced PC12 damage in a dose-dependent
manner. As expected, the PC12 cells pre-treated with GME (2.5, 5.0, 10 µg/mL of genipin)
had a significantly higher cell viability than that of free genipin (p < 0.05). The results
indicated that the GME better protected the PC12 cells from the toxicity of Aβ1-42. These
findings demonstrate that GMEs may significantly increase the cellular uptake of drugs
and be an efficient delivery method for the drug treatment of CNS disorders [73].

4. Conclusions

In this study, genipin microemulsions (GMEs) were developed using EO as an oil
phase, Tween 80: CO-40/ethanol (surfactant/co-surfactant ratio 2:1) as Smix, with oil:
Smix ratio of 9:1. The GMEs had a small size (16.17 ± 0.27 nm), with an encapsulation
efficiency (EE) (%) of 64.11 ± 0.58% and demonstrating relatively high environmental
(temperature, pH, and ionic strength) and simulated gastrointestinal digestion stability.
GMEs significantly improve the cellular uptake rate and the protective effect on Aβ1-42-
induced PC12 cell damage. These results indicate that the lipid-based microemulsion
genipin delivery system could serve as a promising approach to improve its application in
food and pharmaceutical industries.
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