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Somewhere along the cortical hierarchy, behaviorally relevant
information is distilled from raw sensory inputs. We examined
how this transformation progresses along multiple levels of the
hierarchy by comparing neural representations in visual, temporal,
parietal, and frontal cortices in monkeys categorizing across three
visual domains (shape, motion direction, and color). Representa-
tions in visual areas middle temporal (MT) and V4 were tightly
linked to external sensory inputs. In contrast, lateral prefrontal
cortex (PFC) largely represented the abstracted behavioral rele-
vance of stimuli (task rule, motion category, and color category).
Intermediate-level areas, including posterior inferotemporal (PIT),
lateral intraparietal (LIP), and frontal eye fields (FEF), exhibited
mixed representations. While the distribution of sensory informa-
tion across areas aligned well with classical functional divisions
(MT carried stronger motion information, and V4 and PIT carried
stronger color and shape information), categorical abstraction did
not, suggesting these areas may participate in different networks
for stimulus-driven and cognitive functions. Paralleling these rep-
resentational differences, the dimensionality of neural population
activity decreased progressively from sensory to intermediate to
frontal cortex. This shows how raw sensory representations are
transformed into behaviorally relevant abstractions and suggests
that the dimensionality of neural activity in higher cortical regions
may be specific to their current task.
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Neural representations at the earliest stages of cortical pro-
cessing reflect a relatively faithful copy of sensory inputs,

but intelligent behavior requires abstracting the behaviorally
relevant elements from sensory inputs. The sensory continuum
often needs to be parsed into categories, such as dividing con-
tinuous color variations of fruits into “ripe” and “unripe.” Ar-
bitrary sensory stimuli can also be functionally associated to
acquire the same meaning (e.g., the diverse stimuli grouped into
the category “food”). Impaired or atypical categorization is a
hallmark of disorders such as autism (1) and schizophrenia (2).
Understanding its neural basis could provide pathways to early
diagnosis and treatment.
Abstract categorical representations can be found in areas at

or near the top of the cortical hierarchy, such as lateral prefrontal
cortex (PFC) (3–7), posterior parietal cortex (7–9), and the medial
temporal lobe (10). Less well understood are the processing steps
that transform bottom-up sensory inputs into these task-related,
and thus top-down, representations. We therefore recorded from
multiple regions along the cortical hierarchy in macaque monkeys
performing a multidimensional categorization task. In a previous
report on this dataset (11), we showed evidence that sensory sig-
nals flow in a bottom-up direction from visual to frontal cortex,
while signals for the monkeys’ behavioral choice flow in a top-
down direction from frontoparietal to visual cortex.
Here, we exploit the category structure of this task to in-

vestigate the degree to which visual representations in six cortical
areas reflect bottom-up sensory inputs or the learned categories
they are grouped into. The task required binary categorization of
stimuli continuously varying along two distinct sensory domains,

motion direction and color, and arbitrary grouping of a set of
shape cues that signaled which feature (motion or color) should
be categorized on each trial. We recorded isolated neurons si-
multaneously from six cortical areas (Fig. 1D) from both the
dorsal and ventral visual processing streams, including frontal
[lateral PFC and frontal eye fields (FEF)], parietal [lateral
intraparietal area (LIP)], temporal [posterior inferior temporal
cortex (PIT)], and visual [areas V4 and middle temporal (MT)]
cortices. Our results suggest that categorization occurs in a
gradual fashion across the cortical hierarchy, reaching its apex in
PFC; that categorical coding does not always correlate with
classical functional divisions; and that the dimensionality of
cortical activity decreases in parallel with the reduction of con-
tinuous sensory stimuli to categorical groupings.

Results
Our main interest was to track the transformation of visual inputs
from more sensory (bottom-up) representations to task-related
(top-down) representations. On each trial of our multidimensional
categorization task (Fig. 1A), a visual shape cue instructed the
monkey whether to categorize a subsequently presented colored,
moving random-dot stimulus based on its color (“greenish” vs.
“reddish”) or direction of motion (upward vs. downward), and
report the cued category with a leftward or rightward saccade.
Therefore, it probed three different types of sensory inputs: shape,
motion, and color. Two of the shapes (arbitrarily chosen) cued
motion categorization, while the other two cued color categoriza-
tion (Fig. 1 B and C). Thus, four different shapes were arbitrarily
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grouped into pairs by virtue of them cueing the same task rule,
and four continuously varying colors and directions of motion
were arbitrarily divided by a sharp boundary (Fig. 1C) [additional
colors/motions on category boundaries (11) were excluded from
the present analyses, which require an unambiguous category
assignment].
We exploited the mapping in each domain from two stimulus

items (cue shapes, directions, or colors) to each categorical
grouping (task rule, motion category, or color category) to dis-
sociate stimulus-related (sensory) and task-related (categorical)

effects. Purely categorical neural activity would differentiate
between categories (i.e., have “preferred” responses for both
items in the same category) but show no differences between
items within each category. Purely sensory activity would, in-
stead, differentiate between stimulus items without regard to the
learned categorical divisions.
We quantified this by fitting each neuron’s spike rate, at each

time point, with a linear model that partitioned across-trial rate
variance into between-category and within-category effects (de-
tails are provided in SI Appendix, SI Methods). The model in-
cluded three orthogonal contrast terms for each task domain
(Fig. 2A). One contrast (blue) reflected the actual task-relevant
grouping of stimulus items (cue shapes, directions, or colors) into
categories, and thus captured between-category variance. The
other contrasts (gray) reflected the two other possible non–task-
relevant paired groupings of items and captured all within-
category variance. Together, these three terms capture all data
variance in the given task domain. We wished to measure how
much of that variance, for each domain and studied brain region,
was attributable to categorical coding: its categoricality. Note
that simply measuring the between-category variance would re-
sult in a biased estimate of categoricality; it is nonzero even for
neural populations with sensory tuning for single stimulus items
or for arbitrary subsets of items (SI Appendix, Fig. S1 E and F).
Instead, we estimated where the between-category variance of

each neural population fell between the predictions of purely
sensory and purely categorical coding. Note that the sum of
variances for all three model terms bounds the between-category
variance; they can be equal only for a perfectly categorical
population with zero within-category variance (Fig. 2B, Top). A
purely sensory-driven population would, instead, have equal
variance for all three contrasts; thus, between-category variance
would equal the average of all three terms (Fig. 2B, Bottom). To
measure where neural populations fall between these extremes,
we computed a “categoricality index” equal to the area between
the between-category and sensory (lower-bound) time series,
expressed as a fraction of the full area between the total (upper-
bound) and sensory (lower-bound) time series (Fig. 2C). It can
be shown this is also equivalent to the between-category variance
minus the average of within-category variance terms [the statistic
used in our prior publication (11)], normalized by the total do-
main variance (details are provided in SI Appendix, SI Methods).
This index is a specific measure of how categorical a neural
population is, and ranges from 1 for a perfectly categorical

Color

Motion

Motion direction

C
ol

or

Fixation

0.5 s

Rule cue Stimulus Response

1 s < 3 s

or

or
L
R

L R

Color

Motion
FEF

PFC V4

PIT

LIP

MT

A

B C D

Fig. 1. Experimental design. (A) Trial sequence for the multidimensional vi-
sual categorization task. On each trial, the monkeys categorized either the
motion direction or color of a random-dot stimulus. This stimulus was imme-
diately preceded by a symbolic visual shape cue that instructed which feature
(motion or color) to categorize for that trial. The monkey responded with a
leftward or rightward saccade during the 3-s stimulus. (B) Either of two dif-
ferent cue shapes was used to instruct each task rule so as to dissociate cue-
and task-rule–related activity. (C) Stimuli systematically sampled motion di-
rection (upward to downward) and color (green to red). Each color category
comprised two distinct colors, and each motion category comprised two dis-
tinct motion directions (additional ambiguous stimuli on the category
boundaries were not analyzed here due to our focus on categoricality). Dashed
lines indicate category boundaries. For each task rule, the two categories had a
fixed mapping to a leftward (L) or rightward (R) saccadic response. (D) Illus-
tration of sampled brain regions: lateral PFC, FEF, LIP, PIT, V4, and MT.
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population to 0 for a purely sensory population. [Negative values
are possible if within-category variance is greater than between-
category variance (i.e., for populations that specifically reflect
within-category differences).]
Within the context of each task rule, motion and color cate-

gories were, by design, inextricably linked with the monkey’s
behavioral choice (e.g., under the color rule, greenish and red-
dish colors always mandated leftward and rightward saccades,
respectively). Although this identity relationship is broken when
both task rules are considered together, there remains a partial
correlation between these task variables. To partition out choice
effects from the category effects of interest, we also included in
the fitted models a term reflecting behavioral choice. Category
effects are thus measured in terms of their additional variance
explained once choice effects are already accounted for (12).
To validate our analysis, we first assayed its properties on

synthesized neural activity with known ground truth (details are
provided in SI Appendix, SI Methods and SI Results). We show
that our categoricality index reliably reports the relative weights
of simulated sensory and categorical signals (SI Appendix, Fig.
S1A), that it is relatively insensitive to coupled changes in both
sensory and categorical signals in concert (SI Appendix, Fig. S1 B
and C), and that it is relatively insensitive to simulated choice
effects (SI Appendix, Fig. S1D).

Shape Information. We first examined representations of the four
cue shapes instructing the task rule in effect on each trial. All
sampled cortical areas (MT, V4, PIT, LIP, FEF, and PFC) con-
veyed significant information about the rule cues, as measured by
the total spike rate variance explained by cues (Fig. 3 A and B; P <
0.01, one-sample bootstrap test). The strongest cue shape in-
formation was in areas PIT and V4 (Fig. 3C; P < 0.01 for all
comparisons with other areas, two-sample bootstrap test), con-
sistent with their well-established role in shape processing (13).
To measure task-related (top-down) information about the

task rule instructed by the cues, we partitioned out spike rate
variance due to effects between task rules (“between-category
variance”) and between cues instructing the same rule (“within-
category variance”). Areas MT, V4, and PIT all exhibited
between-category variances (Fig. 3D, colored curves) that hewed
closely to values expected from a pure bottom-up sensory repre-
sentation of shape (Fig. 3D, lower gray curves). We summarized
these results with a categoricality index that measures how cate-
gorical the information conveyed by each neural population is,
ranging continuously from purely sensory (0) to purely categorical
(1). Task-rule categoricality indices for each of these visual areas
(Fig. 3E) did not differ significantly from zero (P > 0.01). This was
true for both V4 and PIT, areas where we found strong overall cue
information, as well as for MT, where there was weaker cue in-
formation. Thus, visual areas MT, V4, and PIT contained a pri-
marily bottom-up sensory representation of the shape cues. Note
that this result differs from the strong V4 and PIT task-rule signals
in our prior publication on this dataset (11). This is primarily due
to differences in the specific questions addressed by each study,
and can be reconciled by the fact that V4 and PIT do contain
some task-rule signals, but these signals constitute a very small
fraction of the total cue variance in these areas (details are pro-
vided in SI Appendix, SI Results).
By contrast, PFC, FEF, and LIP all conveyed task-rule in-

formation (Fig. 3D, colored curves) well above that predicted
from bottom-up sensory signals (Fig. 3D, lower gray curves), and
had task-rule categoricality indices significantly greater than zero
(Fig. 3E; P ≤ 1 × 10−5 for all three areas). PFC exhibited the
most categorical task cue representation, significantly greater
than all other areas (Fig. 3F; P < 0.01) except FEF (P = 0.05).
FEF and LIP had intermediate values between PFC and the
group of sensory areas (MT, V4, and PIT). All areas, including
PFC, still conveyed less task-rule information than expected
from a purely categorical representation (Fig. 3D, upper gray
curves) and had categoricality indices significantly less than 1
(P ≤ 1 × 10−5). This suggests that, unlike the visual areas, areas

LIP, FEF, and particularly PFC represented the top-down
meaning of the rule cues, although also retaining some sensory
information about them as well. Unlike the case with sensory
information, where results were predictable from traditional
areal divisions (shape-coding ventral stream areas PIT and
V4 showed the strongest information), top-down task-rule cod-
ing was observed in traditionally non–shape-coding dorsal stream
areas LIP and FEF, but not in V4 or PIT.
It seems likely that some trace of the current task rule would

have to persist into the stimulus period to influence how the
random-dot stimulus was assigned to categories. This can be seen
in the rightmost portion of Fig. 3D, and we focus in on it in SI
Appendix, Fig. S2. The results indicate that cue signals in V4 and
PIT decrease sharply after cue offset (SI Appendix, Fig. S2A) and
remain sensory in nature (SI Appendix, Fig. S2 D and E). In
contrast, cue signals in PFC, FEF, and LIP persist relatively
unabated through the stimulus period (SI Appendix, Fig. S2D)
and are generally even more categorical than during the cue
period (SI Appendix, Fig. S2 E and F). These results indicate that
task-rule signals in frontoparietal regions (PFC, FEF, and LIP)
may be involved in guiding categorical decisions about the
random-dot stimuli.

Motion Direction Information. Next, we turned to the random-dot
stimuli that the animals had to categorize according to their di-
rection of motion or their color. Both motion direction and color
varied along a continuum, but the animals had to group them into
upward/downward or greenish/reddish. Much as with the rule cues
(as discussed above), we would expect bottom-up sensory signals
to reflect the actual direction or color, whereas task-related sig-
nals should divide them into their relevant categories. To dis-
criminate signals related to stimulus category and behavioral
choice, we combined data across both task rules (as discussed
above; details are provided in SI Appendix, SI Methods).
First, we began with motion. Analogous to the rule cues, there

were four distinct motion directions, grouped into two cate-
gories: upward (90° and 30°) and downward (−30° and −90°)
categories, with rightward motion (0°) serving as the category
boundary (Fig. 1C). All areas conveyed significant information
about motion direction, as measured by the total spike rate
variance explained by motion (Fig. 4 A and B; P < 0.01). The
strongest motion information was found in area MT (Fig. 4 A
and B), which was significantly greater than in all other areas
(Fig. 4C; P < 0.01) except PIT (P = 0.05), consistent with its
classical role in motion processing (14).
When we partitioned total motion variance into between- and

within-category effects, between-category variance in MT (Fig.
4D, orange curve) closely approximated its sensory prediction
(Fig. 4D, lower gray curve), and its motion categoricality index
was not significantly different from zero (Fig. 4E; P = 0.44). The
same was true of more weakly direction-selective areas V4 (P ≈
1), PIT (P ≈ 1), and FEF (P = 0.03). Thus, the motion in-
formation carried by MT, V4, PIT, and FEF was largely sensory
in nature.
In contrast, PFC and LIP both exhibited between-category

variances (Fig. 4D, colored curves) considerably greater than
their sensory predictions (Fig. 4D, lower gray curves) and motion
categoricality indices significantly greater than zero (Fig. 4E;
PFC: P = 0.004, LIP: P ≤ 1 × 10−5). As with the task instruction
cues, PFC showed the most categorical motion signals (Fig. 4F;
significantly greater than MT, V4, and PIT: all P < 0.01; non-
significant for FEF: P = 0.06 and LIP: P = 0.38). All areas, in-
cluding PFC, remained significantly below the predictions of a
purely categorical representation (Fig. 3D, upper gray curves;
P ≤ 1 × 10−5). Thus, areas PFC and LIP conveyed top-down
motion categories but retained some sensory direction in-
formation as well. Once again, while the sensory results were
consistent with traditional areal divisions (MT predictably had
the strongest direction information), significant motion category
information was observed in one higher level dorsal stream area
(LIP), but not in another one (FEF).
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Color Information. Next, we examined neural information about
the colors of the random-dot stimuli. As with motion, there were
four distinct color hues grouped into two categories, greenish

(90° and 30° hue angles) and reddish (−30° and −90°), with the
category boundary at yellow (0°; Fig. 1C). Once again, significant
color information (total color variance) could be found in all
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direction. (E) Motion categoricality index (±SEM) for each area, reflecting where its average between-category motion variance falls between expected values
for pure sensory (0) and categorical (1) representations. Only PFC and LIP are significantly different from zero (*P < 0.01). (F) Cross-area comparison matrix
indicating which regions (rows) had significantly greater motion categoricality indices than others (columns) (•P < 0.01).
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studied areas (Fig. 5 A and B; P < 0.01). Area V4 showed the
strongest color information (Fig. 5 A and B), which was signifi-
cantly greater than in all other studied areas (Fig. 5C; P < 0.01),
consistent with its established role in color processing (15). Al-
though PIT showed the second strongest stimulus color in-
formation, it was not significantly greater than in other areas
(Fig. 5C; P > 0.01), possibly due to insufficient sampling of the
relatively sparsely distributed “color patches” in and around this
area (16).
Cortical representations of color were overall much more

categorical than those for motion direction and rule cues, pos-
sibly due to alignment of the category structure with the red-
green opponent signals arising in retinal ganglion cells and
prevalent at many levels of the visual system (15). All areas ex-
cept MT showed significant color categoricality indices (Fig. 5 D
and E; P < 0.01 for all areas). PIT, FEF, and PFC all had nearly
purely categorical color representations. For each of them, cat-
egorical information nearly equaled its upper bound (Fig. 5D).
Their categoricality indices were significantly greater than those
of LIP and V4 (Fig. 5F; P < 0.01), and those of PIT and FEF
were not significantly different from a purely categorical repre-
sentation (PIT: P = 0.1; FEF: P = 0.04). By comparison, strongly
color-selective area V4, as well as weakly color-selective areas
MT and LIP, was much less categorical. Thus, areas MT, V4, and
LIP have a relatively bottom-up representation of color, while
areas PIT, FEF, and PFC have largely categorized them into
binary greenish and reddish categories. Note that while bottom-
up biases toward red-green opponent coding might have boosted
the overall apparent color categoricality, it is not obvious why
such signals would be inherently stronger in higher level areas
than in V4. We also found that, once again, overall color in-
formation was fairly consistent with traditional areal divisions
(V4 predictably had the strongest color information), while color
categoricality exhibited a mixed correlation with them: As
expected, PIT was strongly categorical for color, but so was
traditional dorsal stream area FEF.

Changes in Dimensionality Across Cortex. As a complementary as-
say of cortical coding properties, we examined the dimensionality
of neural population activity using a noise-thresholded principal
components analysis method (17) (details are provided in SI
Appendix, SI Methods). This analysis was previously used to
measure PFC dimensionality in an object sequence memory task
(18). In that context, it was found that PFC neurons contained a
high-dimensional representation of task components due to their
conjunctive coding of multiple task variables (18). We asked
whether high dimensionality is an invariant property of PFC
population activity or whether it might be specific to task context.
We concatenated all neurons from each studied area into a
“pseudo-population” and extrapolated to larger population sizes
via a condition relabeling procedure. For each area and pop-
ulation size, we computed the mean spike rate for each of 64 task
conditions (four rule cues × four motion directions × four colors)
within the random-dot stimulus epoch when all conditions were
differentiated. The dimensionality of the space spanned by each
resulting set of 64 neural population activity vectors was quan-
tified as the number of principal components (eigenvalues) sig-
nificantly greater than those estimated to be due solely to noise.
As expected, estimated dimensionality grew with the size of

the neural population examined but generally approximated an
asymptotic value (Fig. 6A) that can be taken as an estimate of the
dimensionality of the underlying (much larger) neural pop-
ulation. Clear differences in the estimated dimensionality were
observed across areas, as summarized in Fig. 6B. The highest
dimensionality was observed in visual areas V4, PIT, and MT,
presumably reflecting a large diversity of sensory tuning curves in
these visual areas. These areas were followed by intermediate-
level visual areas LIP and FEF. The lowest dimensionality was
observed in PFC. The observed high dimensionality of area PIT
was likely due, in part, to the inclusion of two task variables that
it carried relatively strong information about: rule cues (shape)

and color. When the same analysis was performed in 16D space
consisting only of four directions × four colors (Fig. 6 C and D),
PIT dimensionality was greatly reduced and was similar to that
of LIP.
Thus, the dimensionality of population activity decreased

progressively up the cortical hierarchy in parallel with the
gradual shift from sensory to categorical representations. Fur-
ther, the estimated PFC dimensionality is close to the value that
would be expected of a purely categorical representation with
binary responses for each task variable (∼3 for the three-variable
analysis, Fig. 6B; ∼2 for the two-variable analysis, Fig. 6D).
These results suggest that high dimensionality is not an invariant
property of PFC activity but may be specific to current behav-
ioral demands, to reduce high-dimensional sensory stimuli to
binary categories in this case.

Discussion
Abstraction of Sensory Inputs Occurs Progressively Through the
Cortical Hierarchy. Our results, summarized in Fig. 7, demon-
strate a gradual progression from bottom-up sensory inputs to
abstracted, top-down behaviorally relevant signals as the cortical
hierarchy is ascended. Across three visual domains (shape, motion
direction, and color), lower level visual areas MT and V4 con-
veyed strong information about sensory stimuli within their pre-
ferred domains (Fig. 7A) but showed little evidence for any
abstraction beyond the raw sensory inputs (Fig. 7B). In contrast,
higher level area PFC, despite containing relatively weak in-
formation overall (Fig. 7A), showed strongly abstracted, task-
relevant coding across all domains (Fig. 7B). In between,
intermediate-level visual areas PIT, LIP, and FEF showed mixed
representations with partially categorical coding in some domains
but not others. These results support models of cortical processing
where representational transformations happen gradually across
multiple cortical processing steps (19, 20), rather than in a dis-
crete, all-or-nothing fashion.
In all but a few cases (PIT and FEF for color), cortical rep-

resentations, even in high-level areas, remained significantly less
categorical than predicted for a purely categorical neural pop-
ulation. The distribution of categoricality index values across
neurons in the studied populations (SI Appendix, Fig. S3) sug-
gests two reasons for this. First, even mostly categorical pop-
ulations contained some residual sensory-coding neurons (index
values ≈ 0). Second, all studied populations contained some
individual neurons whose activity differentiates both between
categories and between items within each category (0 ≤ index ≤
1). Thus, the intermediate categorical coding we observed in
most areas reflected a mixture of sensory and categorical effects
at the level of both single neurons and the neural population.
Purely categorical signals might exist in other brain regions, such
as the medial temporal lobe (10). However, some multiplexing of
categorical and residual sensory signals could also have a func-
tional role, such as permitting behavior to be driven flexibly by
multiple levels of abstraction.
Note that the exact values of categoricality indices may be

influenced by the particular stimuli used, and are thus, to some
degree, specific to this task. For example, the apparent strong
categoricality of color representations may have been due to
alignment of the category structure with the red-green opponent
signals arising in retinal ganglion cells (15). However, it is not
obvious why any such bottom-up stimulus biases would be in-
herently stronger in higher level areas, without being driven by a
learned category structure. Thus, while we do not put strong in-
terpretational value on the exact index values for each area and
task variable, we believe their relative values accurately portray a
progression from sensory-dominated to categorical coding through
the cortical hierarchy.

Comparison with Our Previous Results.One result may appear to be
somewhat at odds with our prior publication on this dataset (11).
We previously claimed that V4 and PIT had strong task-rule
information (figure 2C in ref. 11). Here, we claim task-rule

Brincat et al. PNAS | vol. 115 | no. 30 | E7207

N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1717075115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1717075115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1717075115/-/DCSupplemental


categoricality is weak and nonsignificant in these areas (Fig. 3 D
and E). This difference lies primarily in the specific questions
addressed by each study. Our previous study addressed the
overall task-rule information conveyed by each neural pop-
ulation. It therefore used a statistic that measured a debiased

version of between-category variance for task cues. This measure
could be high for populations conveying strong information
about a domain, such as the representations of rule cue shapes
in V4 and PIT, even if only a very small fraction of that in-
formation is categorical (simulations in SI Appendix, Fig. S1H).
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Here, we instead addressed how categorical neural representa-
tions are. We used a statistic that normalizes out overall in-
formation to measure categoricality per se (SI Appendix, Fig. S1
B and C). Thus, we can reconcile results from the two studies by
concluding that V4 and PIT contain strong information about
task cues but only a small fraction of that information is cate-
gorical. In contrast, despite the weaker overall task cue in-
formation in PFC and FEF, a substantial fraction of that
information reflects the learned task-rule categories. This defi-
nition accords well with both intuitive notions of categoricality
and those previously proposed (3, 10). As elaborated below, it is
further supported by its tight correspondence to the anatomically
defined cortical hierarchy.

Graded Cortical Functional Specialization. There is a long-standing
debate about the degree to which the functions of different
cortical regions are specialized or overlapping. The cortex’s
broad interconnections and remarkable resistance to localized
damage argue for more distributed, overlapping representations
(21), while many studies find evidence for seemingly circum-
scribed functions in at least some cortical regions (22, 23). We
find evidence supporting both points of view. Information about
task variables was not distributed homogeneously across cortical
regions. For each variable, one or two areas clearly conveyed
much stronger information (Fig. 7A) than others. These results
were largely predictable from the classical functions of visual
cortical areas. Area MT was dominant for motion direction,
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consistent with its well-established role in motion processing
(14). V4 was dominant for color, consistent with many reports of
its robust color selectivity (15). PIT and V4 both showed strong
sensory information about rule cue shapes consistent with their
well-established role in shape processing (13). Thus, these results
support the idea of specialized cortical representations and re-
confirm some of the classical functional divisions between ven-
tral stream and dorsal stream areas using an experimental
paradigm where multiple areas from both streams were tested
simultaneously across multiple stimulus domains.
On the other hand, significant information about all examined

experimental variables was found in all sampled areas, supporting
the idea of broadly distributed cortical representations. The fact
that color and shape information can be found in dorsal stream
areas MT, LIP, and FEF and motion information can be found in
ventral stream areas V4 and PIT argues against any absolute
functional dichotomies between cortical processing streams, con-
sistent with previous reports (24–26). We believe this body of
results supports cortical models with graded functional speciali-
zation, where cortical areas have clear innate or learned biases to
represent certain attributes but retain coarse, distributed in-
formation about nonspecialized attributes (27, 28).
While the overall strength of task-related information accor-

ded well with classical divisions, the degree of top-down cate-
gorical abstraction painted a somewhat different picture. Dorsal
stream area FEF exhibited a strongly categorical representation
of color and task rule (derived from cue shape) but a non-
categorical, sensory representation of motion direction. LIP was
predictably categorical for motion but also showed a moderately
categorical representation for task rule (shape) and color. While
areas V4 and PIT were somewhat more predictable (they were
relatively categorical for color but not at all for motion di-
rection), they unexpectedly exhibited little to no categorical
coding for the cue shape-derived task rule.
We quantified these observations by explaining the summary

data in Fig. 7 with two predictors related to large-scale cortical
organization: (i) the anatomically derived hierarchical level of
each area (29) and (ii) the expected functional congruence of each
combination of task variable and area, positive for those consis-
tent with classical dorsal/ventral processing stream divisions (e.g.,
MT and motion, V4 and color) and negative for inconsistent
combinations (e.g., MT and color, V4 and motion) (details are
provided in SI Appendix, SI Methods). We found that both the
decrease in sensory information and the increase in categorical
coding across cortical areas were well explained by their ana-
tomical hierarchical level (P ≤ 1 × 10−5 for both), with only a
marginally significant difference between them (P = 0.04). In
contrast, only sensory information was also significantly explained
by classical processing stream divisions (P ≤ 1 × 10−5), while
categoricality index values were not (P = 0.11), with a significant
difference between them (P = 0.003). Thus, while our sensory
information results confirm classical areal divisions, the degree of
categorical coding is not well explained by them. These results
suggest cortical regions may form different functional networks
for bottom-up vs. top-down functions, putatively reflecting pri-
marily feedforward and feedback/recurrent circuits, respectively.

Categorization Reached Its Apex in PFC. Many studies have now
reported neural correlates of categories in PFC (3, 5–7), as well as
in area LIP and related areas of posterior parietal cortex (6, 7, 9).
A recent study suggested that LIP might contain a stronger rep-
resentation of categories that could drive categorical processing in
PFC (6). For all examined domains, we found that PFC exhibited
a degree of categorical abstraction either greater than all other
studied areas (task rule and motion) or not significantly different
from the other most categorical area (color). For all domains, the
prefrontal representation was more categorical than LIP, although
this difference was significant only for task rule and color, and not
for motion direction. On the other hand, despite being less cate-
gorical than PFC, LIP did also exhibit a significantly categorical
representation for all tested domains, which was not the case for

any other studied area besides PFC. We interpret these results to
mean that PFC does play an important, and perhaps the most
important, role in categorization (also ref. 7). However, LIP clearly
also plays a central role, and categorization likely involves re-
ciprocal interactions between these areas as well as others (30, 31).

Cortical Dimensionality May Be Task-Specific. We found a progres-
sion from high-dimensional population activity in the visual areas
(V4 and MT) to low-dimensional populations in the frontal areas
(PFC and FEF), paralleling the change in categoricality. We
interpret this to reflect a shift from a large diversity of sensory
tuning curves in visual cortex to nearly binary categorical re-
sponses in PFC.
At first glance, however, these results might seem at odds with

a recent report showing prefrontal population activity is high di-
mensional (18). That study found that PFC neurons tend to ex-
hibit “nonlinear mixed selectivity” for specific conjunctions of task
variables, and, consequently, PFC population activity had a di-
mensionality near the theoretical maximum (24 dimensions) for
the studied task. However, that study employed a task involving
encoding and maintenance in working memory of a sequence of
visual objects and responding via either a recollection or recall
probe (32). Thus, correct performance required remembering
which of 12 different sequences was shown and which of two
modes of behavioral output was mandated. By contrast, the task
used here emphasized dimensionality reduction. First, four visual
cues were grouped into either of two task instructions. Next,
16 random-dot stimuli (four colors × four directions) were
mapped onto binary color or motion categories, depending on the
currently instructed task rule. Finally, the deduced category was
translated into a binary response. Thus, this task, unlike the pre-
vious one, emphasized reduction of high-dimensional sensory in-
puts to lower dimensional abstractions. Our results therefore
suggest the possibility that prefrontal dimensionality may flexibly
reflect current cognitive demands (33). Inputs may be expanded to
higher dimensions when decisions depend on multiple variables
but reduced to lower dimensionality when categorical abstraction
is required. Thus, PFC dimensionality, like other PFC coding
properties (34), appears to flexibly adapt to behavioral needs.

Methods
Experimental methods are briefly reviewed here, but further details can
be found in SI Appendix, SI Methods, as well as in our prior publication
from this dataset (11). All procedures followed the guidelines of the
Massachusetts Institute of Technology Committee on Animal Care and the NIH.

Electrophysiological Data Collection. In each of 47 experimental sessions,
neuronal activity was recorded simultaneously from up to 108 electrodes
acutely inserted daily into up to six cortical regions (Fig. 1D): MT, V4, PIT, LIP,
FEF, and lateral PFC. All analyses were based on 2,414 well-isolated single
neurons (MT: 60, V4: 121, PIT: 36, LIP: 516, FEF: 612, and PFC: 1,069). The
basic analysis was also repeated using multiunit signals (pooling together all
threshold-crossing spikes on each electrode), with very similar results (SI
Appendix, Fig. S4). To minimize any sampling bias of neural activity, we did
not prescreen neurons for responsiveness or selectivity. Details are provided
in SI Appendix, SI Methods.

Behavioral Paradigm. Two adult rhesus macaques (Macaca mulatta) were
trained to perform a multidimensional categorization task. On each trial
(Fig. 1A), a visual cue instructed the monkey to perform one of two tasks:
color categorization (greenish vs. reddish) or motion categorization (upward
vs. downward) of a subsequently presented colored, moving random-dot
stimulus. The monkey responded via a saccade toward a target to the left
(greenish/upward) or right (reddish/downward). Details are provided in SI
Appendix, SI Methods.

General Data Analysis. For most analyses, spike trains were converted into
smoothed rates (spike densities). To summarize results, we pooled rates or
other derived statistics within empirically defined epochs of interest for each
task variable and area (details are provided in SI Appendix, SI Methods). Only
correctly performed trials were included in the analyses. All hypothesis tests
used distribution-free bootstrap methods unless otherwise noted.
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Categoricality Analysis. Our primary interest was to characterize each cortical
region’s categoricality, the degree to which it reflected the raw sensory
stimuli or their abstracted meaning (task rule or motion/color category). We
quantified this by fitting each neuron’s spike rate, at each time point, with a
linear model that partitioned across-trial rate variance within each task
domain into between-category and within-category effects (Fig. 2A). We
then computed a categoricality index reflecting where the observed between-
category variance for each population fell between the predictions of purely
sensory and categorical coding (Fig. 2B). Because overall variance within each
task domain is effectively normalized out of this index, it reflects a pure
measure of the categorical quality of a neural representation, similar to
previous measures of category selectivity (3), but taking the reliability of
neural coding into account, as it is based on explained variance rather than
raw spike rates. Details are provided in SI Appendix, SI Methods. Our analysis
methods were validated with extensive simulations (SI Appendix, Fig. S1) and
supported by a separate analysis comparing predictions of category and
choice coding (SI Appendix, Fig. S5). Details are provided in SI Appendix, SI
Methods and SI Results.

We also measured categoricality by comparing mean spike rates for
preferred categories and stimulus items within categories. The relative dif-
ference in spike rates between andwithin categories was generally consistent
with our presented results (SI Appendix, Fig. S6). Details are provided in SI
Appendix, SI Methods and SI Results.

Population Dimensionality Analysis. To measure the dimensionality of pop-
ulation activity, we estimated the number of principal components required

to describe the space spanned by condition-mean neural population activity
vectors (17, 18). Epoch spike rates were computed for each trial and neuron,
averaged across all trials of each condition, and concatenated across all
neurons and sessions into a set of neural pseudo-population vectors for each
studied area. Dimensionality was computed as the number of principal
components (eigenvalues) of each resulting matrix significantly greater than
the estimated distribution of principal components due to noise. Details are
provided in SI Appendix, SI Methods.

Cortical Organization Analysis. To relate our results to classical models of
cortical organization, we fit the data in each of the population summary
matrices of Fig. 7 with a two-predictor linear model: (i) the Felleman and
Van Essen (29) hierarchical level of each area and (ii) the expected functional
congruence of each combination of task variable and area based on classical
functional divisions, positive for consistent combinations (e.g., MT and mo-
tion) and negative for inconsistent ones (e.g., MT and color). Details are
provided in SI Appendix, SI Methods.
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