
Human Papillomavirus 16 E5 Modulates the Expression
of Host MicroRNAs
Dario Greco1,2., Niina Kivi3., Kui Qian1, Suvi-Katri Leivonen4, Petri Auvinen1, Eeva Auvinen3,5*

1 DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland, 2 Department of Bioscience and Nutrition, Karolinska

Institutet, Stockholm, Sweden, 3 Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland, 4 Medical Biotechnology, VTT Technical Research

Centre of Finland, Turku, Finland, 5 Department of Virology and Immunology, Helsinki University Hospital Laboratory, Helsinki, Finland

Abstract

Human papillomavirus (HPV) infection is a prerequisite of developing cervical cancer, approximately half of which are
associated with HPV type 16. HPV 16 encodes three oncogenes, E5, E6, and E7, of which E5 is the least studied so far. Its
roles in regulating replication and pathogenesis of HPV are not fully understood. Here we utilize high-throughput screening
to coordinately investigate the effect of E5 on the expression of host protein-coding and microRNA genes. MicroRNAs form
a class of 22nt long noncoding RNAs with regulatory activity. Among the altered cellular microRNAs we focus on the
alteration in the expression of miR-146a, miR-203 and miR-324-5p and their target genes in a time interval of 96 hours of E5
induction. Our results indicate that HPV infection and subsequent transformation take place through complex regulatory
patterns of gene expression in the host cells, part of which are regulated by the E5 protein.
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Introduction

Human papillomavirus (HPV) infection is the major cause of

cervical cancer [1] and an important etiologic agent in other

anogenital cancers (reviewed in [2] and [3]). Cervical infections by

high-risk HPV genotypes cause virtually all cervical cancers and

their immediate precursors worldwide [4]. The most prevalent

HPV type found in cervical cancer is HPV 16, which encodes

three oncoproteins: E5, E6 and E7. The E6 and E7 oncoproteins

can bind to and stimulate the degradation of the tumor

suppressors p53 [5,6,7] and pRb [8]. Their oncogenic potentials

are largely correlated with these interactions [9,10] but their

interference with the functions of other intracellular proteins plays

an important role as well [11,12].

The E5 protein is a 83 amino acid long highly hydrophobic

peptide associated with cellular membranes [13,14,15,16,17]. It

has been reported to transform tissue-cultured murine fibroblasts

and keratinocytes alone [18,19] as well as to enhance the

immortalization potential of E6 and E7 proteins [20]. HPV 16

E5 increases tumorigenicity in nude mice [21] and contributes to

skin carcinogenesis in transgenic mice [22,23]. It has been

suggested that HPV 16 E5 acts as an oncogene primarily by

enhancing the activation of the epidermal growth factor receptor

in a ligand-dependent manner [19,24,25,26], but the mechanisms

of E5 action have not yet been established, due to a limited

number of studies. Very recently it was suggested that E5 alone

might have high oncogenic potential, because E5 transgenic mice

were shown to develop cervical cancer after prolonged estrogen

treatment [27]. Additionally, E5 potentiated the effect of E6 and

E7 oncogenes in inducing cervical disease.

We have previously shown that E5 alters the expression of a

number of host protein coding genes in cultured human

keratinocytes [28]. Specifically, we observed that genes implicated

in cell motility and cell adhesion are affected by E5 expression. We

also showed enhanced motility of E5 expressing cells in an in vivo

wound healing experiment, which suggests that E5 is implicated in

the carcinogenic process [28].

MicroRNAs (miRNAs) are 20–25 nucleotides long non-coding

RNAs which modulate gene expression by binding to comple-

mentary segments present in the 39 UTR of the mRNAs of protein

coding genes [29]. MicroRNAs are found in the human genome as

independent loci or within intronic regions of other genes [30,31]

and they are usually transcribed by RNA polymerase II as primary

miRNAs (pri-miRNAa) [32]. Pri-miRNAs are cleaved to pre-

miRNAs, which are exported from the nucleus in a process

involving the Exportin-5 protein. Intronic pre-miRNAs are

generated as a product of splicing of the host gene [33]. In the

cytoplasm, the pre-miRNA hairpins are cleaved by the RNase III

enzyme Dicer [34] and the mature miRNAs are incorporated into

the RNA-induced silencing complex (RISC), where they bind to

their targets.

Expression of microRNAs is altered in a number of human

diseases spanning from psychiatric disorders [35] to several

cancers [36]. Moreover, they play a major role in regulating host

gene expression in many viral infections [37]. Contrary to several

other DNA tumor viruses, no miRNA species encoded by
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papillomaviruses have been found [38,39,40]. However, alter-

ations in cellular miRNA patterns in cervical cancer tissue or

cervical cancer cells have been reported [39,40,41]. Downregu-

lation of human miR-218 in cervical cancer cells was specifically

addressed to the HPV 16 E6 oncogene, and other high-risk HPV

but not low-risk HPV E6 proteins were shown to have similar

effect [41]. Human miR-218 functions by downregulating the

expression of its target gene LAMB3, which is a component of the

laminin-5 receptor expressed in the basal lamina of the epithelium.

Laminin-5 enhances cellular migration and tumorigenicity, and its

previously known overexpression in cervical cancer could thus be

shown to be, at least partially, due to miR-218. The same authors

showed downregulation of the tumor-suppressive miR-34a due to

HPV E6 oncogene expression [41]. miR-21 has been identified as

a cancer-associated miRNA overexpressed in many cancers

including cervical cancer [39,40]. It was recently shown that

inhibition of miR-21 in HPV 18-containing HeLa cervical cancer

cells causes a strong suppression of cell proliferation [42].

Downregulation of miR-143 in cervical cancer cell lines has also

been reported [39]. It thus seems obvious that, similar to other

cancers, microRNAs also play an important role in the

development of cervical cancer.

Here, in order to explore the specific effects of the E5 oncogene

on genome-wide expression of known human microRNAs as well

as protein coding genes, we carried out DNA microarray

experiments in human epithelial HaCaT cells for a time frame

of 96 hours after induction of E5 expression.

Following the assumption that microRNAs are inversely

expressed to their targets, regulatory loops of the differentially

expressed genes were inferred.

Materials and Methods

Cell Cultures
HaCaT human keratinocytes stably transfected with HPV 16

E5 (HaCaT-E5) under the control of a dexamethasone inducible

promoter or with the empty vector pMSG (HaCaT-pMSG) as a

control [43] were used. Cells were grown in Dulbecco’s modified

Eagle’s growth medium supplemented with 10% fetal bovine

serum, glutamine, and penicillin–streptomycin to 70–80% conflu-

ence. The cells were then serum starved for 24 h and induced with

1 mM dexamethasone (Sigma-Aldrich Inc., Saint Louis, MO) for

different times for analysis. Comparisons were performed between

E5 and control cells treated in a similar manner.

Analysis of mRNA expression using DNA microarrays
Total RNA was isolated from confluent cell cultures using

TriPure reagent (Roche Applied Science, Indianapolis, IN) after 0,

2, 4, 24, 48,72 and 96 hour induction. RNA was quantitated in

NanoDrop and the amount as well as the quality was confirmed in

Agilent 2100 Bioanalyzer (Agilent Technologies, Rockville, MD).

The samples (500–1000 ng) were indirectly labeled using the T7

amplification method (Amino Allyl MessageAmpTM II aRNA

Amplification Kit; Ambion, Austin, TX) according to the

manufacturer’s instructions. aRNA (5 mg/sample) was labeled

using monoreactive Cy3 and Cy5 dyes (GE Healthcare,

Buckinghamshire, UK) or monoreactive Alexa 488 (Invitrogen,

Gaithersburg, MD) followed by purification according to the

manufacturer’s instructions. Labeled aRNAs (800 ng/sample)

were hybridized onto Agilent Whole Human Genome 4644 K

human slides according to the manufacturer’s recommendations.

The slides were then washed and scanned by Axon GenePix 4200

AL (Molecular Devices, Downington, PA) scanner.

Profiling of cellular miRNA expression using DNA
microarrays

E5-expressing and control cells were induced for 0, 24, 48,

72 hours in triplicates. Total RNA was isolated from confluent cell

cultures (mirVanaTM miRNA Isolation Kit, Ambion). RNA was

quantitated in NanoDrop and the quality was confirmed by

Agilent 2100 Bioanalyzer. The samples (100 ng) were labeled

using Agilent miRNA labeling kit. Labeled samples were

hybridized onto Agilent Human miRNA Microarray V1 slides

according to the manufacturer’s instructions. The slides were then

washed and scanned with Axon GenePix 4200 AL scanner

(Molecular Devices).

DNA microarray analysis
Microarray data are available at the NCBI GEO database (ID

GSE24908). Images from mRNA and microRNA microarrays

were segmented and the median intensity of each spot was

estimated by the software GenePixProH 6.0 (Molecular Devices).

The data were then imported into R software [44] and

preprocessed by the BioConductor package Limma [45]. Linear

model followed by moderated t-test was utilized for finding the

differentially expressed genes (nominal p-value ,0.001) and

microRNAs (p-value ,0.01 after Benjamini-Hochberg post-hoc

correction) between E5-expressing and control cells in each time

point. Additionally, analysis of variance was utilized to find

expression patterns with significant alterations throughout the time

points analyzed. Lists of significant genes were screened by the

DAVID 6.7 annotation tools [46,47] in order to find over-

represented biological themes. Default DAVID parameters were

used.

Quantitative real-time RT-PCR
For quantitative RT-PCR, the cells were induced for 0, 2, 4, 12,

24, 36, 48, 72 and 96 h. Large RNA fraction was extracted from

confluent cell cultures using mirVANATM miRNA Isolation Kit

(Ambion). Quantitative RT-PCR was performed using SYBRH
Green PCR Master Mix and RT-PCR kit (Applied Biosystems,

Foster City, CA) and a sequence detector ABI PRISMH 7700

(Applied Biosystems) as described previously [28].

miRNA Taqman assays
For miRNA Taqman assays the cells were induced for 0, 4, 24,

48 and 72 h. Total RNA was isolated using the mirVanaTM

miRNA Isolation Kit (Ambion). Ten nanograms of total RNA

were reverse transcribed using TaqmanH MicroRNA Reverse

Transcription Kit (Applied Biosystems). The obtained cDNA was

amplified using specific Taqman H MicroRNA assays (Applied

Biosystems) for each selected miRNA in quadruplicates. The

expression of b-actin mRNA from the same RNA extraction was

used for normalization.

miRNA transfections
Human Pre-miRTM miRNA Precursor for miR-203, pre-miR

negative control, Anti-miRTM inhibitor for miR-146a and anti-

miR negative control (Ambion) were used at a final concentration

of 20 nM. To study the effects of miRNA overexpression and

silencing, HaCaT-E5 and -pMSG cells (70 000/well) were reverse

transfected with 20 nM miRNAs in 24-well plates using

SiLentFect (Bio-Rad Laboratories, Hercules, CA), and incubated

overnight. Thereafter, the cells were serum-starved for 24 h, and

subsequently treated with 1 mM dexamethasone. After 48 h

incubation, the cells were harvested for western blot analysis. In

experiments analyzing the activation of IFN-c or TNF-a signaling,

miRNA Modulation by HPV E5
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the cells were treated with IFN-c (10 ng/ml; Millipore, Billerica,

MA) or TNF-a (20 ng/ml; Calbiochem, Merck Chemicals Ltd.,

Nottingham, UK) for indicated periods of time before harvesting.

Western blotting
Subconfluent HaCaT-E5 and HaCaT-pMSG cells were serum-

starved and induced for 0, 2, 4, 12, 24, 36, 48, 72 and 96 h. Total

protein lysates were obtained and western blotting was performed

as described previously [28]. The antibodies recognized p63

(Thermo Scientific, Fremont, CA), E-Cadherin (BD Biosciences,

San Jose, CA), N-Cadherin (Zymed Laboratories, San Francisco,

CA), b-Catenin (BD Biosciences, Franklin Lakes, NJ), Claudin-1

(Zymed Laboratories) and Integrin-aV (BD Biosciences). Subse-

quently, the membrane was incubated with secondary antibodies

conjugated with fluorescent dyes: IRDye 800CW goat anti-mouse

(LI-COR Biosciences, Lincoln, NE) and IRDye 680 goat anti-

rabbit (LI-COR Biosciences). Protein expression was normalized

against b-actin expression (Sigma Aldrich Inc.). Images were

acquired with the Odyssey infrared imaging system (LI-COR

Biosciences) and analyzed by the software provided by the

manufacturer.

For miRNA inhibition and overexpression studies nitrocellulose

membranes were first blocked in non-fat milk. Antibodies for

phospho-p38, phospho-STAT1 and phospho-p42/44 (ERK1/2)

as well as the antibodies for total p38, STAT1 and p42/44 were

from Cell Signaling Technology Inc. (Danvers, MA,). Equal

loading was confirmed by probing the same membranes for

human b-actin (Sigma-Aldrich). The blots were visualized by

enhanced chemiluminescence (ECL) detection system (Pierce,

Thermo Scientific, Rockford, IL).

Immunohistochemistry
Tissue samples were fixed in 10% formaline and embedded in

paraffin. Collagen raft cultures were prepared using HaCaT-E5

and HaCaT-pMSG cells to produce a three-dimensional tissue

culture mimicking layered epithelium, and embedded in paraffin

(modified from [48]). For immunohistochemical staining, 4–5 mm

sections were prepared and immunostainings were performed

using the automated Ventana Discovery tissue staining instrument

(Ventana Medical Systems, Tucson, AZ). Representative tissue

sections from HPV-associated cervical dysplasia, normal cervical

squamous epithelium and collagen raft cultures were stained using

monoclonal antibodies to E-Cadherin (BD Transduction Labora-

tories), b-Catenin (BD Biosciences), N-Cadherin (Sigma-Aldrich

Inc.), ezrin (clone 3C12 [49]) and p63 (Thermo Scientific)

proteins. p16 staining (CINtec Histology Kit, mtm laboratories

AG, Heidelberg, Germany) was used in staining of human tissue as

a surrogate marker for HPV. Ventana DAB Map kit was used for

detection, and the sections were counterstained with hematoxylin

and postcounterstained with Bluing Reagent (Ventana Medical

Systems). Finally, the slides were rinsed and dehydrated before

mounting. The use of human tissue material was approved by the

Ethical Committee of the Helsinki University Central Hospital.

Prediction of microRNA targets
Putative targets of each miRNA were defined by combining the

computational predictions of 8 popular algorithms including

DIANA – microT [50], miRanda [51], miRDB [52], miRWALK

[53], PicTar [54], PITA [55], RNA22 [56] and TargetScan [57].

The predicted targets were then intersected with the genes

negatively correlated with their cognate miRNAs.

Results

mRNA and miRNA microarray analysis
The expression of protein-coding genes and microRNAs was

analysed in HaCaT-E5 cells as compared to control cells after

different durations of E5 induction in HaCaT cells using genome-

wide microarrays (Table S1). The expression of protein-coding

genes was studied 0, 2, 4, 24, 48, 72 and 96 hours after E5

induction. Alteration in gene expression was considered significant

if the p-value was ,0.001. The number of probes detecting

differential gene expression at the different time points varied

between 89 (4 h induction) and 660 (24 h induction). Sixty percent

of the probes detected over-expressed transcripts at all time points

in the E5-induced cells as compared to control cells, with the

exception of 24 h where this rate was 45%. The gene expression

differences ranged between +5.58 and 24.51 on the log2 scale

(Table 1).

Functional annotation of the lists of significantly changed genes

in each time point showed peculiar representation of biological

themes (Table S2). Genes involved in cell motility, cell adhesion

and extracellular matrix were over-represented throughout the

experiment. Similarly, several genes of the immune and

inflammatory response were found significantly changed in all

time points of the experiment. Interestingly, at 24 hours after

HPV16-E5 induction many genes involved in cell cycle were

regulated.

The effect of HPV16-E5 on the expression of host microRNAs

was studied in uninduced cells as well as after 24, 48 and 72 hours

from E5 induction (Table S3). Alterations in miRNA expression

were considered significant if the p-value was ,0.01 after

Benjamini-Hochberg post hoc correction (Table 1).

Thirteen differentially expressed microRNAs were validated by

qPCR (Table 2) and we selected miR-146a, miR-203 and miR-

324_5p for further investigation based on their biological

Table 1. Summary of microarray results.

TimePoint #upreg mRNA #downreg mRNA #tot mRNA #upreg miRNA #downreg miRNA #tot miRNA

0 h 256 176 432 0 1 1

2 h 325 191 516 NA NA NA

4 h 56 33 89 NA NA NA

24 h 296 364 660 0 2 2

48 h 336 207 543 2 1 3

72 h 179 128 307 9 7 16

96 h 453 204 657 NA NA NA

For each time point analyzed, the number of upregulated, downregulated, total mRNA and miRNA found differentially expressed.
doi:10.1371/journal.pone.0021646.t001
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relevance. miR-146a was constantly found upregulated in E5-

expressing HaCaT cells at all the time points examined. miR-324-

5p was constantly downregulated in E5-expressing cells at all the

time points. miR-203 remained unchanged during the first

24 hours of the experiment but was repressed at later stages (48,

72 and 96 hours).

Integration of mRNA and miRNA expression
Integration of gene expression and microRNA expression

profiles was carried out by following the assumption that the

expression levels of microRNAs would be inversely correlated to

the levels of their target genes. For each microRNA the

differentially expressed genes showing negative correlation in

DNA microarray throughout all the time points of the experiment

were selected. Additionally, the putative microRNA target genes

were predicted using 8 distinct algorithms, resulting in 101, 79 and

176 putative targets of miR-146a, miR-324-5p and miR-203,

respectively (Figure 1, Table S4). One gene encoding a zinc finger

protein, ZNF813, was predicted to be target of both miR-146a

and miR-203; 27 genes were putative targets of both miR-203 and

miR-324-5p; no genes were shared between miR-146a and miR-

324-5p, nor by all the three microRNAs.

The miR-146a targets were enriched in genes involved in cell

adhesion and cell cycle, while the biological themes represented

among the miR-203 targets were associated with cell junction, cell

migration and cell motility (Table S5). Genes regulating cell death

and cell adhesion were predicted to be targets of the miR-324-5p.

Validation of gene expression profiling
On the basis of the mRNA microarray results, 32 genes were

selected for validation by qRT-PCR according to their biological

relevance (Table 3). Additionally, ezrin expression was validated

due to its relevance for cell adhesion [58]. In order to further

refine the expression profiling, we measured the selected genes also

at 12 and 36 hour induction, additionally to the time points

investigated in microarrays. The microarray measurements were

considered valid if the expression was concordant with microarray

and the qRT-PCR p-value was ,0.05. Altogether, 23 of 32 (72%)

of the genes altered in the mRNA microarray could be confirmed.

Expression of claudin-1 and integrin-b2 was upregulated. Strong

upregulation of N-Cadherin (CDH2) and modest upregulation of

b-Catenin (CTNNB1) was successfully verified by qRT-PCR. N-

Cadherin is a predicted target of miR-324-5p. Very strong

downregulation of integrin beta-like 1 and Claudin-7 was

confirmed, as well as modest downregulation of tumor protein

p53. Of the matrix metalloproteinases (MMPs), downregulation of

MMP-12 was validated in agreement with our previous report

[28]. Downregulation of PDZD2, encoding a PDZ domain protein

which is a putative target of miR-146a, was validated, as well as

downregulation of RACGAP1 encoding Rac GTPase activating

protein 1, a putative miR-146a target. Nine genes gave discordant

fold change in qRT-PCR as compared to microarray, including E-

Cadherin, MMP-2 and -13. The transcript levels of several genes

including Integrin-aV oscillated along with time.

Table 2. qPCR validation of miRNA microarray results.

microRNA 0 h 2 h 4 h 24 h 48 h 72 h

miR-146a 1217.8 (2.1E-16) 223.2 (4.3E-13) 1676.4 (3.1E-19) 9.98E12 (6.9E-11) 87.2 (1.9E-05) 19.8 (0.0117)

miR-203 2.3 (0.0180) N/A 2.7 (0.0153) 2.4 (0.1135) 7.7 (0.0787) 2771.3 (0.0008)

miR-324_5p 1.2 (0.1824) N/A 21.4 (0.8355) 21.3 (0.0081) 8.3 (0.0539) 2176.1 (0.0002)

miR-107 2.2 (0.0179) N/A 7.1 (4.2E-05) 2.3 (0.1108) 7.6 (0.0364) 264.3 (1.9E-05)

miR-106a 4.7 (5.8E-05) N/A 7.4 (7.4E-06) 4.0 (0.0035) 34.3 (0.0182) 277.5 (0.0612)

miR-19a 7.1 (5.6E-05) N/A 13.2 (0.0002) 3.8 (0.0919) 69.5 (0.0016) 2289.7 (0.0012)

miR-30a_5p 3.0 (0.0066) N/A 6.6 (0.0008) 3.7 (0.0144) 38.1 (0.0076) 2225.8 (0.0047)

miR-23b 4.9 (4.2E-05) N/A 8.6 (5.7E-05) 5.7 (0.0001) 48.3 (0.0023) 2159.2 (0.0009)

miR-433 2.9 (0.0001) N/A 4.0 (3.3E-05) 2.8 (0.2041) 4.5 (0.0076) 22.2 (0.0282)

miR-539 1.9 (0.0124) N/A 1.8 (0.0813) 21.2 (0.0876) 10.6 (8.4E-05) 23.1 (0.0081)

miR-624 1.9 (0.0020) N/A 6.9 (3.3E-05) 1.7 (0.3877) 3.9 (0.0587) 225.1 (0.0014)

miR-214 7.7 (0.0006) N/A 7.2 (0.0012) 5.0 (0.0040) 4.4 (3.9E-05) 21.9 (0.0255)

miR-200c 4.1 (0.0001) N/A 9.8 (3.3E-10) 2.9 (0.1137) 17.7 (0.0153) 247.4 (0.2241)

The miRBase id of each miRNA assayed is indicated. Additionally, the fold change in E5 as compared to control cells, and the p-value (in brackets) at each time point are
reported.
doi:10.1371/journal.pone.0021646.t002

Figure 1. miRNA target differentially expressed genes. Venn
diagram showing the number of differentially expressed genes
predicted to be targets of miR-146a, miR-203 and miR-324_5p. The
intersection areas indicate the number of targets shared between the
miRNAs.
doi:10.1371/journal.pone.0021646.g001
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Protein profiling of selected genes
Of the qRT-PCR validated genes, expression of Integrin-aV,

Claudin-1, N-Cadherin and b-Catenin was also investigated by

western blotting. Additionally, the expression of E-Cadherin was

studied. Strong upregulation of N-Cadherin and modest upregula-

tion of b-Catenin was observed in E5-expressing cells. Similarly,

Integrin-aV and Claudin-1 were found to be upregulated. E-

Cadherin expression was clearly upregulated in E5 cells as

compared to control cells at all time points (Figure 2).

We further studied the expression of E-Cadherin, b-Catenin, N-

Cadherin, ezrin and p63 proteins in three-dimensional collagen

raft cultures prepared from E5 expressing and control cells

(Figure 3). Membrane staining for E-Cadherin (Figure 3 A, B) and

b-Catenin (C, D) was stronger towards the epithelial surface in

both E5 and control raft cult1ures, and altogether the staining was

stronger E5 cells, in agreement with our western blotting results.

Staining for N-Cadherin (E, F) and ezrin (G, H) was equal or

somewhat stronger in control cells. Also, representative human

tissue samples from cervical dysplasia were stained (our own

unpublished work). Figure 4 shows an example of a high-risk

HPV-associated cervical intraepithelial neoplasia grade 2 case

(CIN2) as well normal cervical squamous epithelium. p16 staining

(Figure 4 A) was included to depict high risk HPV associated

dysplasia. Normal tissue is negative for p16 (4. G). Membrane

staining for E-Cadherin (B) and b-Catenin (C) was observed

throughout squamous epithelium in CIN2, whereas only the

bottom layers were stained in normal tissue (H, I). Most of the

CIN2 epithelium stained positive for N-Cadherin (D), but more

membrane staining was observed at the surface, similar to ezrin

(E). The differentiated cell layers of normal squamous epithelium

were not stained for N-Cadherin (J) or ezrin (K). We have

previously showed colozalization of ezrin and N-Cadherin at

adherens junctions in HPV 18-containing HeLa cells originating

from cervical carcinoma [58].

In the microRNA microarray, miR-203 downregulation was

observed. We therefore studied the expression of one important

target of miR-203, the p63 protein, which was recently reported to

be regulated by the HPV E7 protein [59]. Modest upregulation of

p63 in E5 expressing cells was observed, especially in 4 h and 96 h

time points (Figure 5). In three-dimensional raft cultures no clear

differences were observed in p63 staining between E5-expressing

and control cells (Figure 3 I, J). Staining of CIN2 tissue for p63

(Figure 4 F) decorated the nuclei in the basal and suprabasal cell

layers, but towards the epithelial surface fewer nuclei were stained.

The staining was clearly different from normal tissue (L), where

only the bottom cells layers showed p63 staining.

Figure 2. HPV E5 alters cellular protein expression. Western blots from HaCaT-E5 and -pMSG total cell lysates for E-Cadherin, N-Cadherin, b-
Catenin, Integrin-aV and Claudin-1 at time points 0, 2, 4, 12, 24, 36, 48, 72 and 96 h after induction of HPV 16 E5 expression. Protein expression fold
change in E5 cells as compared to control cells and normalized against b-actin is presented above each lane. Increased expression was detected for E-
Cadherin, N-Cadherin and b-Catenin particularly at early time points before 24 h. Integrin-aV expression oscillated along with time and Claudin-1 was
slightly downregulated at early time points.
doi:10.1371/journal.pone.0021646.g002
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Downstream signaling effects of miR-203 overexpression
and miR-146a inhibition

We observed a reduction of miR-203 expression in E5 cells as

compared to control cells. Because p63 is a known target of miR-

203 [60], we first analysed the effect of miR-203 overexpression on

the levels of p63. Stronger expression of p63 was seen in E5 cells

than on control cells (Figure 5, Figure 6 A), but miR-203

overexpression completely abolished the expression of p63 in both

cells. Further, to evaluate the involvement of miR-203 in the

regulation of inflammatory responses [61], we studied the effect of

pre-miR-203 overexpression on IFN-c signaling. Indeed, we

observed increased activation (phosphorylation) of p38 in response

to IFN-c treatment, and this effect was more pronounced in E5-

expressing cells (Figure 6 B). E5 cells overexpressing miR-203 have

higher p-p38 levels even without IFN-c stimulation. However,

overexpression of miR-203 resulted in decreased activation of

STAT1, another downstream kinase of the IFN-c pathway. The

expression of total STAT1 was somewhat decreased in miR-203

overexpressing cells as well, suggesting that additional mechanisms

of STAT1 regulation by miR-203 other than IFN-c signaling may

exist.

Stronger miR-146a expression in E5 expressing cells as com-

pared to control cells was observed. As miR-146a is known to play

a role in TNF-a signaling [62], we studied whether inhibition of

miR-146a by a specific anti-miRNA would affect the TNF-a-

induced activation (phosphorylation) of the downstream effectors

p38 and ERK1/2. In the negative control transfected cells, the

levels of activated p38 (p–p38) and ERK1/2 (p-ERK1/2) were

lower in E5 cells as compared to control cells (Figure 6 C, Scr.neg.

ctrl). The levels of p–p38 and p-ERK1/2 in E5 cells remained

undetectable after TNF-a stimulation, whereas in control cells

increased activation was seen. Inhibition of miR-146a by

transfection of anti-miR-146a resulted in remarkable activation

of p38 and a modest activation of ERK1/2 in response to TNF-a
(Figure 6 C). The response was even stronger in control cells than

in E5-expressing cells.

Discussion

In this study, the effect of HPV16 E5 oncoprotein on the

expression of cellular protein-coding genes and microRNAs in

HaCaT epithelial cells was investigated in genome-wide microarray

Figure 3. HPV 16 E5 enhances E-Cadherin expression on epithelial surface. Tissue sections from three-dimensional collagen raft cultures
established from induced HaCaT-E5 cells (A, C, E, G, I) and HaCaT-pMSG cells (B, D, F, H, J) were stained for E-Cadherin (A, B), b-Catenin (C, D), N-
Cadherin (E, F), Ezrin (G, H) and p63 (I, J). Surface of raft epithelium is to the left.
doi:10.1371/journal.pone.0021646.g003

Figure 4. Immunohistochemical staining of a cervical intraepithelial neoplasia grade 2 (A–F) and normal cervical squamous
epithelium (G–L). The expression of p16 (A, G), E-Cadherin (B, H), b-Catenin (C, I), N-Cadherin (D, J), Ezrin (E, K) and p63 (F, L) are shown.
Epithelial surface is downwards in A–F and to the right in G–L. Arrowheads in F point to the basal cell layer at the bottom of squamous epithelium.
doi:10.1371/journal.pone.0021646.g004

miRNA Modulation by HPV E5

PLoS ONE | www.plosone.org 8 July 2011 | Volume 6 | Issue 7 | e21646



Figure 6. Effect of miRNA transfections on p63 expression and activation of TNF-a or IFN-c signaling. HaCaT-E5 and –pMSG cells were
transfected with 20 nM pre-miR-203 or scrambled miRNA negative control (scr neg.ctrl). After overnight incubation, the cells were serum-starved for
24 h, and subsequently treated with 1 mM dexamethasone to induce E5 expression. Forty-eight hours after induction the cells were harvested and
the cell lysates analysed for p63 expression by western blotting. Equal loading was confirmed by probing the same filter with b-actin. The numbers
below each lane represent p63 protein expression fold change normalized to b-actin relative to scr neg.ctrl of pMSG cells (A). HaCaT-E5 and -pMSG
cells were transfected with scr neg.ctrl miRNA, and with either pre-miR-203 (B) or with anti-miR-146a (C). The transfection procedure was as described
for A. Before harvesting, the cells were treated with IFN-c (10 ng/ml) (B) or TNF-a (20 ng/ml) (C) for indicated periods of time. The cell lysates were
analyzed with western blotting for phospho-p38 (p–p38), phospho-STAT1 (p-STAT1; B), or phospho-ERK1/2 (p-ERK1/2; C). The levels of total p38,
STAT1, ERK1/2, and b-actin were determined as controls.
doi:10.1371/journal.pone.0021646.g006

Figure 5. Protein expression of p63 is enhanced due to HPV E5. Western blot from HaCaT-E5 and -pMSG total cell lysates for p63 at time
points 0, 2, 4, 12, 24, 36, 48, 72 and 96 h after induction of HPV 16 E5 expression. Protein expression fold change is presented above the blot when
compared E5 and control in the same time point. Slight induction of p63 is detected in 4 h and 96 h time points.
doi:10.1371/journal.pone.0021646.g005
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experiments. Among the genes with significantly altered expression,

we observed over-representation of genes involved in cell motility,

cell adhesion and extracellular matrix throughout the experiment.

Further, the expression of a number of genes of the immune and

inflammatory response was found significantly changed in E5-

expressing cells as compared to control cells in all time points of the

experiment. Of interest, many genes involved in cell cycle were

regulated exclusively at 24 hours after HPV16 E5 induction.

Among cellular microRNAs, the altered expression of miR-146a

(constantly induced by E5), miR-324-5p (constantly repressed by

E5) and miR-203 (repressed at late time points) was validated and

further investigated.

We observed repression of miR-203 as well as a slight induction

of its target p63 in E5 expressing cells. Regulation of p63 by miR-

203 was confirmed by showing that p63 was abolished upon

overexpression of miR-203. miR-203 was the first identified

epithelium and skin specific miRNA [61]. The p63 family of

transcription factors is important in maintaining proliferation of

basal epithelial cells, and the expression of p63 is diminished upon

differentiation. Indeed we were able to show strong p63 expression

in HPV-associated CIN, whereas in normal squamous epithelium

the expression was restricted to the bottom cell layers. Although

strong p63 staining in CIN is not a direct correlate of E5

expression, this finding suggests a connection between HPV

oncogene expression and diminished differentiation. miR-203 has

been reported to promote epithelial cell differentiation and repress

‘stemness’ of epithelial cells by repressing p63, specifically the

DNp63 isoform [60]. miR-203 has tumor suppressor function and

its downregulation has been observed in tumors [63]. Interestingly,

upregulation has been reported in some cancers including colon

adenocarcinoma, bladder cancer and ovarian cancer [64,65,66],

and its overexpression in some colon or pancreatic cancers seems

to correlate with patient survival [67]. Our finding suggests that E5

acts by suppressing differentiation of epithelial cells through

downregulating miR-203 with subsequent upregulation of p63.

Recently it was reported that upregulation of p63 in

differentiating HPV-infected cells is a consequence of the miR-

203 downregulation due to E7 expression [59]. Further, it was

shown that high miR-203 expression is inhibitory to HPV genome

amplification [59]. This suggests that the requirement for

reprogramming epithelial cells to support viral DNA amplification

[68,69] is at least partially fulfilled by the E7 protein by

downregulating the expression of miR-203. Thus, the oncogenic

roles of E7 as well as E5, as reported in the present study, would be

mediated by miR-203.

We found strong upregulation of miR-146a throughout the time

frame of 96 h in our study. This microRNA has been previously

implicated in epithelial disorders such as psoriasis, and particularly

in the regulation of immune responses [70]. It has been found

overexpressed in breast, pancreatic, and prostate cancers [71], and

underexpressed in cells derived from androgen-dependent prostate

cancers [72]. miR-146a was found to be upregulated in cervical

cancer tissues and to promote cell proliferation when introduced

into cervical epithelial cell lines [40], suggesting that upregulation

of miR-146a, among other miRNA species, plays a role in cervical

carcinogenesis [40].

A number of genes of the immune and inflammatory response

were found significantly changed in all time points of the microarray

experiment. Human papillomaviruses are known to efficiently

evade the host immune system (reviewed in [73]). HPV-associated

lesions do not involve inflammation of the surrounding tissue. Cell

surface MHC I and MHC II are downregulated as a function of

HPV E5 and E7 oncoproteins with subsequent reduction in

immune recognition [74,75,76,77,78,79]. Nonexisting or weak

immunogenicity of the E5 protein itself was suggested by the

absence of antibodies to the E5 protein among HPV 16 positive

cervical cancer patients (our own unpublished data), while

antibodies to E7 were found in a high proportion [80]. We found

strong upregulation of microRNA-146a, which is involved in

negative regulation of immune responses and cytokine signaling

[62,70,81,82]. It may be critical in preventing excess inflammation

through downregulation of IRAK1 and TRAF6, which are

regulators of the TNF-a signaling pathway. miR-146 expression is

induced by ligands of a subset of toll-like receptors (TLR)

recognizing bacterial antigens, as well as by TNF-a and IL-1b in

a NFkB-dependent manner [62]. Indeed we were able to show that

TNF-a stimulation in E5 cells where miR-146a expression had been

inhibited resulted in considerable activation of the downstream

kinase p38 and modest activation of ERK1/2. This points out that

upregulation of miR-146a by E5 may play a significant role in the

attenuated immune response in HPV infections. MicroRNA-203

has been reported to target Suppressor of Cytokine Signaling-3

(SOCS-3), which is a negative regulator of IL-6 and IFN-c signaling

pathways. Suppression of SOCS-3 by miR-203 may lead to

increased or elongated inflammatory responses [61]. In E5

expressing cells, downregulation of miR-203 might thus lead to

enhanced expression of SOCS-3 and attenuation of the inflamma-

tory response. In miR-203 overexpressing E5 cells we observed

enhanced activation of the downstream kinase p38 in response to

IFN-c stimulation, and a similar but weaker effect was seen in

control cells. This is in agreement with the role of E5 in the

downregulation of immune and inflammatory responses and

suggests that this effect would at least partially be mediated by

miR-203. Surprisingly we observed decreased expression and

activation of STAT1 after IFN-c stimulation in both E5 and

control cells overexpressing miR-203, raising the possibility of

additional mechanisms of STAT1 regulation by miR-203. Indeed,

by using TargetScan 5.1 [57], we found that the 39UTR of STAT1

contains a perfect 8-mer seed match for miR-203, suggesting that

STAT1 expression could be directly regulated by miR-203.

In our experiment, a much less studied species, miR-324-5p,

was found constantly repressed in E5-expressing cells. It is shown

to be downregulated during the early stages of colon adenocarci-

nogenesis in Sprague-Dawley rats [83]. Interestingly, miR-324-5p

is a negative regulator of the oncogenic Hedgehog pathway in

neuronal tumors, where its downregulation may contribute to

tumor cell proliferation and carcinogenesis [84]. It is however,

upregulated upon differentiation. Among the putative miR-324-5p

targets we showed strong upregulation of N-Cadherin gene and

protein expression, in agreement with downregulation of miR-

324-5p. Expression of another putative target of miR-324-5p, E-

Cadherin, was increased at protein level. Our data indicate that

the HPV E5 oncogene may repress miR-324-5p expression in

cervical epithelial cells and thus contribute to the carcinogenic

process. These few data together with our findings suggest an

involvement for miR-324-5p in the oncogenic functions of E5.

We previously reported alterations in the expression of cell

motility and cell adhesion associated genes due to HPV 16 E5

[28]. Here we broadened the approach to comprise a time-scale

analysis of cellular mRNA and microRNA expression to

understand the impact of E5 in the carcinogenic process. In this

study we used oligonucleotide arrays, whereas cDNA arrays were

used in Kivi et al. [28]. In the present work we have shown

upregulation of N-Cadherin and E-Cadherin proteins, as well as a

slight upregulation of b-Catenin in E5 expressing cells in western

blotting and also in three-dimensional collagen raft cultures. In

addition to regulation by microRNAs, one possible explanation for

the upregulation of E-Cadherin is increased half-life of the protein

miRNA Modulation by HPV E5
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due to mechanisms involving e.g. catenins or other components of

cellular junctions [85,86]. In cervical dysplasia we showed

expression of E-Cadherin, N-Cadherin and b-Catenin at cellular

junctions throughout the epithelium, whereas the expression in

normal tissue was restricted to the bottom layers of the epithelium.

Carcinogenesis involves downregulation of E-Cadherin and

disruption of E-Cadherin – b-Catenin complexes in adherens

junctions, whose stability is regulated by ezrin [87,88]. We have

previously shown colocalization of ezrin in adherens junctions with

N-Cadherin but no expression of E-Cadherin in HPV 18

containing HeLa cervical carcinoma cells, as well as the

requirement for Rac1, phosphatidylinositol-4-phosphate 5-kinase

(PIPKa) and RhoA for this localization [58]. Slight downregula-

tion of ezrin, as observed by qPCR, might contribute to decreased

cell adhesion at adherens junctions. Intriguingly, downregulation

of epithelial markers such as E-Cadherin and upregulation of

mesenchymal markers such as N-Cadherin is seen in epithelial-

mesenchymal transition (EMT), a crucial process activated in

cancer and generating cells with stem cell properties [89]. MMP-

12 mRNA was also found downregulated but the protein levels

remained unchanged (data not shown), confirming our earlier

observation [28]. Besides its elastolytic activity, MMP-12 has

broad substrate specificity for extracellular matrix components

such as fibronectin, vitronectin, type IV collagen and laminin [90].

MMP-12 upregulation has been shown to promote cell prolifer-

ation in wound healing of epithelial cells [91]. Our data do not

support the role of MMP-12 in carcinogenesis, and thus further

studies are needed to clarify the impact of our finding.

Altogether, alterations in miRNA expression patterns due to

HPV 16 E5 oncogene seem to favor increased cell proliferation

and tumorigenesis and to repress epithelial differentiation.

Previously reported functions of the E5 protein in downregulation

of the immune response are supported by our expression

microarray, as well as our miRNA microarray results regarding

miR-146a, miR-203, and miR-324-5p. All of these microRNAs

are also implicated in cancer. We believe that the HPV 16 E5

oncogene contributes to carcinogenesis by several mechanisms

which involve regulation of cellular microRNAs and their target

genes.
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8. Dyson N, Howley PM, Münger K, Harlow E (1989) The human papilloma

virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product.

Science 243: 934–937.
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