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Background: Intermittent theta burst stimulation (iTBS) is an effective stimulus
for long-term potentiation (LTP)-like plasticity. However, iTBS-induced effects varied
greatly between individuals. Ample evidence suggested that an initial decrease in
local γ-aminobutyric acid (GABA) or enhancement in N-methyl-D-aspartate (NMDA)
facilitation neurotransmission is of vital importance for allowing LTP-like plasticity to
occur. Therefore, we aimed to investigate whether the individual level of GABA or NMDA
receptor-mediated activity before stimulation is correlated with the after-effect in cortical
excitability induced by iTBS.

Methods: Fifteen healthy volunteers were recruited for the present study. We measured
short-interval intracortical inhibitory (SICI), long-interval intracortical inhibitory (LICI), and
intracortical facilitation (ICF), which index GABAA receptor-, GABAB receptor-, and
glutamate receptor-mediated activity, respectively, in the cortex before conducting iTBS.
After iTBS intervention, the changes of motor-evoked potential (MEP) amplitude were
taken as a measure for cortical excitability in response to iTBS protocol.

Results: There was a significant negative correlation between the amount of SICI
measured before iTBS and the after-effect of iTBS-induced LTP-like plasticity at the
time points of 5, 10, and 15 min after inducing iTBS. A multiple linear regression model
indicated that SICI was a good predictor of the after-effect in cortical excitability induced
by iTBS at 5, 10, and 15 min following stimulation.

Conclusion: The present study found that GABAA receptor-mediated activity measured
before stimulation is negatively correlated with the after-effect of cortical excitability
induced by iTBS. SICI, as the index of GABAA receptor-mediated activity measured
before stimulation, might be a good predictor of iTBS-induced LTP-like plasticity for a
period lasting 15 min following stimulation.

Keywords: intermittent theta burst stimulation, LTP-like plasticity, GABAA receptor-mediated activity, GABAB
receptor-mediated activity, N-methyl-D-aspartate receptor-mediated activity
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INTRODUCTION

Long-term potentiation (LTP)-like plasticity, defined as the
ability of neurons to activity-dependently modify the strength
of synaptic transmission, is the most common form of synaptic
plasticity (Hebb, 2005; Takeuchi et al., 2014; Llona et al.,
2017; Mateos-Aparicio and Rodríguez-Moreno, 2019). It is
significant in response to physiological degeneration or brain
injury (Wieloch and Nikolich, 2006; Chen et al., 2010; Cramer
et al., 2011). LTP has been found to be induced by repetitive
electrical stimulation in animal experiments, but recently the
introduction of transcranial magnetic stimulation (TMS) with
protocols of repetitive TMS (rTMS) presented the possibility of
delivering similar LTP-like plasticity in the human brain (Bliss
and Lømo, 1973; Wang et al., 1996; Ziemann et al., 1998b; Siebner
and Rothwell, 2003; Cooke, 2006). Therefore, these rTMS-
induced synaptic changes might have significant implications for
therapeutic opportunities after brain damage via mechanisms of
cortical plasticity (Lefaucheur et al., 2020).

Intermittent theta burst stimulation (iTBS) is one such
protocol that can result in increases of cortical excitability
persisting beyond the period of stimulation (Huang et al.,
2005; Di Lazzaro et al., 2008). Compared with traditional
rTMS protocols, iTBS requires lower simulation intensity and
less stimulation time for inducing similar after-effects (Todd
et al., 2009). Although iTBS may be indicative of an appealing
technique for modulating cortical plasticity for clinical or
therapeutic applications, recent studies observed that the effect
varies greatly between individuals (Hamada et al., 2013; Hinder
et al., 2014; Schilberg et al., 2017). Ridding and Ziemann (2010)
summarized that the interindividual variability may depend on
several different factors such as age, genetics, pharmacological
influences, and neural activity in the brain before conducting
stimulation. Such variability at present limits the therapeutic
effectiveness of iTBS for inducing plastic changes.

The present study aimed at testing one such important
factor that contributes to the variation of iTBS-induced plastic
changes. Accumulating evidence in animal studies suggested that
susceptibility to cortical potential-like plasticity is influenced
by the level of cortical NMDAergic excitability and GABAergic
inhibition (Kano and Iino, 1991; Schwenkreis et al., 2003; Di
Lazzaro et al., 2006; Bachtiar and Stagg, 2014). Hess et al.
(1996) suggested that LTP was enhanced by blockade of GABAA
receptors with antagonist bicuculline in the motor cortex;
conversely, the N-methyl-D-aspartate (NMDA) antagonist 2-
amino-5-phosphonovaleric acid blocked LTP induction. LTP
has also been found to be induced through iTBS when
GABAA and GABAB receptors were both blocked (Kotak et al.,
2017).

In human studies, paired pulse transcranial magnetic
stimulation (ppTMS) can be performed to evaluate the level of
GABA or NMDA receptor-mediated activity (Kujirai et al., 1993;
Ziemann et al., 1998a; Ilić et al., 2002; McDonnell et al., 2006;
Rossini et al., 2015). Therefore, we wished to verify whether the
after-effect in cortical excitability induced by iTBS is correlated
with the level of GABA or NMDA receptor-mediated activity
before stimulation. Here, ppTMS was performed to evaluate

short-interval intracortical inhibitory (SICI), long-interval
intracortical inhibitory (LICI), and intracortical facilitation
(ICF), which index GABAA receptor-, GABAB receptor-, and
glutamate receptor-mediated activity, respectively.

MATERIALS AND METHODS

Participants
Fifteen healthy volunteers (13 females) were recruited for the
present study. Age ranges from 20 to 23 years (M = 21.07,
SD = 1.06). All participants were right-handed (assessed by
the Edinburgh Handedness Inventory; Oldfield, 1971) and had
normal or correlated-with-normal vision. Exclusion criteria
included a history of psychiatric or neurologic diseases, epilepsy,
cardiovascular complications, taking any medication on a regular
basis, and contraindications to TMS (e.g., taking epileptogenic
drugs, implants in the brain, pregnant women). Informed
consent was obtained from all participants. The study was
performed according to the Declaration of Helsinki and approved
by the Ethics Committee of Affiliated Jiangsu Shengze Hospital of
Nanjing Medical University (JSSZYY-LLSC-202104). The study
was registered with the China Clinical Trial Registration Center1

under the number ChiCTR2100046794.

Transcranial Magnetic Stimulation and
Electromyography Recordings
Single monophasic TMS was performed over the hand region
of the left primary motor cortex (LM1) using the Neuro-
MS/D stimulator (Neurosoft Llc, Ivanovo, Russia) connected
with a figure-of-eight coil (external loop diameters, 70 mm; peak
magnetic field, 4 Tesla). The optimal coil position was determined
by moving the coil in 1-cm steps around the presumed left M1 of
hand until the point of the largest motor-evoked potential (MEP)
amplitude of the relaxed abductor pollicis brevis (APB) muscle
was reached. The stimulating coil was placed tangentially to the
scalp with the handle pointing posteriorly and laterally 45◦ to
the sagittal plane over the LM1 region. The stimulation intensity
was determined in relation to the resting motor threshold (RMT)
which was defined as the minimum TMS intensity eliciting
a peak-to-peak MEP-amplitude of 50 µV or more in resting
muscle, in at least 5 out or 10 trials (Groppa et al., 2012;
Rossini et al., 2015). To assess the motor cortex excitability,
motor-evoked potentials (MEPs) were recorded from the right
APB muscle at rest (dominant hand in all participants) by use
of silver/carbon-backed electrodes Skintact RT-34 (Fannin Ltd.,
Dublin, Ireland) with the size of 10.5 mm × 25 mm placed 2 cm
apart in a belly-tendon montage (see Figure 1). The Neuro-MEP-
Micro software was used to measure the amplitude of MEPs
(Neurosoft Llc, Ivanovo, Russia).

Intermittent Theta Burst Stimulation
iTBS was delivered over the hotspot of the LM1 using the
Neuro-MS/D stimulator (Neurosoft Llc, Ivanovo, Russia). The
stimulating protocol was conducted in accordance with the

1http://www.chictr.org.cn
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FIGURE 1 | Experimental design. (A) Intermittent theta burst stimulation (iTBS) protocol consisted of bursts containing three pulses given at 50 Hz and repeated
every 200 ms; a 2-s train of this stimulating pattern was repeated every 10 s for a total of 190 s (600 pulses). (B) Each subject was assessed motor-evoked
potentials (MEPs) and short-interval intracortical inhibitory (SICI), long-interval intracortical inhibitory (LICI), and intracortical facilitation (ICF) successively before iTBS
intervention. Following iTBS, MEPs were assessed at 5, 10, 15, and 30 min after stimulation. (C) Transcranial magnetic stimulation (TMS) was performed over the
hand region of the left primary motor cortex (LM1) connected with a figure-of-eight coil. The stimulating coil was placed tangentially to the scalp with the handle
pointing posteriorly and laterally 45◦ to the sagittal plane over the LM1 region. MEPs were recorded from the right abductor pollicis brevis (APB) muscle by use of
silver/carbon-backed electrodes placed 2 cm apart in a belly-tendon montage to assess cortical excitability.

protocol originally described by Huang et al. (2005), which
consisted of bursts containing three pulses given at 50 Hz and
repeated every 200 ms (see Figure 1A). A 2-s train of this
stimulating pattern was repeated every 10 s for a total of 190 s
(600 pulses) (Huang et al., 2005). The stimulation intensity was
set at 80% of RMT (Bulteau et al., 2017; Fujiki et al., 2020).

Experimental Procedure
Participants were seated in a comfortable chair with a neck
support and were asked to relax their right arm entirely. They
were also continually reminded to keep their eyes open and

fixate forward on throughout each trial. Eyes open and muscle
relaxation were observed by visual or electromyography (EMG)
monitoring. A hotspot was marked as the optimal coil position
where single-pulse TMS produced the largest MEP amplitude of
the relaxed APB muscle by moving the coil around the presumed
left M1 of hand (Rossini et al., 2015). Single-pulse TMS with
intensity of 120% RMT was conducted to assess the excitability
of the corticospinal system before and after iTBS. The peak-to-
peak amplitude of MEPs evoked by a suprathreshold stimulus
with an intensity of 120% RMT was used to probe the excitability
of the motor cortex.
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FIGURE 2 | Intermittent theta burst stimulation (iTBS) induced increase in cortical excitability at different time points. (A) iTBS induced a mean increase in
motor-evoked potential (MEP) amplitude at different time points after intervention. (B) Individual responses to iTBS after stimulation of each participant.
(C) Representative traces in motor-evoked potentials (MEPs) recorded at 5, 10, 15, and 30 min after stimulation. The data indicated that the MEP amplitude began
to increase after conducting iTBS.

Before conducting iTBS, each participant received two
sessions of single-pulse TMS with 20 consecutive pulses of each
with an interval of 5 min at baseline to confirm intraindividual
reliability of cortical excitability; the following trials could begin
until the difference between average MEPs in two sessions of
measurement was no more than 20% (Yu et al., 2020). To
quantify the level of GABA or NMDA receptor-mediated activity
before stimulation, we measured SICI, LICI, and ICF successively
before conducting iTBS using a paired pulse paradigm at rest
(Kujirai et al., 1993) (see Figure 1). SICI and ICF were delivered
with an intensity of 90% RMT for the conditioning stimulus
(CS) and 120% RMT for the testing stimulus (TS), with an
interstimulus interval (ISI) of 2.5 and 12 ms, respectively,
for 10 consecutive trials (Ozdemir et al., 2017; Tran et al.,
2020). The CS and TS delivered in LICI were both set at
120% RMT, with an ISI of 150 ms for 10 consecutive trials
(Mancheva et al., 2017). Paired pulse TMS results were based
on 10 trials with single pulses (unconditioned) and 10 trials
with paired pulses (conditioned) as previously recommended
(Rossini et al., 2015).

Statistical Analysis
All analyses were performed using IBM SPSS version 22
(Armonk, NY, United States), and statistical significance was
set at p < 0.05. Data were first tested to evaluate the normal
distribution using the Shapiro–Wilk test. The MEPs were
normalized to baseline MEP amplitude for each participant
to calculate the after-effect of iTBS-induced LTP-like plasticity.
Paired-pulse TMS protocols were expressed as the ratio
of conditioned MEPs to unconditioned MEPs. A one-way

within-subject ANOVA was conducted on the LTP-like after-
effect induced by iTBS among different time points (baseline,
5, 10, 15, 30 min). The Mauchly test was used to verify
the sphericity. A two-sided Pearson correlation test was used
to examine relationships between SICI/LICI/ICF measured
before stimulation and the after-effect of iTBS-induced LTP-
like plasticity at 5, 10, 15, and 30 min after conducting
iTBS, respectively. Multiple tests were corrected using the false
discovery rate (FDR) method (Benjamini and Yekutieli, 2001)
for ANOVA and Pearson correlation. To examine whether iTBS-
induced plasticity can be predicted by SICI, LICI, or ICF, we
also performed multiple regression analysis using the stepwise
method. The multicollinearity test was performed based on the
variance inflation factor (VIF) to examine whether our data met
the assumption of collinearity.

RESULTS

Intermittent Theta Burst
Stimulation-Induced Plasticity
Figure 2 shows an iTBS-induced increase in cortical excitability
at different time points after inducing iTBS and individual
participants’ responses to iTBS. Figure 2C shows representative
changes in MEPs recorded at 5, 10, 15, and 30 min after
stimulation. The data indicated that the MEP amplitude began
to increase after conducting iTBS. A one-way within-subject
ANOVA was conducted on the LTP-like after-effect induced
by iTBS. There was a significant effect of the after-effect of
iTBS-induced LTP-like plasticity among different time points
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FIGURE 3 | Correlation between short-interval intracortical inhibitory (SICI) and the after-effect of intermittent theta burst stimulation (iTBS)-induced long-term
potentiation (LTP)-like plasticity. (A) There was a significant negative correlation between the amount of SICI measured before iTBS and the after-effect of
iTBS-induced LTP-like plasticity at the time point of 5 min [R2 = 0.44, p < 0.05, false discovery rate (FDR) corrected]. (B) The correlation between the level of SICI
before stimulation and iTBS-induced after-effects at 10 min after conducting iTBS was also significant (R2 = 0.43, p < 0.05, FDR corrected). (C) A significant
negative correlation was also reported between the amount of SICI before stimulation and the iTBS-induced effects at 15 min after stimulation (R2 = 0.45, p < 0.05,
FDR corrected). (D) There was no significant correlation between SICI before stimulation and iTBS effect at 30 min (R2 = 0.08, p = 0.107, FDR corrected).

(baseline, 5, 10, 15, 30 min): F(4,56) = 123.9, p < 0.001 (FDR
corrected), ηp2 = 0.87.

After-Effect of Intermittent Theta Burst
Stimulation-Induced Potential-Like
Plasticity Correlates With the Level of
Short-Interval Intracortical Inhibitory
Before Stimulation
There was a significant negative correlation between the amount
of SICI measured before iTBS and the after-effect of iTBS-
induced LTP-like plasticity at the time points of 5 min (R2 = 0.44,
p < 0.05, FDR corrected), 10 min (R2 = 0.43, p < 0.05, FDR
corrected), and 15 min (R2 = 0.45, p < 0.05, FDR corrected)
following conduction of iTBS (Figure 3). Post hoc power analysis
indicated that the power to detect the observed effects at the
0.05 level was 0.742, 0.760, and 0.807 at the time points of 5, 10,
and 15 min, respectively, while there is no significant correlation
between SICI before stimulation and iTBS effect at 30 min
(R2 = 0.08, p = 0.107, FDR corrected). No correlation between
iTBS after-effect and the level of LICI was found at all time points
5, 10, 15, and 30 min after stimulation (Figure 4). Similarly,
the iTBS after-effect was not correlated with the level of ICF

measured before iTBS at all time points (Figure 5). Table 1 shows
all R2 and p-values before and after applying the FDR correction.

Short-Interval Intracortical Inhibitory as
a Good Predictor of Effectiveness of
Intermittent Theta Burst
Stimulation-Induced Cortical Plasticity
To assess predictive values for iTBS-induced cortical plasticity,
we performed the multiple linear regression analysis with the
levels of SICI, LICI, and ICF before iTBS as independent
variables, and the dependent variable the after-effects of iTBS-
induced cortical plasticity. Results from multicollinearity tests
showed that the data met the assumption of collinearity with
VIF = 1. Results from stepwise linear regression indicated that
the model, with SICI as the only predictor, was significant at the
time point of 5 min following iTBS conduction [F(1,13) = 10.144,
p = 0.007, R2 = 0.40] and with beta coefficient = –0.4 for
influence of SICI on the iTBS-induced cortical plasticity. In
addition, SICI also remained as the only predictor in the models
of 10 min [F(1,13) = 9.952, p = 0.008, R2 = 0.40] and 15 min
[F(1,13) = 10.733, p = 0.006, R2 = 0.41] after conducting iTBS,
with beta coefficients = –0.42 and –0.48 for influence of SICI on
the iTBS-induced after-effect at 10 and 15 min after stimulation,
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FIGURE 4 | Correlation between long-interval intracortical inhibitory (LICI) and the after-effect of intermittent theta burst stimulation (iTBS)-induced long-term
potentiation (LTP)-like plasticity. (A) No significant correlation was reported between the amount of LICI measured before iTBS and the iTBS after-effect at the time
point of 5 min [R2 = 0.28, p = 0.170, false discovery rate (FDR) corrected]. (B) No significant correlation was also reported between the amount of LICI before
stimulation and the iTBS-induced effects at 10 min after stimulation (R2 = 0.22, p = 0.170, FDR corrected). (C) The correlation between the level of LICI before
stimulation and iTBS-induced after-effects at 15 min after conducting iTBS was also not significant (R2 = 0.18, p = 0.202, FDR corrected). (D) There was also no
significant correlation between the level of LICI and the after-effect of iTBS-induced LTP-like plasticity at the time point of 30 min (R2 = 0.31, p = 0.476, FDR
corrected).

respectively. Post hoc power analysis revealed that coefficients of
–0.4, –0.42, and –0.48 could be detected at 0.05 at a power of
greater than 0.90.

DISCUSSION

The current study aimed at providing a direct investigation of the
relationship between LTP-like plasticity induced by iTBS in the
human motor cortex and the level of GABA or NMDA receptor-
mediated activity before stimulation. We used a series of paired-
pulse TMS protocols including SICI, LICI, and ICF to assess
GABAA receptor-, GABAB receptor-, and glutamate receptor-
mediated activity, respectively. Our findings showed that (i)
GABAA receptor-mediated activity assessed before stimulation
was significantly negatively correlated with LTP-like plasticity
induced by iTBS following 5, 10, and 15 min after conduction
of stimulation; (ii) there was no significant correlation between
LTP-like plasticity induced by iTBS and GABAB receptor-
or glutamate receptor-mediated activity before stimulation as
assessed by the TMS protocol of LICI and ICF; and (iii) SICI,
as the index of GABAA receptor-mediated activity measured
before stimulation, is a good predictor of iTBS-induced LTP-like
plasticity for a period lasting 15 min following stimulation.

Cortical inhibition is essential for regulating neuronal
excitability, and a decrease in local inhibitory signaling is

necessary for LTP-like plasticity to occur. In the present study, we
found that GABAA receptor-mediated activity before stimulation
was significantly negatively correlated with LTP-like plasticity
induced by iTBS. This is consistent with previous evidence
indicating that reduced GABAergic inhibition can facilitate
induction of LTP-like plasticity (Castro-Alamancos et al., 1995;
Trepel and Racine, 2000; Chen et al., 2010; Bachtiar and Stagg,
2014). Similar findings have also been observed in patients during
chronic stages of stroke recovery that GABAA receptor-mediated
activity is reduced compared with healthy controls (Blicher
et al., 2009). Furthermore, we also found that SICI measured
before stimulation is a good predictor of iTBS-induced LTP-like
plasticity for a period lasting 15 min. Our findings might add
evidence to the suggestion that SICI in the early recovery phase
can be a predictor of LTP-like plasticity in the later recovery stage
for patients after stroke (McDonnell et al., 2007; Liuzzi et al.,
2014).

In addition to GABAA receptors, GABAB receptors are
also thought to have an important role in induction of LTP
(Larson and Munkácsy, 2015). In the present study, GABAB
receptor-mediated activity before stimulation as assessed by
LICI was found not significantly correlated with the after-
effects of LTP-like plasticity induced by iTBS. This suggested
that the interplay between GABAB receptor-mediated inhibition
and plasticity is complex. In addition, metabotropic GABAB
receptors have been found to modulate inhibitory neural circuits
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FIGURE 5 | Correlation between intracortical facilitation (ICF) and the after-effect of intermittent theta burst stimulation (iTBS)-induced long-term potentiation
(LTP)-like plasticity. (A) No significant correlation was reported between the amount of ICF measured before iTBS and the iTBS after-effect at the time point of 5 min
[R2 < 0.01, p = 0.612, false discovery rate (FDR) corrected]. (B) There was also no significant correlation between the level of ICF and the after-effect of
iTBS-induced LTP-like plasticity at the time point of 10 min (R2 = 0.05, p = 0.747, FDR corrected). (C) A non-significant correlation was also reported between the
amount of ICF before stimulation and the iTBS-induced effects at 15 min after stimulation (R2 = 0.02, p = 0.978, FDR corrected). (D) There was no significant
correlation between ICF before stimulation and iTBS-effect at 30 min (R2 < 0.01, p = 0.978, FDR corrected).

TABLE 1 | Correlation between the level of short-interval intracortical inhibitory (SICI), long-interval intracortical inhibitory (LICI), and intracortical facilitation (ICF) measured
before stimulation and the after-effect of intermittent theta burst stimulation (iTBS)-induced long-term potentiation (LTP)-like plasticity (all R2 and p-values before and after
applying the FDR correction).

ppTMS protocol Time points after
iTBS (min)

R2 p-value before
FDR correction

p-value after FDR
correction

Results after FDR
correction

SICI 5 0.44 0.005 0.030 Significant

10 0.43 0.006 0.030 Significant

15 0.45 0.008 0.030 Significant

30 0.08 0.036 0.107 Not significant

LICI 5 0.28 0.078 0.170 Not significant

10 0.22 0.085 0.170 Not significant

15 0.18 0.118 0.202 Not significant

30 0.31 0.317 0.476 Not significant

ICF 5 0.00036 0.459 0.612 Not significant

10 0.05 0.623 0.747 Not significant

15 0.02 0.916 0.978 Not significant

30 0.000064 0.978 0.978 Not significant

by mediating long-lasting inhibitory postsynaptic potentials
or involve presynaptic autoinhibition of interneurons through
GABAA receptors to inhibit GABA release (McDonnell et al.,
2006; McDonnell et al., 2007). The former postsynaptic inhibition
hyperpolarizes target neurons and reduces LTP-like plasticity,
whereas the latter one depolarizes target neurons and results

in facilitation of LTP (Mott and Lewis, 1991; Stäubli et al.,
1999). In the current study, LICI was used to measure GABAB
receptor-mediated effects without distinguishing postsynaptic
and presynaptic GABAB effects. On the other hand, McDonnell
et al. (2006) and Cash et al. (2010) suggested that these two
different GABAB effects should be measured using LICI protocol
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and induce SICI in the presence of LICI in the human motor
cortex. Therefore, although no significant correlation between
postsynaptic GABAB effects measured by LICI- and iTBS-
induced LTP was found in the present study, future studies
need to further investigate the relationship between presynaptic
GABAB effects and LTP-like plasticity.

Further, it is not consistent with our expectation that no
significant correlation was found between iTBS after-effects and
NMDA receptor-mediated activity before iTBS as assessed by
ICF. Plentiful studies have shown that the NMDA receptor
plays an important role in the development of rapid cortical
plastic changes and activation of NMDA receptors is necessary
to induce LTP-like plasticity (Hunt and Castillo, 2012; Hasan
et al., 2013), while this phenomenon was not confirmed by
others (Liao et al., 1995; Selig et al., 1995). Besides, previous
work indicated that although LTP is induced by activation of
NMDA receptors at synapses, these mechanisms are mediated
by AMPA receptors trafficking in postsynaptic neurons (Park
et al., 2018; Sumi and Harada, 2020). Further studies need to
explore the role the AMPA receptor plays in iTBS-induced LTP-
like plasticity and how to separate the effect of the NMDA and
AMPA receptors on iTBS-induced after-effects. In addition, it
may also be due to the fact that ICF is not an ideal measurement
of NMDA receptor-mediated activities as more than one possible
neural circuit contribute to ICF (Hanajima et al., 1998). Recent
studies combining TMS–MRS methods showed that there was
no significant relationship between the ICF protocol with ISI of
12 ms and MRS-glutamate, which questioned ICF as an effective
tool to measure the level of NMDA-type glutamate receptor-
mediated activity (Stagg et al., 2011; Dyke et al., 2017).

In conclusion, the present study found that GABAA receptor-
mediated activity measured before stimulation is negatively
correlated with the after-effect of cortical excitability induced by
iTBS. SICI, as an index of GABAA receptor-mediated activity
measured before stimulation, is a good predictor of iTBS-
induced LTP-like plasticity for a period lasting 15 min following
stimulation. However, there are several limitations in our study.
First, we measured cortical excitability only within 30 min
following iTBS protocols; it is unclear what happens after 30 min.
In addition, a limited number of TMS pulses were applied to
LM1, with only 10 trials for each condition (i.e., SICI, ICF, and
LICI). Although we have ensured intraindividual reliability of
cortical excitability by performing two sessions of single-pulse
TMS with an interval of 5 min, the optimal number of trials was
required to reduce interindividual differences in order to make
the results more reliable. Furthermore, as a pilot study, the sample
size is small and the sex of participants was not very balanced.

Although no previous work has reported a sex difference in the
iTBS-induced after-effects, further studies are still required to
investigate sex differences in iTBS-induced LTP-like plasticity to
make our findings more generalized to the entire population.
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