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Abstract. We propose an approach for the automated diagnosis of celiac disease (CD) and colonic polyps (CP)
based on applying Fisher encoding to the activations of convolutional layers. In our experiments, three different
convolutional neural network (CNN) architectures (AlexNet, VGG-f, and VGG-16) are applied to three endo-
scopic image databases (one CD database and two CP databases). For each network architecture, we perform
experiments using a version of the net that is pretrained on the ImageNet database, as well as a version of
the net that is trained on a specific endoscopic image database. The Fisher representations of convolutional
layer activations are classified using support vector machines. Additionally, experiments are performed by con-
catenating the Fisher representations of several layers to combine the information of these layers. We will show
that our proposed CNN-Fisher approach clearly outperforms other CNN- and non-CNN-based approaches and
that our approach requires no training on the target dataset, which results in substantial time savings compared
with other CNN-based approaches. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Convolutional neural networks (CNNs) are gaining more and
more interest in computer vision. CNNs widely replaced “shal-
low” (nondeep learning based) image representations, such as
Fisher vectors, vector of locally aggregated descriptors (VLAD),
or the bag-of-words (BoW) approach, which were previously
state of the art.1 Also in case of the automated diagnosis of
endoscopic images, CNNs outperformed shallow image
representations.2,3

The most common ways to employ CNNs for image retrieval
and image classification tasks are to employ the CNN inbuilt clas-
sifier (e.g., SoftMax classifier) or to use global image features
extracted from fully connected (FC) CNN layers (FC layer acti-
vations) and classify them using support vector machines (SVMs).

In a simplified way, CNNs consist of filter banks stringed
together with a classifier at the end. The activation of the first
convolutional layer is nothing more than the convolution with a
filter bank and also the activations of the following CNN layers
are just filter responses of filter responses, which were poten-
tially nonlinearized [rectified linear unit (ReLU)] and pooled.
The layer activations of FC layers can be directly used for
classification (e.g., SoftMax or SVM classifiers), but the activa-
tions of the convolutional layers are in general too high dimen-
sional to be directly used for classification, and so feature
extraction methods or dimensionality reduction methods need
to be applied to those CNN activations prior to classification.

Recent research efforts have shown that combining CNNs
with shallow image representations can outperform CNNs alone
in various applications. The most common combination of

CNNs and shallow image representations in the literature is
to apply shallow image descriptors to the activations of the
nets. Although most approaches apply shallow image represen-
tations to the global image features extracted from FC CNN
layers (e.g., VLAD pooling4 and Fisher vector encoding5

applied to CNN FC layer activations of image patches),
a newer and less common approach is to apply the shallow
image representations to the activations of the convolutional
layers that represent local image information.

For example, Fisher vector encoding was applied to the acti-
vations of the last convolutional layer of a CNN for event detec-
tion in videos6 and for histopathology image classification.7

Further examples are to apply BoW to the activations of the
third last convolutional layer of a net8 or to sum up the CNN
activations for each filter in a convolutional layer.9 The approach
summing up CNN activations is the only approach we found in
previous literature that applies image descriptors to the earlier
layers of a CNN, which include more generic features (e.g.,
edge detectors or color blob detectors). All other approaches
that apply shallow image representations to CNN activations
use the more class-specific later CNN layers (FC layers or
later convolutional layers).

The classification of celiac disease (CD) and colonic polyps
(CP) can be considered as a texture classification problem and
it has been shown that filter banks are well suited for this task
(e.g., the MR8 filter bank10 or wavelets11). Filter banks are
shown to be suited for the classification of CD and CP; also,
the layer activations of the early convolutional layers (which
are basically just the outputs of stringed together filter banks)
could contain valuable (local) information that enables a distinc-
tion between different stages of CD or CP.

In this work, we propose an approach applying improved
Fisher vectors (IFV12) to the activations of early CNN
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convolutional layers followed by linear SVM classification.
CNNs are state of the art endoscopic image classifications. Also
image encoding methods such as Fisher encoding or BoW
applied to local feature descriptors have been shown to be
well suited for the classification of endoscopic images [e.g.,
BoW13 or IFV2 computed from scale-invariant feature transform
(SIFT) descriptors]. In this work, we combine CNNs and IFV by
applying IFV to local CNN feature descriptors (CNN convolu-
tional layer activations). We will show in this work that applying
Fisher encoding to CNN activations is more suited for the clas-
sification of endoscopic images than using other image repre-
sentations that were applied to CNN activations in the literature.

An advantage of using features from early CNN layers is that
those features are less class specific than features from later
CNN layers. In our proposed approach, we extract information
of the more generic early convolutional layers and so chances
are higher that good results are achieved with nets pretrained
on huge databases without any additional training of the nets
on our endoscopic image databases. This would save a lot of
computation time needed to train the nets and would solve the
problem that our endoscopic image databases are too small
to properly train CNNs without overfitting to the training data.

In our experiments, three different network architectures
are utilized and for each network architecture, we use one
version of the net that is pretrained on the ImageNet database
without any adaption to the endoscopic data as well as one
version of the net that is further trained on a specific endoscopic
image database.

This work presents two contributions:

• We propose an image descriptor applying Fisher vector
encoding to CNN activations of earlier convolutional
layers. There are no previous publications that apply
Fisher encoding to the activations of the early and less
class-specific convolutional layers. We will show that
applying Fisher vector encoding to the activations of
early convolutional layers achieves better results in gen-
eral than applying it to later convolutional layers.

Common CNN features such as CNN SoftMax classi-
fication and the SVM classification of FC layer activations
are state of the art in endoscopic image classification and
outperform shallow image representations as shown in
the literature. We will show that our proposed image rep-
resentation outperforms common CNN features, shallow
image representations as well as other combinations of
CNNs and shallow image representations on our three
endoscopic image databases (one CD database and two
CP databases). A further advantage of our approach is
that it requires no training of the nets (contrary to common
CNN features such as CNN SoftMax classification and
the SVM classification of FC layer activations applied
to endoscopic image classification2), which results in
substantial time savings.

• We combine the information from multiple CNN convolu-
tional layer activations by concatenating the Fisher
representations of these layers. To the best of our knowl-
edge, there are no previous publications applying image
descriptors to convolutional layer activations that combine
the information from multiple convolutional layer activa-
tions. We will see that this step distinctly improves the
results.

2 Celiac Disease and Colonic Polyps
Endoscopy with biopsy is currently considered the gold stan-
dard for the diagnosis of CD and CP. Computer-assisted systems
for the diagnosis of CD and CP have potential to improve the
whole diagnostic workup by saving costs, time, and manpower
and at the same time increasing the safety of the procedure.

2.1 Celiac Disease

CD is a multisystemic immune-mediated disease, which is asso-
ciated with considerable morbidity and mortality.14 In untreated
or inappropriately treated CD, the inflammation caused by the
dysregulated immune response can disrupt the intestinal mucosa
thus leading to a total atrophy of the villi (finger-like projections
of the mucosa) which causes a diminished ability to absorb
nutrients. More than two million people in the United States,
this is about one in 133, have this disease.15

For the automated diagnosis of CD, we differentiate between
healthy mucosa and mucosa affected by CD using an image
database consisting of images gathered by the modified immer-
sion technique (MIT16) using traditional white-light illumination
(denoted asWLMIT) as well as narrow band imaging (denoted as
NBIMIT). Examples of the two classes for both imaging modal-
ities are shown in Figs. 1(a)–1(d). It was shown that using
NBIMIT or WLMIT as imaging modality has a significant impact
on the underlying feature distribution of general purpose image
representations.17 However, it was also shown that systems
trained on images from both modalities generalize well without
requiring additional domain adaption techniques and that
combining both modalities improves the accuracies in case of
an insufficient amount of data for training (as is probably the
case for CNNs).

Prior works dealing with the computer-aided diagnosis of
CD employed general purpose image descriptors such as
local binary pattern (LBP)-based operators18,19 as well as wave-
let-transform based features.20,21 Furthermore, methods specifi-
cally designed for the diagnosis of CD were developed such as
shape features22 describing the curvature in mucosal structure,
bandpass-type Fourier filters23 extracting features from band-
pass filtered images, and fractal analyze-based features.10

In general, contrast sensitive image descriptors turned out to
be well suited for the automated diagnosis of CD because the
most distinctive visual difference between healthy and abnormal
images is the partly or entirely missing of the villi in case of
areas affected by CD. Thus, images of affected areas have
less contrast than images showing healthy mucosa [see
Figs. 1(a)–1(d)]. Recently, CNNs were applied for the diagnosis
of CD and outperformed previously used image descriptors.2,24

There is also an survey on computer-aided decision support for
the diagnosis of CD.25

2.2 Colonic Polyps

CPs are a rather frequent finding and are known to either
develop into cancer or to be precursors of colon cancer. Hence,
an early assessment of the malignant potential of such polyps is
important as this can lower the mortality rate drastically.

For the automated diagnosis of CP, we differentiate between
two classes, normal mucosa or hyperplastic polyps (class
non-neoplastic) and neoplastic, adenomatous, or carcinomatous
structures (class neoplastic). Experiments are applied on two
CP databases. One CP image database is gathered by high-
definition (HD) endoscopy in combination with the i-Scan
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technology (further denoted as HD database) and the second
CP image database is gathered by high-magnification (HM)
endoscopy in combination with chromoscopy (further denoted
as HM database). Example images of the two classes for both
CP databases are shown in Figs. 1(e)–1(h).

In the following, we give an overview on prior works on the
computer-assisted staging of CP using HD endoscopic image
databases or HM endoscopic images databases:

1. HD endoscopy:

Prior works employed general purpose image
descriptors such as wavelet-based features26 and features
especially developed for the classification of CP such
as fractal analysis-based features,26 specifically devel-
oped filter banks,27 and shape and contrast features
extracted from segmented blobs modeling the pit-pattern
structure.28 Recently, it was shown that CNNs outper-
form handcrafted features.3

2. HM endoscopy:

Prior works employed general purpose image
descriptors such as LBP,29 wavelet-based features,11,30,31

and SIFT features in combination with BoW.13

Furthermore, methods specifically designed for the
classification of CP were developed, estimating the pit
density using Delaunay triangulation32 or describing the
structure of segmented blood vessel structure on endo-
scopic images33 (which performed quite well but is only
suited for images gathered by NBI). The pit-pattern
structure of the polyps is the most important feature to

distinguish between different types of polyps for most of
the mentioned methods (except of the image descriptor
analyzing the blood vessel feature).

3 Material and Methods

3.1 CNN Training and Feature Extraction

This section gives the implementation details for CNN training
and CNN feature extraction as well as the description of the
employed nets.

In this work, three different CNNs are employed, the
AlexNet,34 the VGG-f net,1 and the VGG-16 network.35

AlexNet and the VGG-f net both consist of five convolutional
layers and three FC layers with a final SoftMax classifier.
The VGG-16 net consists of 13 convolutional layers subdivided
in five convolutional blocks (where each of the two to three con-
volutional layers inside of a block has the same number and sizes
of filters) and three FC layers with a final SoftMax classifier.

As already mentioned in Sec. 1, we apply two CNN learning
strategies.

For the first learning strategy, the CNNs are trained on a spe-
cific endoscopic image database. As initialization for the con-
volutional layers of the AlexNet and VGG-f net, we use the
parameters that were learned on the ImageNet data. In case of
the VGG-16 net, the convolutional parameters are randomly
initialized36 as the VGG-16 net did not work well using pre-
trained coefficients as initialization. As the FC layers are more
specific to the details of the classes contained in the ILSVRC
ImageNet challenge data, we randomly initialize the coefficients

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 In the top row, we show example images of the CD database for the two classes healthy and CD
using NBIMIT as well asWLMIT endoscopy. In the bottom row, we show example images of both classes of
CP from the HD database (left side) and the HM database (right side). (a) NBIMIT, CD, (b) NBIMIT, healthy,
(c) WLMIT, CD, (d) WLMIT, healthy, (e) HD neoplastic, (f) HD non-neoplastic, (g) HM neoplastic, and
(h) HM non-neopl.
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of those layers instead of using the parameters that were learned
on the ImageNet data. The size of the last FC layer is adapted to
our two-class classification scheme, which means that the size of
the convolutional filters is changed from 1 × 1 × 4096 × 1000
for the ImageNet to 1 × 1 × 4096 × 2. The last FC layer is acting
as SoftMax classifier and computes the training loss (log-loss).
Training is performed on batches of 128 images each, which
are for each iteration randomly chosen from the training data
and subsequently augmented (see Sec. 3.4). Stochastic gradient
descent with weight decay (λ ¼ 0.0005) and momentum
(μ ¼ 0.9) is used for the training of the models.

For the second learning strategy, we use the CNNs that
were pretrained on the ImageNet ILSVRC challenge data as
fixed feature extractors without any training on our CD or
CP datasets.

For both learning strategies, the activations of CNN convolu-
tional layers are extracted as features for further Fisher encod-
ing. That means the images are fed through the networks and
the outputs of convolutional layers [without pooling or non-
linearization (ReLU)] are used for Fisher encoding.

3.2 Fisher Encoding of CNN Activations

This section gives the implementation details for applying IFV
encoding on the activations of CNN convolutional layers.

IFVs12 are based on estimated Gaussian mixtures of local
image descriptors. The improved version based on a nonlinear
Hellinger’s kernel and l2 normalization with 16 clusters is used.
Each activation of a convolutional layers consists of K different
M × N (M ¼ N in our case) feature maps, where K is the num-
ber of filters kernels in the convolutional layer andM × N is the
size of the filter response for each filter kernel. These feature
maps can be viewed as N ×M local descriptors of dimension K.
The IFV image representation is obtained by pooling those
M × N local descriptors for a given activation of a convolutional
layer. The IFV representation of an convolutional layer is
a vector of length K × 2 × 16 [16 Gaussian mixture model
(GMM) clusters and two parameters (mean and covariance)].
Figure 2 shows the pipeline of our CNN-Fisher approach
from the CNN feature acquisition to the Fisher representation
and to the final SVM classification.

The reason why we use 16 GMM clusters for Fisher
encoding is that the number of local CNN features is already
quite low for the last convolutional layer [169 (M ¼ N ¼ 13,
M � N ¼ 169) for VGG-f and AlexNet and 196 (M ¼
N ¼ 14, M × N ¼ 196) for VGG-16] and hence a too high
number of clusters would not make sense. We want to use
the same number of clusters for each convolutional layer and
so using 16 clusters is an appropriate choice. We also perform

experiments with 8 and 32 clusters, but, if not mentioned
otherwise, 16 clusters are used.

We do not only classify the extracted IFV features of single
convolutional layers, we also combine the information of several
different convolutional layers by concatenating the IFV feature
vectors of those layers. More specifically, in case of the AlexNet
and VGG-f net we separately classify the IFV representation
of each layer yielding in one classification result per layer.
Additionally, we concatenate the IFV representations from
the first i convolutional layers with i ∈ f2; : : : ; 5g and further
classify the concatenated feature vectors [and so we get one
result for the combination of the first two convolutional layers
(i ¼ 2), one for the first three (i ¼ 3), one for the first four
(i ¼ 4), and one for the combination of all convolutional layers
(i ¼ 5)].

In case of the VGG-16 net, we proceed analogously and
separately classify the Fisher representations of the first
convolutional layer of each convolutional block (the VGG-16
net consists of five convolutional blocks with two to three con-
volutional layers per blocks) and additionally we concatenate
the Fisher vector representations of the first convolutional
layers from the first till the i’th convolutional block with
i ∈ f2; : : : ; 5g for further classification.

So, for example, the IFV representation of the second con-
volutional layer of the VGG-16 net is 4096 dimensional
[128 × 2 × 16 (K ¼ 128, 2 parameters and 16 GMM clusters)]
and the concatenation of the IFV representations from all five
layers is 47,104 dimensional [ð64þ 128þ 256þ 512þ 512Þ ×
2 × 16].

3.3 Comparison Methods

To compare the results of our proposed CNN-Fisher approach
with results of other approaches, we additionally perform
experiments using five CNN-based approaches and four hand-
crafted image descriptors. The nine methods are either state of
the art in the automated diagnosis of CD or CP or they are
related to the CNN-Fisher approach. For the five CNN-based
approaches, we apply the same nets as for our proposed
approach to enable a direct comparison with the CNN-Fisher
approach. All comparison methods except of one (CNN
SoftMax Classification) are classified using linear SVMs.

3.3.1 CNN SoftMax classification and CNN SVM
classification

The classification of images using the CNN built-in SoftMax
classifier and by applying SVMs to the FC layer activations are
the two most common CNN classification approaches and are
state of the art in the automated diagnosis of CD2 and CP.3

Fig. 2 Scheme of our proposed CNN-Fisher approach.
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3.3.2 Bag of words

The BoW approach applies BoW encoding to the activations
of the last convolutional layer. So similar to our proposed
approach, this approach applies a shallow image descriptor to
CNN convolutional layer activations.8

3.3.3 Vector of locally aggregated descriptors

Also, this approach applies a shallow image descriptor to CNN
activations. The VLAD approach performs VLAD pooling to
FC layer activations from different patches of an image.4

As proposed in the literature, the two methods such as BoW
and VLAD are only applied to pretrained nets (trained on
the ImageNet database) and not to the nets adapted to the endo-
scopic databases.

3.3.4 Sum

The sum approach sums up the intensities of the CNN activa-
tions from the third convolutional layer. More specifically,
the feature maps of each filter kernel of the third convolutional
layer are summed up and those sums form the feature vector
used for classification. This approach was designed to detect
and classify CP.9

3.3.5 Dual-tree complex wavelet transform

The dual-tree complex wavelet transform (DT-CWT)11 is a mul-
tiscale and multiorientation wavelet transform. The DT-CWT is
applied using four decomposition levels. The feature extraction
step is based on fitting a two-parameters Weibull distribution to
the coefficient magnitudes of the DT-CWT sub-bands. It was
shown that this method is highly suited for the classification of
CP based on HD as well as HM endoscopic images.11

3.3.6 Blob shape adapted gradient local fractal dimension

The blob shape adapted gradient local fractal dimension
(BSAGLFD) approach combines features that describe the
shape of the pit-pattern structure, a contrast feature, and a fractal
analysis-based feature that analyzes changes in the intensity dis-
tribution in expanding regions. It was shown that this method is
highly suited for the classification of CP based on HD as well as
HM endoscopic images.26

3.3.7 Fisher SIFT

The Fisher SIFT approach12 applies IFV encoding to SIFT
descriptors computed on a dense 6 × 6 pixel grid. So this
approach is similar to our proposed approach, but IFV is applied
to local SIFT features instead of local CNN features. This
approach has already proven to be suited for the classification
of CD;2 however, its results were worse than those of CNNs.

3.3.8 Bag-of-words SIFT

The BoW SIFT approach applies BoW to SIFT descriptors com-
puted on a dense 5 × 5 pixel grid. This approach has proven to
be suited for the classification of CP based on HM endoscopic
imagery gathered using NBI.13

3.4 Experimental Setup

The CD database consists of 1661 RGB image patches of size
128 × 128 pixels that are gathered by means of flexible endo-
scopes using NBIMIT as well as WLMIT. About 1045 images
are gathered by WLMIT endoscopy (587 healthy images and
458 affected by CD) and 616 images are gathered by NBIMIT

endoscopy (399 healthy images and 217 affected by CD).
So, in total 986 image patches show healthy mucosa and the
remaining 675 image patches show mucosa affected by CD.
The images were captured from 353 patients. As our used
nets require input image sizes of 224 × 224 × 3 (VGG-f net
and VGG-16 net) respectively 227 × 227 × 3 (AlexNet), the
images of the CD database are bicubicly upscaled to a size
of 256 × 256 × 3 to be able to extract patches of the images
for training and classification.

The HD database was acquired by extracting patches of size
256 × 256 × 3 from frames of HD-endoscopic (Pentax HiLINE
HD+ 90i Colonoscope) videos. Our database consists of patches
gathered with four different imaging modalities [three different
i-Scan modes (modes 1, 2, and 3) and no i-Scan]. The HD
database consists of 478 image patches (144 images showing
non-neoplastic mucosa and 301 images showing neoplastic
polyps) from 84 patients.

The HM database is acquired using a zoom-colonoscope
(Olympus Evis Exera CF-Q160ZI/L) with a magnification
factor of 150 and indigocarmine dye-spraying. The database is
acquired by extracting 716 patches (198 non-neoplastic and
518 neoplastic) of size 256 × 256 × 3 from 327 endoscopic
color images of 40 patients.

The images of all three databases are extracted only from
regions for which histological findings are available.

The image data is normalized by subtracting the mean image
of the training portion for each database. We then linearly scale
each image within ½−1;1�.

Due to the small amount of available data, we use data aug-
mentation to increase the number of images for the training of the
nets. For each training iteration, a batch of images is randomly
chosen from the training data. The augmentation is based on
cropping a subimage [227 × 227 (AlexNet), respectively, 224 ×
224 pixels (VGG-f and VGG-16)] from each image of a batch
with randomly chosen position. Subsequently, the subimage is
randomly rotated (0 deg, 90 deg, 180 deg, or 270 deg) and
randomly either flipped or not flipped around the horizontal
axis. Training is performed for 5000 (AlexNet and VGG-f net)
and 10,000 (VGG-16 net) iterations, respectively. Validation is
performed using the central patch of an image and no data
augmentation techniques are applied to the validation images.

Because of the relatively small amount of data, we perform
fivefold cross validation to achieve a stable estimation of the
generalization error. For each of the fivefolds, we took care
that images of a single patient are never in training and evalu-
ation sets. All nets and comparison methods are trained using
the training portion of our data corpus and we use the same
folds for each method. The final validation is performed on
the left-out part. That means for each network architecture
and each image database, we train five different nets, one for
each of the fivefolds (except for the case where we use the
CNNs as fixed feature extractor, where no training is per-
formed). In our experiments, we compute the overall classifica-
tion rate (OCR) for each fold and report the mean OCR over
all fivefolds. For the comparison of the results from our
CNN-Fisher approach with the results of other state-of-the-art
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approaches, we additionally report the standard deviation and
the range of OCRs over the fivefolds.

For each of our databases, we use the same training and
evaluation set portions for all methods.

The CNNs are implemented using the MatConvNet
framework37 and the SVMs are provided by the LIBLINEAR
library.38 We use a linear one-class SVM and the SVM cost fac-
tor (C) is found using cross validation on the training data. SVM
classification is applied to our proposed method as well as to all
comparison methods except for the CNN SoftMax classifica-
tion. We use the implementation of IFVas provided by VLFeat.

4 Results and Discussion

4.1 Results of the Convolutional Neural
Network-Based Methods

The results of the experiments using our three nets trained on
the endoscopic image databases, respectively, on the ImageNet

database (IN) are shown in Table 1. Our proposed CNN-Fisher
approach is applied using either the Fisher representations of
single (CNN-Fisher SL) and multiple convolutional layers
(CNN-Fisher ML), whereat Ci denotes the i’th convolutional
layer and C1;: : : ;i denotes the combination of the first i convolu-
tional layers. As comparison methods, we employ the five CNN-
based methods SoftMax classification (SM), the SVM classifi-
cation of FC layer activations (FC), and the BoW, VLAD, and
sum approach. We only show the results of the comparison
approaches with the same training approach [training on the
endoscopic image database or using a pretrained net (IN)] as
used in the literature. The results for the other (not computed)
training approaches are marked with a “−”. For each CNN,
the best result over the different classification approaches is
given in bold face numbers. To provide an overview of which
CNN-based methods work best in general for endoscopic image
classification, we additionally present the averaged results over
the results of all databases and nets per method (∅ in Table 1).
Once again we differentiate between nets trained on endoscopic

Table 1 Mean classification rates over the fivefolds. The CNNs are trained on a specific endoscopic database (the CD, HD, or HM database) or
on the ImageNet database (IN). In the two bottom rows (∅), we show the method’s average results over all databases and net architectures
[three (databases) × three (net architectures) = nine results per method] for training on the endoscopic image databases (E-IMDB) as well
as for training on the ImageNet database (IN).

CNNs

Classification approaches

CNN comparison methods CNN-Fisher SL CNN-Fisher ML

SM FC BoW Vlad Sum C1 C2 C3 C4 C5 C1;2 C1;2;3 C1;: : : ;4 C1;: : : ;5

CD AlexNet (CD) 85.5 86.2 — — — 81.7 83.0 85.2 86.1 85.4 86.5 87.9 88.2 88.3

AlexNet (IN) — 80.7 79.1 78.3 81.5 88.0 85.6 86.3 84.6 83.7 89.1 89.2 89.3 89.1

VGG-f (CD) 89.6 89.9 — — — 89.5 87.8 88.7 89.2 88.6 91.2 91.7 91.6 91.5

VGG-f (IN) — 78.6 78.9 82.4 86.1 90.3 88.8 88.0 87.0 84.9 91.7 91.7 91.9 91.8

VGG-16 (CD) 87.8 87.2 — — — 77.8 81.2 85.9 85.6 86.4 82.6 86.1 87.3 87.9

VGG-16 (IN) — 88.9 84.3 81.8 87.8 81.8 90.5 90.0 90.4 89.2 89.9 91.6 92.2 92.5

HD AlexNet (HD) 82.9 82.3 — — — 86.6 80.2 81.3 82.2 83.0 86.4 85.2 85.3 85.2

AlexNet (IN) — 78.5 79.6 76.4 75.5 87.9 86.3 85.4 79.6 79.5 88.0 88.0 87.4 87.6

VGG-f (HD) 86.7 86.0 — — — 89.6 87.9 88.1 88.5 87.3 89.4 90.5 90.0 89.8

VGG-f (IN) — 80.7 78.9 81.5 84.8 89.4 88.8 86.2 83.0 82.4 90.7 89.7 89.6 88.6

VGG-16 (HD) 81.3 81.7 — — — 82.1 81.5 81.4 81.4 81.2 83.2 82.0 84.3 84.8

VGG-16 (IN) — 86.0 85.6 70.9 87.0 84.1 89.3 89.1 89.4 88.3 89.5 91.2 90.3 90.1

HM AlexNet(HM) 68.8 71.8 — — — 79.6 73.3 74.0 71.8 68.9 82.0 81.4 78.9 76.5

AlexNet (IN) — 75.0 80.6 73.9 76.1 84.6 81.7 87.6 85.6 81.6 85.0 86.9 86.9 87.7

VGG-f (HM) 80.1 80.3 — — — 91.3 86.4 83.6 80.6 80.8 91.6 89.8 86.5 84.9

VGG-f (IN) — 73.6 80.6 69.7 85.8 91.4 88.0 85.5 84.4 81.6 93.7 93.4 92.9 92.9

VGG-16 (HM) 76.9 76.9 — — — 77.3 70.8 72.6 76.3 75.1 76.1 76.3 77.9 77.3

VGG-16 (IN) — 89.1 84.8 74.7 83.8 82.2 90.3 90.4 90.2 88.9 90.2 91.7 92.4 92.8

∅ E-IMDB 82.2 82.5 — — — 83.9 81.3 82.3 82.4 81.9 85.4 85.7 85.6 85.1

IN — 81.2 81.4 76.6 83.2 86.6 87.7 87.6 86.0 84.5 89.8 90.4 90.3 90.3
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image databases (E-IMDB) and nets trained on the ImageNet
database (IN).

As we can see in Table 1, the clearly best results for each net
architecture and each database are achieved using our proposed
CNN-Fisher approach using multiple convolutional layers and
no adaption of the nets to the endoscopic databases. The overall
best result for the CD database (92.5%) is achieved using the
VGG-16 net trained on the ImageNet database using all convo-
lutional layers (C1;: : : ;5), for the HD database the best result
(91.2%) is achieved using the VGG-16 net trained on the
ImageNet database with layers C1;: : : ;3, and for the HM database
the best result (93.7%) is achieved using the VGG-f net trained
on the ImageNet database with layers C1;2.

So, combining the information of multiple convolutional
layers distinctly improves the results compared with just
using single layers. The later a CNN convolutional layer is in
the net, the bigger is the receptive field size (the region in
the input space that a particular CNN’s feature is looking at)
of its extracted features. So, the combination of several layers
leads to a multiscale representation of an image that clearly
outperforms the single-scale representation using only one con-
volutional layer.

The best results for endoscopic image classification in
general are achieved by our CNN-Fisher approach combining
the information from three to five convolutional layers (C1;2;3,
C1;: : : ;4, and C1;: : : ;5). As we can see in Table 1 [∅ (IN)], these
three configurations of the CNN-Fisher approach achieve
average classification rates across all databases and nets of
over 90% for nets trained on the ImageNet database. That
means the number of incorrectly classified images is nearly
halved in comparison with the best performing CNN compari-
son method (sum: 83.2%).

When we consider the CNN-Fisher results using single con-
volutional layers (CNN-Fisher SL), we can observe that the best
results in general are achieved for the first three convolutional
layers (C1, C2, and C3). These three configurations of the CNN-
Fisher approach achieve average classification rates across all
databases and net architectures of about 87% for nets trained
on the ImageNet database. So for the purpose of endoscopic
image classification, the information contained in the earlier
layer activations seems to be more suited than the information
in the later convolutional layer activations. Applying Fisher
encoding to the last convolutional layer activation C5 (as pro-
posed in Refs. 6 and 7) only achieves an average classification
rate of 84.5% and the four CNN comparison methods only
achieve average classification rates over all nets and databases
of up to 83.2%.

When we take a look at the results of the FC activations, we
can observe that training the nets on an endoscopic database
generally improves the results compared with using the nets
trained on the ImageNet database (like already showed in a pre-
vious work about the classification of CD2). Only the VGG-16
net performs better without training on an endoscopic database.
We think that the VGG-16 net is too deep (too much parameters
to learn) to be properly trained on our relatively small endo-
scopic images databases. The results of the SoftMax classifier
are for all databases similar to those of the SVM classification of
FC activations.

The results of the comparison methods BoW, VLAD, and
sum are clearly worse than the results of our proposed approach.
So, these three approaches combining shallow image represen-
tations with CNN activations are not as well suited for

endoscopic image classification as our proposed approach.
The VLAD approach is pooling the FC layer activations
from patches of an image, but the endoscopic images mostly
show homogeneous texture structures and so the patches of
an image look quite similar. So this approach does make
sense for object recognition (for which it was originally pro-
posed), where objects stand out from the background, but appa-
rently not for endoscopic images with their homogeneous
texture structure. The BoW approach is quite similar to our pro-
posed approach using the last convolutional layer C5. The BoW
approach applies BoW pooling and CNN-Fisher SL (C5) applies
Fisher pooling to the activations of the last convolutional layer.
So, the only big difference between these two approaches is
the pooling method (BoW versus Fisher). The results of
CNN-Fisher SL (C5) are about 3% higher in average than
those of the BoW approach, which means that Fisher encoding
is more suited than BoW encoding for our purpose. The sum
approach is applied to the third convolutional layer (C3). By
comparing the results of the CNN-Sum approach with those
of CNN-Fisher SL (C3), we can see that that the results of
CNN-Fisher SL (C3) are >4% higher in average than those
of the sum approach. So, Fisher encoding is more suited for
the classification of endoscopic images than the more simple
sum approach.

The highest differences in the results of the CNN-Fisher
approach between the pretrained and the adapted version of a
net architecture occur in case of the VGG-16 net, which was
the only net architecture that was fully randomly initialized
(contrary to the other two nets, where only the FC layers
were randomly initialized and the parameters pretrained on
ImageNet where used as initialization for the convolutional
layers).

4.2 Comparison with State-of-the-Art Approaches

In Fig. 3, we compare the results of our proposed CNN-Fisher
method using the best performing configurations [multiple
layers (C1;: : : ;5) and the VGG-16 net trained on the ImageNet
database] compared to five state-of-the-art approaches in
the automated diagnosis of CD or CP (four shallow image
descriptors and the SVM classification of CNN FC layer acti-
vations using the VGG-16 net). Our CNN-Fisher approach
is additionally applied using 8 and 32 clusters for Fisher
encoding (16 is the default parameter) to find out the optimal
number of clusters.

As we can see in Fig. 3, our proposed method clearly out-
performs other state-of-the-art methods on all three databases.
We can observe that using 16 clusters for Fisher encoding
achieves higher results than using only eight clusters. Using
a higher number of clusters (32) does only slightly change
the results and does not improve them overall.

We can observe in Figs. 3(b) and 3(c) that the classification
rates are quite differing across the fivefolds for the two polyp
image databases (note the big error bars). This is caused by
the low number of patients in these two databases (HD:84 and
HM:40). As all images of a patient have to be in the same fold,
each fold contains only a very small number of patients. This,
together with the fact that the images of some patients are easier/
harder to classify than those of other patients, leads to the sit-
uation that some folds are easier/harder to classify than others.
That is the main reason for the method’s high standard devia-
tions and ranges of values over the fivefolds in case of the two
polyp databases.
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4.3 Comparison of the Training Approaches

In Fig. 4, we see the convolutional kernels of the first convolu-
tional layer of the three nets learned on the ImageNet as well as
their convolutional kernels after training (the already pretrained
nets) on our CD database, which is our image database with
clearly the most images (1661).

In case of the VGG-16 net, which was fully randomly
initialized, the filter kernels are entirely different for the CD
version and the ImageNet version of the net. We can observe in
Figs. 4(d) and 4(e) that the CD database is too small to train
well-structured and smooth CNN filters and that is probably
the reason why our proposed CNN-Fisher approach achieved
distinctly higher results using the nonadapted ImageNet version
of the VGG-16 net (see Table 1).

In case of the AlexNet and VGG-f net, we can observe
that the training on the CD database only slightly changed

the filter kernels. Only in case of the AlexNet, some of the filter
kernels changed completely. Some of the filters of the AlexNet
changed their colors [e.g., the filter on the right side of the third
row in Figs. 4(a) and 4(b)] some other lose their entire structure
and turned into simple averaging filters [e.g., the left filter in the
first row in Figs. 4(a) and 4(b)]. We think that this loosing of
structure could possibly be the reason for the higher results
of our CNN-Fisher approach (for C1) using the ImageNet
version of the AlexNet. In case of the VGG-f net, the filter ker-
nels undergo only very minor changes and also the differences
between the CNN-Fisher results (for C1) are only rather small
between the adapted and the nonadapted version of the net. All
the observations about changes of the filter kernels by training
the nets on the CD database (based on Fig. 4) do also apply for
the two other endoscopic databases (HD and HM).

So altogether that means our proposed method achieves
higher results without training the nets on the endoscopic
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Fig. 3 Results of our proposed CNN-Fisher approach with 16 (standard), 8, or 32 clusters [ML(16), ML
(8), and ML(32)] compared with the results of five state-of-the-art approaches on our three endoscopic
image databases. The bars show the mean classification rates over the fivefolds, the black error bars the
standard deviations, and the blue error bars show the range of classification rates over the fivefolds.
(a) CD, (b) HD, and (c) HM.
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databases, whereas the widely used approach classifying FC
layer activations generally performs better with nets trained
on the endoscopic databases. The main reason for this behavior
is that our CNN-Fisher approach uses the more generic infor-
mation from the convolutional layers, whereas the approach
classifying FC layer activations uses class-specific information
from the FC layers (which requires training to the specific
classes of the endoscopic database). In case of the VGG-16
net, an additional reason for the higher results using the nona-
dapted net is that the net is too deep to be properly trained on
our small databases that results in overfitting to the training data
and filter kernels that are neither smooth nor well structured.

So, a big advantage of our CNN-Fisher approach compared
with the SVM classification of FC activations and the SoftMax
classification is that we can save time by omitting the training of
the nets.

4.4 Statistical Significance

By means of the McNemar test,39 we assess the statistical sig-
nificance of our results from the CNN-based methods. With the
McNemar test, we analyze if the images from a database are
classified differently by the employed methods or if most of
the images are classified identical. The McNemar test examines

(a) (b) (c)

(d) (e) (f)

Fig. 4 Convolutional kernels of the first convolutional layer learned on the ImageNet database or learned
on our CD database (CDB). (a) AlexNet ImageNet, (b) AlexNet CDB, (c) VGG-f ImageNet, (d) VGG-16
ImageNet, (e) VGG-16 CDB, and (f) VGG-f CDB.

(a) (b) (c)

Fig. 5 Result of the McNemar test for our three endoscopic image databases. A black square in a plot
means that the two considered methods are significantly different with significance level of α ¼ 0.05.
A white square means that there is no significant difference between the methods. (a) CD, (b) HD,
and (c) HM.
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if the classification results of two methods are significantly
different for a given level of significance (we use α ¼ 0.05)
by building test statistics from incorrectly classified images.
For the McNemar test, we employ the CNN-based comparison
methods and both versions of our proposed approach (single
layer and multiple layers) using the best performing combina-
tion of layers. That means we employ the second layer for the
Fisher representation of single layers [SL (C2) in Fig. 5] and
all five layers for the Fisher representation of multiple layers
[ML (C1;: : : ;5) in Fig. 5]. The McNemar test is applied for
the methods using the VGG-16 net trained on the ImageNet
database as this net achieved the best results over all three
databases. The results of the MCNemar test on our three
image databases are shown in Fig. 5. As we can see in Fig. 5,
the CNN-based methods are generally significantly different. In
case of the CD database, the CNN-Fisher approaches are signifi-
cantly different than the other CNN-based methods. For the HD
database, the CNN-Fisher approaches are significantly different
than the other approaches except to each other and the sum
approach [SL (C2) compared to sum]. In case of the HM data-
base, the multiple layer Fisher representation is significantly
different than the other approaches, whereas the single-layer
representation is only significantly different than the VLAD
approach and the multiple layer representation.

5 Conclusion
In this work, we showed that our proposed CNN-Fisher
approach is highly suited for endoscopic image classification.
We showed that applying Fisher encoding to the earlier convolu-
tional layer activations (that contain rather generic information)
achieves higher results in general than applying Fisher encoding
to the later convolutional layer activations, which contain more
class-specific information. Combining the information of the
Fisher representations of multiple convolutional layer activa-
tions further increased the results and clearly outperformed
common CNN classification approaches and shallow image
representations that are state of the art in endoscopic image
classification. Also, the three comparison methods combining
shallow image representations with CNN activations and the
four shallow image representations were clearly outperformed
by our proposed method. We showed that applying Fisher
encoding to CNN convolutional layer activations is more suited
than applying other image descriptors to the CNN activations
(BoW and sum).

The best results were achieved using the combination of
Fisher representations from different convolutional layers,
which led to classification results up to 92.5% for the CD data-
base, 91.2% for the HD database, and 93.7% for the HM data-
base. It is interesting to note that the CNNs without any adaption
to our endoscopic databases achieved higher results using our
proposed CNN-Fisher approach than the CNNs trained on the
endoscopic databases, whereas the quite common CNN classi-
fication technique using FC layer activations performs better if
the nets are adapted to the endoscopic databases. So in addition
to the better results, another advantage of the CNN-Fisher
approach compared with standard CNN classification tech-
niques (FC and SoftMax) is that the nets do not have to be
trained anymore, which results in substantial time savings.
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