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Muscular dystrophies (MD) are heterogeneous group of diseases characterized by progressive muscle dysfunction. There is a
large body of evidence indicating that angiogenesis is impaired in muscles of MD patients. Therefore, induction of dystrophic
muscle revascularization should become a novel approach aimed at diminishing the extent of myocyte damage. Recently, we and
others demonstrated that administration of granulocyte colony-stimulating factor (G-CSF) resulted in clinical improvement of
patients with neuromuscular disorders. To date, however, the exact mechanisms underlying these beneficial effects of G-CSF have
not been fully understood. Here we used flow cytometry to quantitate numbers of CD34+ cells, endothelial progenitor cells, and
different monocyte subsets in peripheral blood of pediatric MD patients treated with repetitive courses of G-CSF administration.
We showed that repetitive cycles of G-CSF administration induced efficient mobilization of above-mentioned cells including cells
with proangiogenic potential.These findings contribute to better understanding the beneficial clinical effects of G-CSF in pediatric
MD patients.

1. Introduction

Muscular dystrophies (MD) are a heterogeneous group of
muscle diseases characterized by progressive muscle weak-
ness and wasting [1, 2]. Despite promising gene-based thera-
peutic approaches being tested inMD, there is no cure availa-
ble and thereby the need for developing novel therapies is still
warranted [3–7]. There are at least two physiological mecha-
nisms for tissue regeneration: (a) cell renewal, the replace-
ment of damaged cells by newly generated cells delivered
from resident stem cells; (b) cell proliferation, the self-repair

of terminally differentiated well-functioning cells. Moreover,
tissue regeneration requires angiogenesis for microvascular
network restoration and to provide nutrient and oxygen
delivery [7, 8]. It should be noted that progressive decline
in muscle strength is caused in part by impaired blood flow
in dystrophic muscles. There is a substantial body of evi-
dence indicating that vascularity of muscles is significantly
decreased in MD subjects [7, 9–11]. In addition, the process
of angiogenesis is impaired in the course of MD. Therefore,
induction of dystrophicmuscle revascularization should con-
tribute to diminishing the effect from functional ischemia
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and decrease myocyte damage. Accordingly, the proper ther-
apy for skeletal muscle regeneration inMD needs to consider
both revascularization of the tissue and myofiber regenera-
tion. Therefore, use of biological therapies is an interesting
approach in the treatment of muscular dystrophies [12].

To date, experimental therapies mainly focused on Vas-
cular Endothelial Growth Factor- (VEGF-) related strategies.
It is well established that VEGF function as a potent promotor
of angiogenesis and promyogenic factor. In dystrophin defi-
cientmusclesVEGFwas shown to promotemyofiber regener-
ation and protect cells from apoptosis [13]. Moreover, VEGF
leads to an increased blood vessels permeability, induction
of endothelial progenitor cell (EPC) migration, and prolifer-
ation [14]. Thus, it is possible that, at least partially, VEGF-
related beneficial effects could be attributed to an increase
in EPC numbers. On the other hand, VEGF administration
should be closely monitored due to carcinogenic properties
[15, 16]. Thus, it is tempting to hypothesize that therapeutic
strategies aimed at selective enhancement of EPC inmuscular
dystrophies could provide an attractive alternative for VEGF
treatment.

Notably, there is a growing body of evidence that mono-
cytes/macrophages are also important players in muscle
regeneration. It should be noted that two distinct and func-
tionally different subpopulations of macrophages are present
in regenerating muscle tissue, namely, MI (classically acti-
vated) and MII (alternatively activated) macrophages. MI
macrophages are referred to as proinflammatory cells and are
involved in immune activation, phagocytosis, andmuscle cell
lysis. In contrast, MII macrophages are usually considered to
exert anti-inflammatory properties as they have been shown
to regulate inflammatory cell function and participate in
vascularization process.This subpopulation is able to support
muscle cell regeneration, by inducing satellite cell prolifera-
tion and tissue revascularization [17]. However, in the course
of muscular dystrophy, myofiber degeneration leads to mus-
cle invasion by both MI and MII macrophages. Similar to
tissue macrophages, activated blood monocytes may display
both anti-inflammatory and proinflammatory activities. Par-
tially, these differential activities of monocytes are associated
with their distinct phenotypes delineated by differential
expression of CD14 and CD16.Thus, classical CD14++CD16−
monocytes exert mostly phagocytic activities while inter-
mediate CD14++CD16+ and nonclassical CD14+CD16++
monocytes play numerous immunomodulatory functions
[18, 19]. It should be emphasized that biological properties
of macrophages depend to a large extent on monocyte acti-
vation and maturation process that occurs at the periphery
[20]. Thus the examination of distribution of peripheral
blood monocyte subsets allows for assessing the pattern
of monocyte-related immune responses. However, despite
potential role differentmonocyte subsets could play inmuscle
regeneration, their dynamic changes in the course ofMD and
MD-targeted therapies were not yet examined.

Recently, the members of our group demonstrated that
G-CSF administration brought beneficial clinical effects in
pediatric patients withMD [21]. G-CSF is amember of colony
stimulating factors that regulate the growth and differen-
tiation of granulocytes and was shown to induce skeletal

Table 1: Clinical characteristics of studied patients.

Patient Gender Age
(years)

Type of
muscular
dystrophy

Functional status

1 Boy 12 DMD Nonwalking
2 Boy 11 DMD Walking
3 Boy 12 DMD Walking
4 Girl 13 FSHD Walking
5 Boy 12 DMD Nonwalking
6 Boy 15 BMD Walking
7 Girl 10 MCMD Nonwalking
8 Boy 11 DMD Walking
9 Girl 15 FSHD Walking
10 Boy 5 DMD Walking
11 Boy 4 DMD Walking
BMD: Becker musculardystrophy; DMD: Duchenne muscular dystro-
phy; FSHD: Facioscapulohumeral muscular dystrophy; MCMD: Merosin-
negative congenital muscular dystrophy.

myocyte development and regeneration [22, 23]. It is used
routinely in clinical practice for the treatment of neutropenia
and in conditioning donors before stem cell transplantation
[24, 25].

Here we wished to assess the effects of repeated cycles
of G-CSF administration on mobilization of bone marrow
derived stem/progenitor cells (most specifically endothelial
progenitor cells) and different monocyte subsets in pediatric
patients with MD. In parallel, we set out to analyze the effects
of G-CSF administration on angiopoietins that similarly to
EPC are involved in angiogenesis (e.g., via mobilization
of EPCs) or a marker that is associated with changes of
monocyte/macrophage phenotype, namely, soluble CD163
(sCD163).

2. Materials and Methods

2.1. Patients. A total of eleven muscular dystrophy patients
were enrolled in this study. Detailed clinical characteristics of
all patients are summarized in Table 1. Patients received their
current standard treatment which was supplemented only by
administration of filgrastim (Neupogen, Amgen) at the fol-
lowing doses: 5 𝜇g/kg of body weight/day for five consecutive
days (course 1). Such treatment course was repeated after 1
month (course 2) and after 2 months (course 3).

2.2. Extracellular Staining and Flow Cytometry. Fresh EDTA-
anticoagulated whole blood samples were stained with a
panel (Table 2) of mouse anti-humanmonoclonal antibodies,
according to stain-and-then-lyse-and-wash protocol. Briefly,
100 𝜇L (formonocytes) and 600 𝜇L (for EPCs) of whole blood
were stained with monoclonal antibodies and incubated for
30min at room temperature, in the dark. Thereafter, ery-
throcytes were lysed by adding 2mL of FACS lysing solution
(BD), followed by 15min incubation in the dark. Cells were
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Table 2: Monoclonal antibodies used for flow cytometry analysis.

Specificity Fluorochrome Origin Clone Supplier
CD14 PE Mouse M𝜑P9 Becton Dickinson
CD16 FITC Mouse B73.1 Becton Dickinson
CD34 FITC Mouse 581 Becton Dickinson
CD45 PE Mouse HI30 Becton Dickinson
CD133 APC Mouse AC133 Miltenyi Biotec
CD309 PE Mouse 89106 Becton Dickinson

washed twice with cold PBS (phosphate-buffered saline) and
fixed with CellFix (BD Biosciences). Fluorescence-minus-
one (FMO) controls were used for setting compensation
and to assure correct gating. Specimen acquisition was per-
formed using FACSCalibur flow cytometer (BD Biosciences).
Obtained data were analysed using FlowJo ver. 7.6.5 software
(Tree Star).

2.3. Cytokine Assay. Angiopoietin-1, Angiopoietin-2, and
sCD163 levels in EDTA-plasma samples from patients with
MD were quantified by means of commercially available
enzyme-linked immunosorbent assays (ELISA). To deter-
mine sCD163 plasma levels all samples were initially diluted
1000-fold with reagent diluent (1% BSA (Sigma-Aldrich) in
PBS).Next, the specimenswere assayed using sCD163DuoSet
ELISA kit (R&D Systems), according to the manufacturer’s
instruction. In order to determine Ang-1 and Ang-2 levels
samples were directly assayed using Ang-1 DuoSet ELISA
kit and Ang-2 DuoSet ELISA kit (both from R&D Systems).
Finally, the protein levels in the specimens were calculated
from a reference curve generated by using reference stan-
dards.The samples were analyzed with automated light abso-
rbance reader (LEDETEC 96 system). Results were calculated
by MicroWin 2000 software.

2.4. Statistical Analysis. Statistical analysis was carried out
using GraphPad Prism 6 (GraphPad software). Wilcoxon test
was used to compare changes in monocytes and EPCs num-
bers and plasma protein levels in single treatment course.
Kruskal-Wallis test with post hoc Dunn’s multiple compari-
son test was used to determine differences between all treat-
ment courses. Spearman correlation coefficient was used to
determine correlations between plasma protein levels and cell
subsets. The differences were considered statistically signifi-
cant at 𝑝 < 0.05. The results are presented as median (inter-
quartile range).

3. Results

First, we analyzed the effect of G-CSF treatment on hemato-
poietic stem/progenitor cells mobilization in children with
MD. We observed substantial increase in CD34+ cell num-
bers after course 1 (from 908 (309–1839) to 2327 (1896–
3965), Figure 1(a)), course 2 (from 951 (93.8–1827) to 2694
(1835–3720), Figure 1(b)), and course 3 (from 1368 (437–1895)
to 3609 (1479–5930), Figure 1(c)) of G-CSF administration.
Notably, repetitive courses of G-CSF treatment did not affect

the efficiency of CD34+ cell mobilization in MD children
(𝑝 > 0.05).

Next, we evaluated the numbers of endothelial progeni-
tor cells (delineated by CD34+CD133+CD309+ phenotype)
following repetitive courses of G-CSF treatment. We found
significant increase in EPC numbers after course 1 (from 34
(19–75) to 84 (73–206), Figure 2(a)), course 2 (from 30.5 (8.5–
65.2) to 85.5 (41–123.3), Figure 2(b)), and course 3 (from 17
(7.5–48.5)–135 (41.5–339), Figure 2(a)) of G-CSF administra-
tion. Again, no significant differences were observed in effec-
tiveness of EPC mobilization between courses (𝑝 > 0.05). In
parallel, we assessed the levels of two major angiopoietins,
Ang-1 and Ang-2, during treatment with G-CSF and found
that none of them was affected by this therapy (Figure 3).

Next we set out to investigate changes in absolute num-
bers of different monocyte subsets. We found that G-
CSF administration inducedmobilization of CD14++CD16−,
CD14++CD16+, andCD14+CD16++monocytes in all studied
individuals (Figure 4(a)). Moreover, repeated administration
of G-CSF also resulted in an increase in the numbers
of all three above-mentioned subpopulations (Figures 4(b)
and 4(c)). Interestingly, we did not observe any statistically
significant changes of monocyte mobilization effectiveness
between courses of treatment (𝑝 > 0.05).

Next, we assessed the effects of G-CSF treatment on
sCD163 levels. We observed substantial increase in sCD163
levels in all studied individuals undergoing initial treatment
(Figure 5(a)). Interestingly, 5 out of 6 (83%) MD patients
presented with an increase in sCD163 levels after course 2
(𝑝 < 0.05, Figure 5(b)). Moreover, 4 out of 5 (80%) MD
children showed an increase in sCD163 levels after course 3 of
GM-CSF administration (𝑝 > 0.05, Figure 5(c)). Again, there
were no significant differences in effectiveness of treatment
response based on sCD163 plasma levels (𝑝 > 0.05).

Finally, we investigated whether plasma Ang-1, Ang-2,
and sCD163 levels were correlated to numbers of CD34+ cells,
EPCs, and monocytes subsets in peripheral blood. We did
not find any significant correlations among above-mentioned
parameters.

4. Discussion

G-CSF-induced mobilization of hematopoietic stem/progen-
itor cells is usually delayed, with peak levels achieved within
5–7 days. In fact, in present study we observed a substantial
increase of CD34+ cells, including hematopoietic stem cells
(HSCs) (as expected, 𝑝 = 0.015 for course 1; 𝑝 = 0.007 for
course 2; 𝑝 = 0.031 for course 3; data not shown) and EPCs,
in all studied individuals. Interestingly from clinical point
of view, the growth rate of analyzed cell populations did not
differ between courses of treatment (at monthly intervals).
Similar to our study, de Kruijf et al. reported in mice model
that multiple cycles of recombinant human G-CSF admin-
istration (up to 12 cycles) did not lead to bone marrow
HSC pool depletion [26]. However, the long-term effects of
repetitive or chronic G-CSF treatment on hematopoiesis and
bone marrow steam/progenitor cells pool were not known.
The contribution of CD34+ cells to muscle regeneration has
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Figure 1:The summary of analyses of changes inCD34+ cells numbers after (a) course 1, (b) course 2, and (c) course 3 ofG-CSF administration
in MD pediatric patients.

been well documented [27–29]. However, CD34+ population
is not uniform as it is composed of different subpopulations
of progenitor/stem cells of which EPCs constitute a crucial
subset involved in development of new vessels. Notably,
we demonstrated here that G-CSF treatment of patients
with pediatric MD increased EPC numbers in peripheral
blood.This finding can be of importance in treatment of MD
characterized by impaired vasculature. EPCs were shown to
migrate in response to angiogenic growth factors, including
angiopoietins to the site of ischemic tissue where they differ-
entiate into mature endothelial cells (ECs). Thereafter, ECs
proliferate to support and formnewvessels. Furthermore, low
dose CD34+VEGFR2+ cell transplantation hinders apoptotic
cell death and reduces fibrosis in the ischemic muscles.These
cells support ischemic muscle regeneration, improve the
clinical outcome, and accelerate the hemodynamic recovery
rate [28]. We showed here that repetitive use of G-CSF could
contribute to improved “endothelization” of dystrophic mus-
cles via efficient mobilization of EPCs. Given these promising
data, further mechanistic studies defining in detail the role of

EPCs in muscle regeneration in humans are still warranted.
In addition, further studies in MD patients focused on
measurements of possible triggering factors for progenitor
cells such as stromal cell-derived factor-1 (SDF-1) or sphingo-
sine-1-phosphate (S1P) would be of potential clinical benefit.
Similarly, given the significant effects of G-CSF on progenitor
cells, more detailed experiments addressing the effects of
G-CSF administration on mobilization of stem cells subsets
such as mesenchymal stem cells (MSCs) or very small
embryonic-like stem cells (VSELs) in MD patients would be
of significant interest.

We reported here substantial increase of all absolute
monocyte subset numbers following G-CSF administration.
Similarly, G-CSF was found to increase monocyte numbers
in mice [30]. Moreover, Capoccia et al. showed that G-CSF-
mobilized monocytes stimulated angiogenesis at sites of
ischemia [31]. This study did not describe mechanism of
monocyte-related angiogenesis; however, it can be hypothe-
sized that this action was dependent on increased numbers
of these monocyte subsets with proangiogenic potential,
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Figure 2: The summary of analyses of EPC numbers (expressing CD34+CD133+CD309+ phenotype) in MD pediatric individuals after
(a) course 1, (b) course 2, and (c) course 3 of G-CSF administration.
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Figure 3: Time course changes in Ang-1 (upper row) and Ang-2 (bottom row) plasma levels in pediatric patients with MD after (a) course 1,
(b) course 2, and (c) course 3 of G-CSF administration.
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Figure 4: Effect of (a) course 1, (b) course 2, and (c) course 3 of G-CSF administration on absolute numbers of CD14++CD16− (upper row),
CD14++CD16+ (middle row), and CD14+CD16++ (bottom row) monocytes in pediatric patients with MD.

namely, those bearing high levels of Tie2, receptor for angio-
poietins. These monocytes are referred to as Tie2 express-
ing monocytes (TEMs). Tie2 receptor is also present on
HSCs and EPCs indicating that these cells constitute tar-
get populations for angiopoietin-mediated actions [32–34].
Angiopoietin-1 (Ang-1) and Angiopoietin-2 (Ang-2) are the
best known and are characterized of the four, so far discov-
ered, angiopoietins. Angiopoietin-1 is the principal activator
of Tie2; additionally, it stimulates themigration of endothelial
cells in vitro and promotes satellite cell self-renewal [35].
In contrast, Ang-2 is its natural inhibitor, blocking Ang-
1-dependent phosphorylation of Tie2 receptor, which is
reflected by destabilization of blood vessels and constitutes
the initial stage of neovascularization [36, 37]. It should be
noted that TEMs in the vast majority express CD16; therefore
they fall into both intermediate and nonclassical monocytes
[33, 38]. Here we found that G-CSF treatment increased both
above-mentioned subpopulations; however, it did not affect
Ang-1 and Ang-2 plasma levels.Thus we can hypothesize that
G-CSF treatment increased monocyte numbers with proan-
giogenic potential in an angiopoietin-independent manner.
However, further studies are warranted to explore whether
such increase in both subpopulations of CD16-expressing

monocytes could directly contribute to improved muscle
regeneration in MD.

Quite surprisingly, we found here that G-CSF treatment
tended to increase sCD163 levels. As surface CD163 can be
shed from monocytes to become soluble CD163, one could
hypothesize that enhanced levels of sCD163 following G-CSF
therapy could result from enhanced levels of CD163 bearing
monocytes (mostly classical and intermediate ones, see [18]).
Interestingly, sCD163 has been considered as a surrogatemar-
ker of on-goingmonocyte-related inflammation [39].Thus, it
needs to be further examined whether G-CSF administration
could be linked to enhancement of inflammation. How-
ever, on the other hand elevated sCD163 levels could have
originated from alternatively activated macrophages (MII)
known to have derived most frequently from intermediate
monocytes. Previously, we have shown that intermediate
monocytes expressed highest levels of CD163 [18]. Thus, G-
CSF-induced enhancement of intermediate monocytes could
have resulted in subsequent increase of MII macrophages
known to exert beneficial effects on muscle regeneration.
Nevertheless, potential use of sCD163 as a putative marker
of enhanced muscle repair related to accumulation of MII
macrophages needs to be clarified in further studies.
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Figure 5: Time course changes in sCD163 plasma levels after (a) course 1, (b) course 2, and (c) course 3 of G-CSF administration in MD
pediatric patients.

5. Conclusion

In summary, to our knowledge, this is the first report showing
that repetitive G-CSF treatment can induce efficient mobili-
zation of cells with proangiogenic potential, namely, EPC and
putative proangiogenicmonocytes.These findings could help
better understand the beneficial clinical effects of repetitive
G-CSF administration in MD pediatric patients. Neverthe-
less, the clinical safety of such treatment in this group of
patients needs to be carefully addressed in further follow-up
studies.
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