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Abstract: The continuous development of new genotyping technologies requires awareness of their
potential advantages and limitations concerning utility for pharmacogenomics (PGx). In this review,
we provide an overview of technologies that can be applied in PGx research and clinical practice.
Most commonly used are single nucleotide variant (SNV) panels which contain a pre-selected panel
of genetic variants. SNV panels offer a short turnaround time and straightforward interpretation,
making them suitable for clinical practice. However, they are limited in their ability to assess rare
and structural variants. Next-generation sequencing (NGS) and long-read sequencing are promising
technologies for the field of PGx research. Both NGS and long-read sequencing often provide more
data and more options with regard to deciphering structural and rare variants compared to SNV
panels—in particular, in regard to the number of variants that can be identified, as well as the option
for haplotype phasing. Nonetheless, while useful for research, not all sequencing data can be applied
to clinical practice yet. Ultimately, selecting the right technology is not a matter of fact but a matter of
choosing the right technique for the right problem.

Keywords: pharmacogenomics; genotype; phenotype; next generation sequencing; long-read sequencing

1. Introduction

The field of pharmacogenomics (PGx) is developing rapidly. The first PGx dose recommendations
for antidepressant and psychiatric drugs were published in 2001, even before the first human genome
was sequenced [1]. An increase in available evidence and the ambition to implement PGx in clinical
practice has led to the need for more comprehensive dosing guidelines and genotyping strategies.
In 2005, the Dutch Pharmacogenetics Working Group (DPWG) was formed to develop evidence-based
PGx guidelines [2]. In 2011, the Clinical Pharmacogenomics Implementation Consortium (CPIC) was
founded [3]. Currently, CPIC and the DPWG combined have issued PGx dose recommendations
covering more than 50 drugs and 21 genes (Table 1) [4,5].

In the last 20 years, there has not only been much progress in development of PGx guidelines, there has
also been a significant technological advancement and rise of new technologies for assessing genetic
variants. At the time of development of the first PGx guideline, only Sanger-based sequencing techniques
and SNV (single nucleotide variant) arrays were available as methods for variant identification. To date,
SNV panel testing remains the most commonly used technology in clinical practice. However, while it
is efficient and comes at low costs, SNV panels cannot detect all important genetic variation such
as rare and structural variants. Currently, multiple high throughput whole genome sequencing
techniques are available, yielding an abundance of genetic information at a fraction of the costs of
20 years ago [6–10]. Nevertheless, these approaches are not yet routinely used in other clinical fields,
despite their potential [11,12].
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Table 1. Characteristics of pharmacogenes in CPIC and DPWG guidelines. Related drugs are all drugs
with dose recommendations. A drug can be related to multiple genes and therefore counted more than
once. The locus size and the number of known rare variants (the number of variants with a minor
allele frequency < 1% in an aggregated population, including singletons) are extracted from Gnomad
(GRCh38). Part of the locus defined as complex is the percentage of the locus defined as a repeat
or segmental duplication extracted from UCSC browser (https://genome.ucsc.edu). CPIC: Clinical
Pharmacogenetic Implementation Consortium, DPWG: Dutch Pharmacogenetics Working Group.

Protein Gene
Related Drugs Locus

Size (bp)
Rare Variants, n (%
of Known Variants)

Part of Locus Defined as
Complex, %(bp)CPIC DPWG

CACNA1S CACNA1S 7 - 73,055 2520 (98%) 33.3
CFTR CFTR 1 - 250,187 1684 (99%) 42.2

CYP2B6 CYP2B6 1 1 27,149 761 (98%) 100.0
CYP2C9 CYP2C9 10 2 50,734 632 (98%) 72.0

CYP2C19 CYP2C19 15 10 90,525 712 (99%) 83.6
CYP2D6 CYP2D6 14 21 4408 992 (97%) 100.0
CYP3A5 CYP3A5 1 1 31,833 643 (98%) 49.4
CYP4F2 CYP4F2 1 - 20,098 766 (97%) 51.4

DPD DPYD 2 4 917,258 1211 (98%) 40.0
FACT. V
LEIDEN

FACT. V
LEIDEN - 1 * 72,423 1679 (97%) 41.9

G6PD G6PD 1 - 16,183 465 (98%) 36.4
HLA-A HLA-A 2 1 4625 423 (71%) 100.0
HLA-B HLA-B 6 7 87,698 308 (78%) 62.1
IFNL3 IFNL3 2 - 1577 317 (95%) 100.0
IFNL4 IFNL4 2 - 3543 404 (97%) 100.0

NUDT15 NUDT15 3 3 9656 244 (99%) 64.7
RYR-1 RYR1 7 - 153,866 6584 (98%) 51.4

SLCO1B1 SLCO1B1 1 2 108,045 951 (96%) 69.6
TPMT TPMT 3 3 26,764 346 (97%) 52.3

UGT1A1 UGT1A1 1 1 13,052 470 (99%) 40.3
VKORC1 VKORC1 1 3 5139 370 (98%) 41.8

* This interaction is aimed at the entire group of drugs classified as oral contraceptives with estrogen.

In this paper, we review the application of genotyping technologies for PGx. We first discuss the use of
SNV panels, which are the most commonly used approach for clinical PGx. Next, we discuss the potential
of next generation sequencing (NGS) and long-read sequencing and their current use in PGx. We review
the challenges in PGx, both for clinical as well as research purposes, and the way PGx technologies can help
in solving them. We mainly focus on germline variants and their role in PGx. Nonetheless, the outlined
principles hold true for somatic mutations [13–15]. Additionally, implementation and adoption of PGx
in clinical practice is outside the scope of this review and has been extensively discussed in previous
publications [16–18].

2. SNV Panels: Current Clinical Practice

SNV panel testing is the most commonly used technology in PGx practice, either through commercially
available micro-array platforms or with custom arrays. The arrays typically contain a preselected set of
SNVs, which, depending on the array and platform, can range from a few variants in a single gene to
thousands of variants genome wide. Commercially available PGx arrays typically contain variants that are
linked to drug response in PGx guidelines or on PharmGKB [19]. The evidence underlying the selected
variants can vary, from small arrays containing only the most strongly associated variants, to very
large arrays containing all variants potentially or theoretically associated with drug response—for
example, including all known drug-related genes. Almost all available arrays use PCR, sequencing
by synthesis and nanospheres or beads, combined with a form of fluorescence or chemiluminescence
detection to identify which variant is present at the site of interest [20–22]. Another technology is the
use of mass spectrometry, relying on differences in mass between wildtype and mutant nucleotides [23].
Detailed descriptions of these techniques have been described previously [3,24–28]. The pre-selection
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of variants and the relatively low amount of data to process allow for a quick result at low costs
(Table 2).

Table 2. Performance and applicability of available genotyping methods used for PGx. PGx:
pharmacogenomics, WES: whole exome sequencing, WGS: whole genome sequencing. NA: not applicable,
in this case due to a whole gene/genome coverage and therefore no need for imputation in this region.
This table aims to serve as a guide to help select the best technology for the problem at hand. ++ indicates
the best score on the parameter, + indicates a good score, - indicates a bad score, - - indicates the worst score
on the parameters. Depending on the specific purpose, the weight of the parameters in the selection of
the appropriate technology may vary.

SNV Panel Short-Read Seq Long-Read Seq

PGx
Panel

Whole
Genome

Panel

PGx
Panel WES WGS PGx

Panel WGS

Turnaround
Time Wetlab * ++ + + + +/- - - -

Haplotype
phasing

Computational - +/- + +/- + ++ ++

Direct - - - - - ++ ++

Imputation - +/- +/- +/- NA NA NA

Coverage of
PGx variation + +/- ++ +/- ++ ++ ++

Detection of
rare variants † + + ++ +/- ++ ++ ++

Detection of
variants

outside the
predefined

gene/variant
panel

- - - - -/+ -/+ ++ ++ ++

Detection of
structural and

complex
variants

- - - - + +/- + ++ ++

Turnaround
time data

processing *
++ ++ + + +/- - - -

Costs ‡ [29]

Investment ++ + - - - - -

Running
costs per
sample

+/- ++ +/- +/- - +/- -

† For SNV panels, it is assumed that the variants are present in the selected variant panel. * A short turnaround time
is indicated by the +. ‡ Lower costs are indicated by the +.

2.1. Commercial Arrays

There are many arrays available that can be used for PGx; a full overview of these arrays is
beyond the scope of this review. Two of the smaller commercial arrays are the VeraCode ADME
core panel (Illumina Inc. San Diego, CA, USA) and the VeriDose core panel (Agena BioScience,
San Diego, CA, USA). The VeraCode consists of 184 variants in 34 pharmacogenes [20] and the
Veridose contains 68 variants in 20 genes and 5 copy number targets for CYP2D6 [30]. The ADME core
variant list is based on an expert gene panel and contains the most biologically relevant variants within
these genes [20,31]. For the VeriDose, genes with a known clinical impact and their common clinically
actionable variants are selected. Additionally, it is possible to expand the panel if so desired [30].
Both panels provide sufficient coverage for clinical PGx by covering the most common variants in
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actionable pharmacogenes. More extensive panels are the pharmacofocus with (2000 variants in
150 genes including CNVs (Copy Number Variants) (ThermoFisher Scientific, Waltham, MA, USA) [32]
and the pharmacoscan with 4627 variants in 1191 genes (ThermoFisher Scientific) [22]. The latter contain
nearly all variants from the DMET and Illumina ADME core panel, in addition to all genes and variants
with clinical annotations in CPIC and PharmGKB (Pharmacogenomics knowledge base), HLA genes and
sample ID and tracking markers. These types of arrays are widely used in clinical PGx implementation
studies. For example, the DMET array is used in the PG4KDS study from St. Jude’s children’s research
hospital [3] and the VeraCode ADME core panel is used in the PREDICT study [33]. Both these studies
use only a subset of the variants available on the panel for the clinical implementation part of the
studies [3,33]. Only the variants in the genes of interest and the variants with sufficient data are
reported for clinical practice. The remainder of the genetic data is, with informed consent permission,
stored and can be used for research purposes or for later clinical use. For a full overview of studies
using PGx panel approaches, we refer to previous publications providing such an overview [11,34].

2.2. Custom Arrays

Several of the commercial arrays contain a high number of variants, making a fast turnaround time
and interpretation challenging. Additionally, these arrays will include variants which may not be of
direct interest in a clinical setting as panels often include all known PGx variants regardless of the level
of evidence supporting their clinical utility. This has driven many institutions to develop their own
custom clinical array with a more focused set of clinically actionable variants. Typically, these custom
arrays are performed using single gene-based testing covering only the variants with direct clinical
applicability yet limiting broad applicability. To be able to test a broad set of variants while maintaining
a rapid turnaround time, companies have developed customizable arrays. One example frequently
used for clinical PGx is the OpenArray (Thermofisher scientific). This array can detect between
12 and 240 variants using standard TaqMan technology [35]. Selected TaqMan assays are spotted
on a chip based on the clients need. Each chip contains wells for the patient samples; in each of
these wells, through-holes are present which contain the assays desired. This format allows for a
thorough characterization of a few genes as well as for a broader approach focused on a panel of
common variants in multiple genes. This array has been used in clinical implementation studies
as well. For example, in the INGENIOUS study it was used to interrogate a panel of 43 variants in
14 genes [36]. A similar approach was used by the Ubiquitous pharmacogenomics (U-PGx) consortium.
The U-PGx consortium’s initiated the PREPARE study aimed at collecting evidence of the clinical utility
of a pre-emptive PGx panel consisting of 58 SNVs in 14 pharmacogenes [34]. The panel covers the
most common variants in all actionable genes included in the DPWG guidelines [37] and is analyzed
with KASP technology using the SNPline (LGC) [38].

2.3. Array Developments

The above-mentioned commercial and custom arrays are developed specifically for PGx.
However, there are also multiple arrays with genome-wide coverage available. An added benefit of
genome wide arrays is that they also allow for GWAS (Genome Wide Association Study) analysis
in addition to providing PGx information. Examples of such arrays are the Illumina GSA (Global
Screening Array) which contains over 600,000 SNVs genome-wide, including 17,750 PGx markers [39]
and the Axiom arrays (Thermofisher scientific), which contain genome-wide coverage specifically for a
certain population [40]. Nonetheless, these arrays often miss dense coverage of PGx regions and not all
critical SNVs are available on the array. For example, in the case of the GSA v3.0, the SNVs for CYP2D6*4
and CYP2C19*9 and target CNV testing are not included. This is particularly concerning for the
CYP2D6 gene. The CYP2D6 enzyme is responsible for 25–30% of commonly prescribed drugs, making
sufficient coverage on variants on the CYP2D6 gene clinical important [41]. The CYP2D6*4 allele is the
most frequent null-allele in Caucasians, with the key SNV (rs3892097; NC_000022.11:g.42128945C>T)
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occurring in 19% of the European (non-Finnish) population [42,43]. Additionally, the GSA v3.0 does
not contain probes for direct CNV detection.

3. Next Generation Sequencing

3.1. Next Generation Sequencing Technologies

NGS technologies are not yet routinely applied in clinical PGx. However, they are often used in
PGx research and disease genetics. While SNV panels only cover a limited set of selected variants,
sequencing data cover the full exome or genome. Technical details of NGS technologies have been
extensively reviewed elsewhere [44–46]. In short, NGS technologies are capable of sequencing reads of
100–200 bp in a high throughput manner, allowing for the sequencing of a full genome in a matter of
hours. These reads are aligned to the reference genome and variants are identified based on deviations
from the reference.

NGS applications can be roughly categorized into three approaches. First, whole exome sequencing
(WES) focusing on sequencing the coding regions of the genome, covering approximately 1–2% of
the entire genome. Secondly, whole genome sequencing (WGS) which is aimed at sequencing the
entire genome, both coding and non-coding regions. Lastly, targeted sequencing of a region or panel of
genes of interest [44–46]. While NGS can be performed at relatively low costs, the large amount of data
makes processing more challenging (Table 2).

3.2. Use of NGS for Pharmacogenomics

While NGS has become the standard for clinical diagnostics and in research, it is yet to be widely
adopted for clinical PGx. Nonetheless, in a research setting NGS has been used for PGx for several
years. Multiple studies have been conducted investigating the accuracy of NGS technologies in PGx
as well as the applicability of an NGS sequencing panel or of the repurposing of clinical NGS data
for PGx [9,10,47–51]. Yang et al. performed a three-way analysis with the DMET, WES and WGS,
to investigate the concordance between PGx genotyping calls based on these different technologies.
They showed a 94% concordance between the DMET and WES, and a 96% concordance between
the DMET and WGS [47]. Similar results were reported by other groups, all of which report the
superior results obtained from sequencing compared to orthogonal testing [49–53]. The difference
in concordance between WES and the DMET array (94%), and WGS and the DMET array (96%)
can be explained by the genomic coverage of each approach. WES only covers the exons and
can therefore, by definition, not cover all relevant variants if they are located in the intronic or
intergenic regions. WGS, on the other hand, also covers intronic regions leading to an expanded
coverage. Nonetheless, intronic variants are of clinical importance in PGx. For example, one of the key
CYP2C19*17 variants (rs12248560; NC_000010.11:g.94761900C>T) is located upstream of the CYP2C19
locus. Other examples are CYP3A5*3 and *5 as well as CYP2D6*4 and *41 [54]. A targeted sequencing
approach can combine the lower costs of WES with the advances of WGS data. This type of panel
only captures genes of interest, both intronic and exonic regions. This results in lower costs while
maintaining the accuracy and abundance of data of WGS. One such approach is the PGRNseq panel [52].
This panel is based on full-gene sequencing of a panel of 84 pharmacogenes using NGS, it has also
been used in clinical implementation studies showing promising results [49,55]. Another approach is
the PGxSeq panel described by Gulilat et al., which covers 100 pharmacogenes [56].

3.3. Repurposing of Clinical Genetics Data

The abovementioned approaches are aimed at generating novel sequencing data with the goal
of providing PGx results, whether it be panel, WES or WGS-based. However, in clinical diagnostics,
the use of NGS is already standard practice in many centers leading to vast amounts of sequencing
data. Several groups have investigated the feasibility of repurposing these data for PGx, by extracting
a panel of evidence-based PGx variants from the data and translating this into a clinically applicable
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result [9,10]. The same type of analysis is performed for large populations studies, such as the Estonian
biobank [8], the University of Colorado [57], SWEDEGENE [7] and the AllofUs initiative [58,59].
Unfortunately, the utility of the repurposing of data is dependent on the capture panel used in the
original sequencing. This is particularly a problem in the use of WES data, as mentioned above, several
important PGx variants are located in intronic regions which are not included in WES capture kits [54].
Nonetheless, even with these limitations, high percentages (>85%) of individuals with actionable
phenotypes are identified [9,10,60], but one should bear in mind that important variants are missing.

4. Long-Read Sequencing

4.1. Long-Read Sequencing

Long-read sequencing technologies have emerged in the playing field and are slowly gaining
ground over the short-read approaches in the field of research [46,61]. Both Pacific Bioscience (PacBio)
technology as well as Oxford Nanopore Technologies (ONT) are becoming an integrated part of genetic
approaches [12]. PacBio uses SMRT (single molecule real-time)-sequencing to be able to sequence reads
up to 45 kB. SMRT cells make use of microwells, each of which contains one single strand of DNA which
is then sequenced by assembly and recorded in real time [62]. Oxford Nanopore Technologies uses
nanopores through which the DNA strand is pulled, the disruption in the current is specific to a codon,
allowing for the full assembly of the DNA sequence [63]. By correcting for the randomly distributed
errors in single cell sequencing, the consensus reads can obtain very high accuracy [12,62,64]. While an
abundance of data can be generated by long-read sequencing, the processing is significantly more
intensive compared to SNV panels and NGS (Table 2).

4.2. Long-Read Sequencing for PGx

Long-read sequencing has been shown to be capable of solving complex loci genome wide [12,64].
Current disease diagnostics already use long-read sequencing for complex genetic diseases such as the
ATXN10 repeats in Parkinson’s disease [65] and tandem repeats in the FMR1 gene associated with
Fragile X syndrome [66]. Nonetheless, only a few long-read sequencing studies for pharmacogenes
have been conducted. The most thoroughly investigated complex locus in PGx is the CYP2D6 gene,
which contains both SNVs and SVs. (Structural Variants) It has been shown that with long-read
sequencing, the CYP2D6 locus (~6.6 kbp) can be sequenced in one full read and be fully resolved
into phased haplotypes, including structural variants [67,68]. The same has been observed for the
notoriously complex HLA genes [12,64]. Long-read sequencing in PGx is currently, to our knowledge,
limited to single gene studies and no large-scale studies applying long-read sequencing for clinical
PGx to a panel of genes have been conducted.

5. Challenges

5.1. Drug Metabolizer Phenotype Inference

Prior to application in clinical practice, SNV data are translated into predicted drug metabolizer
phenotypes. Many of the arrays mentioned above are developed based on the SNVs which are
present in the genotype nomenclature. For CYP enzymes, haplotypes are named with the star (*)
nomenclature [42,69]. All variants making up a *-allele are described by the Pharmacogene variation
Consortium (PharmVar, https://www.pharmvar.org). The combination of the two *-alleles present
in an individual is subsequently translated into a predicted drug metabolizer phenotype. For most
pharmacogenes, there are four metabolizer phenotypes: normal metabolizers (NMs) displaying
full protein function, intermediate metabolizers (IMs) associated with decreased protein function,
poor metabolizers (PMs) indicating absence of protein function and ultra-rapid metabolizers (UMs),
which are associated with increased enzyme function.

https://www.pharmvar.org
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Depending on the number of variants and the presence of the variants in translation guidelines, the
interpretation is relatively straightforward. However, if there are many variants leading to *-haplotypes
of unknown function present on the array, the interpretation is challenging. Furthermore, PharmVar
describes the *-haplotypes extensively, defining large numbers haplotypes and sub haplotypes which
are constantly increasing. In theory, all variants defined by PharmVar at a certain point in time
could be included on an SNV panel. Nonetheless, with over 2000 variants known in CYP2D6 alone,
this would quickly grow to a very large panel which is difficult to apply and interpret in clinical
practice [42]. As there is no standardization in regard to the variants which need to be tested in a clinical
setting, every array contains its own set of variants. This can lead to differences in regard to assigned
haplotypes when testing the same DNA in different laboratories [49]. For example, results from the
pharmacoscan (4627 variants) will be much more extensive and detailed compared to the VeriDose
Core panel (68 variants) [22,30]. The pharmacoscan analysis might also result in more variants and
haplotypes of unknown effect while, on the other hand, the VeriDose core panel might miss variants
with a known effect.

The use of sequencing data enables the inclusion of almost every known variant in the *-haplotype
assignments and subsequently into predicted phenotypes. However, with this abundance of variant
data comes an increased difficulty in haplotype assignments. Several tools have been developed to
assign *-allele haplotypes based on sequencing data, incorporating all variants in the assignment.
Yet, as Caspar et al. have shown, these tools are not performing perfectly with errors in the assigned
haplotypes compared to the consensus genotype from GeT-RM [60]. An error is here defined as a
haplotype assignment which differs from the consensus. The best performing tool was Aldy [70]
with 2 out of 21 errors. Astrolab [71] and Stargazer [72] both performed worse with 9 and 10 errors,
respectively. Similar results were reported by Twesigomwe et al. in a CYP2D6 specific study [73].
All tools use the variants and *-allele translation in PharmVar as their database. However, PharmVar
is updated continuously leading to potential differences in assignments if not every tool is updated
at the same time. Additionally, depending on the data on which the tools are trained and tested,
they might be more sensitive for specific variants and alleles [60]. Even the most extensive tools in
regard to *-haplotype calling might not be suitable for clinical practice as they contain variants of
which the effect is unknown. Furthermore, for clinical implementation only, the variants of known
functional effect are relevant, resulting in a need for translation tools focused on clinical implementation
only. However, selecting which variants are of direct clinical relevance remains challenging and
requires attention and standardization [37,74]. SNV panels are usually designed to contain known
variants, often with known clinical effect. This makes them easy to implement in clinical practice with
standardized variant to haplotype translations. Sequencing data, on the other hand, contain more
variant information and allow for the extraction of additional variants should they become of interest.
Therefore, sequencing based translations can be updated with the development of more guidelines
and insights into variant effects. Nonetheless, this does come with more intense data processing.

5.2. Imputation

To expand the number of interrogated SNVs, imputation can be used for technologies that do not
cover the entire genome (Table 2). Imputation is predominantly used in GWAS analysis and to expand
the PGx panel in genome wide arrays [8]. With imputation, the presence of a genomic variant is
inferred based on the absence or presence of a linked SNV. These predictions all come with a probability
for the occurrence of the SNV of interest. Often only imputations with a high probability are included
(e.g., >90%) to avoid inaccurate assignments. Reisberg et al. have shown that imputation accuracies as
high as 99% can be reached for PGx variants [8]. Nevertheless, a probability of 90% also means that there
is a 10% change that the imputed variant is not correct. While this is certainly acceptable for population
studies, it is not sufficient for tailoring drug treatment in an individual patient. Furthermore, to reach
high imputation accuracy, an imputation dataset specific to each patient’s ethnical background is
needed as the level of linkage disequilibrium (LD) between two SNVs can differ between different
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populations [8,75]. One clear example of the differences in LD between populations is the HLA tagging
SNVs; to identify the HLA-A*3101 allele, associated with carbamazepine toxicity, a linked SNV is
used. In Caucasians, the rs1061235 (NC_000006.12:g.29945521A>T) variant is in full LD with the *3101
haplotype, therefore the presence of the HLA-A*3101 allele can be inferred based on the presence of
the rs1061235 variant [76]. However, in the Asian population, this variant is not in LD with the *3101
allele. For individuals of Asian descent, the rs1633021 (NC_000006.12:g.29779092T>C) variant can
be used as a linked SNV as this variant is in LD with HLA-A*3101 in this population [77]. Using the
Caucasian-linked SNV in the wrong population can lead to errors in the inferred haplotype, phenotype
and ultimately lead to treatment errors. Therefore, the application of imputation should be limited to
research purposes until the reliability for an individual patient has been proven.

5.3. Haplotype Phasing

In addition to variant expansion, imputation can also be used for haplotype phasing (Table 2).
With haplotype phasing it can be determined if variants are located on the same allele or if they are on
different alleles, potentially leading to differences in phenotype assignment [10,75,78]. The problem of
phasing only exists when >1 heterozygous variant is present. However, given the polymorphic nature
of many pharmacogenes, the likelihood of identifying multiple heterozygous variants within the gene
locus of interest is highly likely [79]. The *-nomenclature is designed to describe only the variants in one
allele, assuming that the variants have been phased into two separate alleles. Nonetheless, there are
no clear guidelines available describing in what manner variants should be assigned to either one of
the alleles. Both CPIC and the DPWG report which diplotypes translate into which phenotypes and
occasionally which variants are needed to assign a specific haplotype but not on the phasing of variants.
Haplotype phasing can, however, make the difference between a Poor Metabolizer (two loss-of-function
variants on different alleles) and an Intermediate Metabolizer (two loss-of-function variants on the
same allele and no variants on the other allele). Especially since many pharmacogenomic haplotypes
are characterized by multiple variants, in theory all of them can have an impact on protein function.
Including phasing in pharmacogenomics can, in some patients, improve haplotype assignments
and therefore phenotype prediction. One example is the CYP2B6 gene for which phasing has been
shown to be relevant [10]. When the rs3745274 (NC_000019.10:g.41006936G>T) and the rs2279343
(NC_000019.10:g.41009358A>G) variant are both detected, conventional methods assume they are
located on the same allele based on linkage disequilibrium and assign a *6 haplotype (Figure 1).
Additionally, CYP2B6*6 is the more common haplotype in most populations. The CYP2B6*6 haplotype
occurs around 10% in Asians and up to 40% in the African population. CYP2B6*4 and *9 occur between
0 and 5% in all populations [80]. Clinical data show that in 1.5% of the individuals who carry both
these variants, they are located on different alleles, resulting in a *4/*9 haplotype. In this case, both a
CYP2B6*1/*6 and a CYP2B6*4/*9 call result in the same phenotype making the clinical impact limited [5].
However, for other variants, this might not be the case. Imputation could be used to infer haplotype
phasing, by using the linkage between two observed SNVs to predict if they are located on the same
allele or on different alleles. Nevertheless, the same limitations to imputation as described above
apply [10].

With NGS, it is possible to phase read to their allele of origin without the need for pedigree information
or computational phasing. For NGS, linked reads can be used for this purpose. Linked-read sequencing
is based on partitioning the DNA with barcoded gel beads resulting in barcoded short fragments
which can then be sequenced with conventional short-read methods. Due to the barcodes, every read
can be linked back to the original position and artificial long input DNA can be reconstructed [81].
For long-read sequencing, the length of the reads in itself can be utilized for haplotype phasing.
By overlapping the long-reads, large haploblocks can be formed. Nonetheless, large regions which are
homozygous can cause an inability to phase large haploblocks [64].
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Figure 1. Haplotype phasing in CYP2B6. Inability to phase the rs3745274 (NC_000019.10:g.41006936G>T)
and the rs2279343 (NC_000019.10:g.41009358A>G) to the correct allele can result in differences in
*-haplotype assignment. Panel (A) shows the most common situation in individuals who are
heterozygous for both variants, the CYP2B6*1/*6 diplotype. Panel (B) shows the alternative conformation
where variants are located on opposing alleles leading to a CYP2B6*4/*9 diplotype. Both situations
result in the same predicted CYP2B6 metabolizer phenotype (intermediate metabolizer). Conventional
methods using linkage disequilibrium assume the variants to be located on the same allele, resulting in
a CYP2B6*6 assignment. wt: Wild type.

5.4. Structural Variants

It has been shown that the majority of pharmacogenes is largely characterized by complex regions,
such as CNVs, structural rearrangements and repetitive sections (Table 1) [82]. Full gene deletions or
duplications of CYP2D6 occur in 5–10% of the population [83]. Nonetheless, not all arrays contain
probes that can directly detect CNVs. To still be able to obtain CNV data from microarrays, several tools
are available. Examples of these types of tools are PennCNV [84], QuantiSNP [85], GenoCN [86] and
Nexus [87]. These tools make use of the B allele frequency and the log R ratio which are extracted
from the array data. SNP array make use of common SNPs indicated by an A or B (allele) variant. In a
normal situation of two copies, there is either an AA, AB or BB at a specific locus. The presence of a
deletion or a duplication can be derived from an aberrant number of either an A or a B allele frequency,
which is reflected in the B allele frequency parameter. The log R ratio is the log of the ratio between
observed and expected intensity values at each variant. It reflects the intensity of the signal at each
variant site, a deviation from the expected intensity signal. [88,89]. While results seem promising [8],
full validation of these tools for PGx is still needed.

NGS data can resolve all SNVs in the sequenced region, nevertheless, it is difficult to assess CNVs
based on sequencing data alone. To aid CNV calling with NGS, several tools have been developed;
XHMM [90], CoNIFER [91], Varseq [92] and CNVnator [93], all of which use sequencing depth as an
indication of a gene deletion or duplication. These tools do require large datasets and a sufficient
range in depth to identify CNVs; details of the use of sequencing depth for CNV calling have been
reviewed previously [90,94,95]. Yao et al. tested these three tools on their performance on CNVs of
different sizes. Unfortunately, the agreement between the methods was low and there was a bias
towards the smaller CNVs as opposed to large CNVs, potentially caused by the limitations of read
length [94]. Nonetheless, the advancements in this field evolve rapidly, leading to several laboratories
which are now able to reliably identify CNV based on short-read sequencing data. Efforts of using
sequencing based CNV calling for CYP2D6 have shown mixed results [51,56]. Cohn et al. were able to
accurately determine CNV status for 87 out of 98 patients. For nine, the CNV calls were inconclusive,
and for a further two, there was a discrepant call between sequencing-based CNV calling and a
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targeted panel [51]. Gulilat et al., including 235 subjects, were able to confirm all sequencing-based
CNV variants with panel-based testing [56].

The distinction between a pharmacogene and a pseudogene can be even more challenging.
For example, CYP2D6 and CYP2D7 share >98% of their sequence, making it difficult to determine
from which gene a sequencing read originates [67,96,97]. Due to the relatively short reads (100–200 bp),
these complex regions cannot always be well characterized by NGS as reads are not long enough
to distinguish between different locations in the complex region [98]. Long-read sequencing, on the
other hand, allows for unambiguous mapping of a sequence to the gene of origin without interference
of pseudogenes. Additionally, complex regions can be solved in one long read. Indels (deletions or
duplications of 1–1000 base pairs) cannot always be accurately determined with short reads as the
indel length might surpass the maximum read length. With a read length around 10 kbp in long-read
sequencing any structural variants within this maximum length can be covered in one read [64,67,68].

The detection of CNVs in CYP2D6 is routine in clinical practice. However, the full characterization
of the complexity of pharmacogenes is still in the research phase, relying on the further development
of long-read sequencing and bioinformatic tools.

5.5. Variants of Unknown Effect

A clear benefit of sequencing over SNV panels is the increase in the number of variants that can
be identified. While SNV-panel approaches remain limited to the pre-selected variants, sequencing
data can help identify variants in the entire sequenced region, including rare variants (Table 2).
As mentioned previously, over 90% of the identified variants in pharmacogenes are classified as a
rare variant [99–101] (Table 1). Additionally, rare variants are expected to be more deleterious than
common variants resulting in a potential higher impact on protein function [82]. To collect the most
data on rare and novel variants, a WGS or targeted whole gene sequencing approach would be most
suitable. Nevertheless, due to a lack of knowledge regarding the impact of these variants, they cannot
yet be applied in clinical practice [83,98,101–103]. As they are by definition not commonly observed,
it is difficult to assign a functional effect. Several strategies have been proposed to detect the impact of
rare variants, of which the most common options are the use of cell-line models, in silico predictions
or by studying patients displaying the most extreme phenotypes [104]. For clinical application,
in vivo studies are most suitable. However, due to the low frequency of these variants, it is nearly
impossible to have an appropriate sample size to study these variants [99,105]. In vitro analyses
are more easily accessible and generally show a good indication of the effect of a particular variant.
Nonetheless, in vitro findings can deviate from the in vivo situation and can still be too laborious for
high throughput analyses. Therefore, for high throughput variant predictions, the in silico approach is
most desirable. In silico models are based on sequence conservation, the physiochemical and crystal
structure of the protein, or on evolutionary scores [102,106]. One, or a combination, of these factors is
used to predict the impact the variant will have on enzyme function. To assess the applicability of
in silico tools in pharmacogenetics, Han et al. conducted a study to test the accuracy of these tools.
They showed that for 10 selected SNPs, the best models accurately predicted the functionality of 80% of
the SNPs [107]. In addition, Hao et al. showed that 68% of non-synonymous SNPs in phase II enzyme
genes were correctly predicted to be damaging [108]. These results indicate that the applicability of
these assays is still limited. Ultimately, collecting more genetic, accompanying clinical data and better
prediction models can help us understand the role of these rare variants to be able to use them in
clinical practice.

5.6. Pharmacogenomics and Disease Genes

Moreover, variants that are disease predictors can be encountered. Complex examples of this are
genes which are both pharmacogenes as well as disease-causing genes. RYR1 is linked to an increased
risk of malignant hyperthermia which could classify it as a disease gene and, as such, it is included
in the ACMG guidelines [109]. However, one of the factors that could cause the MH in susceptible
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patients is volatile anesthetics which could classify RYR1 as a pharmacogene, as well as it interacting
with drugs [110].

In summary, the number of available genotyping technologies for PGx has evolved rapidly in
recent years and continues to expand. Ultimately, selecting the right technology is not a matter of fact
but a matter of choosing the right technique for the right problem.
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