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Abstract

Patients with Systemic Lupus Erythematosus (SLE) display a complex blood transcriptome whose 

cellular origin is poorly resolved. Using single-cell RNA-seq, we profiled ~276,000 PBMCs from 

33 children with SLE (cSLE) with different degrees of disease activity (DA) and 11 matched 

controls. Increased expression of interferon-stimulated genes (ISGs) distinguished cSLE from 
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healthy control cells. The high-ISG expression signature (ISGhi) derived from a small number of 

transcriptionally defined subpopulations within major cell types, including monocytes, CD4+ and 

CD8+ T cells, natural killer cells, conventional dendritic cells (cDCs), plasmacytoid DCs (pDCs), 

B cells and especially plasma cells. Expansion of unique subpopulations enriched in ISGs and/or 

in monogenic lupus-associated genes classified patients with the highest DA. Profiling of ~82,000 

single peripheral blood mononuclear cells (PBMCs) from adult SLE patients confirmed the 

expansion of similar subpopulations in patients with the highest DA. This study lays the 

groundwork for resolving the origin of the SLE transcriptional signatures and the disease 

heterogeneity towards precision medicine applications.

INTRODUCTION

SLE is a heterogeneous autoimmune disease whose immunologic hallmark is the breakdown 

of tolerance against nucleic acids1,2. Disease course is unpredictable, with remissions and 

flares that lead to cumulative organ damage. The disease is notably aggressive in children, 

who suffer from a high incidence of nephritis. SLE’s diverse manifestations challenge 

clinicians3 and hamper the design of clinical trials. Thus only one new treatment has been 

approved to treat SLE in more than 60 years4.

Distinctive blood-transcriptional signatures have been identified in SLE, including those 

associated with type I interferon (IFN), myeloid inflammation and B cell-related 

pathways5–7. A number of studies indicate a correlation between these signatures and 

disease activity (DA)7–10. In addition, GWAS highlighted a genetic association with loci 

related to these pathways11, including type I IFN dysregulation12.

Not all ISGs correlate equally with DA7. Furthermore, longitudinal blood transcriptional 

profiling of children with SLE (cSLE) stratified them into seven groups according to five 

DA molecular correlates, one involving ISGs8. Insights into additional upstream pathways 

contributing to SLE pathogenesis have emerged from rare mutations in early onset Lupus-

related Monogenic Disorders (LRMDs). Genes associated with these conditions encode 

early complement components; nucleic acid-degrading or -modifying enzymes, including 

those involved in the spectrum of Aicardi-Goutières syndromes or monogenic 

interferonopathies; and molecules involved in B and/or T cell activation and cell death 

(Reviewed in13).

Single-cell RNA-seq (scRNA-seq) provides an unbiased approach to define cell types and 

states based on their individual transcriptome in health14–16 and disease17,18. Herein we 

report our findings using ~276k PBMCs from 33 cSLE patients with different degrees of DA 

and 11 healthy controls (cHD). These data were validated in an independent cohort of eight 

adult SLE patients (aSLE) and six healthy controls (aHD; ~82k PBMCs). Our results 

provide a framework for SLE stratification and point towards specific cell subpopulations as 

potential therapeutic targets.
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RESULTS

scRNA-seq reveals altered PBMC composition in SLE patients.

We analyzed the transcriptomes of ~276k single PBMCs from 33 cSLE and 11 matched 

cHD (Fig. 1a). 30/33 patients were 10–18-year females (mean 15.84 ±2.1). Disease activity 

(DA) was measured using the SLE Disease Activity Index (SLEDAI), a weighted metric 

combining 24 components1. Patients were categorized as low DA (SLEDAI <=4; n=18) and 

high DA (SLEDAI >4; n=13). SLEDAI could not be determined for two patients due to lack 

of urinary analysis on the day of sample collection (ND). Patient demographics, clinical/

laboratory data and treatment are summarized in Supplementary Table 1a,b. The sequencing 

information of each sample is shown in Supplementary Table 1c. cHD and cSLE samples 

yielded an average of 7,706 cells (sd± 2,148) and 5,782 cells (sd± 2,392) per donor (average 

989 and 1,000 genes per cell, respectively) (Extended Data Fig. 1a,b). After removing 

hybrid transcriptomes (multiplets) using Scrublet19, raw data from 78,693 cHD PBMCs 

(31% of the pool) and 180,175 cSLE PBMCs (69% of the pool) were combined. scRNA-seq 

profiles passing the quality control (Extended Data Fig. 1c, Methods) were corrected for 

technical 10X runs batch effect using BBKNN20 or Harmony21. Based on the BBKNN 

corrected data, unsupervised clustering followed by a two-dimensional uniform manifold 

approximation and projection (UMAP)22 revealed 20 molecularly distinct clusters (Fig. 1b, 

27 clusters before batch correction; Extended Data Fig. 1d,e). Similar results were obtained 

using Harmony21, which yielded 21 clusters (Extended Data Fig. 1f). Cell numbers in 

clusters varied from 42,353 to 624 (Extended Data Fig. 2a). Clusters were defined based on 

gene expression values compared to all other cells (Fig.1c; Supplementary Table 2a). This 

analysis identified single clusters of dendritic cells (DCs), megakaryocytes (Mgk), erythroid 

cells (Eryth), NK cells, plasma blasts/cells (PB/PC) and plasmacytoid dendritic cells 

(pDCs), two clusters of B cells and monocytes (CD14+ and CD16+), five CD4+ T cell and 

five CD8+ T cell clusters. Cluster assignments were independent of 10X runs (Extended 

Data Fig. 1e) and donor (Fig. 1d, Extended Data Fig. 2b).

Many clusters were differentially represented in cHD individuals and cSLE patients (Fig. 

1e). Subsets overrepresented in cSLE patients included: C0_CD14 monocytes, C11_CD4+ T 

and C19_ISGhi_GzK+_acCD8+ T cells (p<0.05). Subsets underrepresented in cSLE 

included: C1_CD4+ T, C5_CD8+ T, C7_CD16_NK cells, C9_GzK+_activated(ac)CD8+ T, 

C10_CD4+ T cells and C18_pDCs (p<0.05). The remaining (12/21) subsets were present in 

similar proportions across the two groups (e.g. C2_CD4+ T, C3_GzH+_acCD4+ T, C4_B, 

C6_CD4+ T, C8_CD8+ T, C12_B cells, C13_CD16 monocytes, C16_DCs). Three clusters 

(C14_Erythrocytes, C15_Mgk and C17_PCs) were expanded in some cSLE patients without 

reaching statistical significance. Three distinct patterns emerged from this analysis: 10 cSLE 

samples mingled with those of cHD (Extended Data Fig. 2c), 17 cSLE samples clustered 

independently of cHD, while six cSLE and one cHD samples displayed diverse profiles. 

According to DA, cSLE samples with SLEDAI 4–6 and SLEDAI >6 correlated and were 

separated from HD (Extended Data Fig. 2d). Thus, scRNA-seq analysis reveals cell cluster 

heterogeneity in cSLE PBMCs.
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Cellular origin of SLE IFN signature.

Given the importance of the IFN pathway in SLE, we analyzed the cellular distribution of 

IFN-related genes (IRGs) across the 20 clusters. Within every cluster (C0–19; Fig. 1f) we 

calculated the average expression of genes composing three previously identified IFN-

stimulated gene (ISG) modules (M1.2, M3.4 and M5.12) that correlate with SLE DA7,9,8, in 

addition to ISGs and IRGs annotated by Gene Ontology (GO). In cSLE, 8/20 clusters mostly 

contributed to the IFN signature (Fig. 1f). These included the major monocyte cluster C0 

and seven smaller clusters, namely C11 (a minor CD4+ T cell cluster); C13 (CD16+ 

Monocytes); C15 (Mgk); C16 (cDCs); C17 (PCs); C18 (pDCs); and C19 (ISGhi GzK
+acCD8+ T cells). Notably, C11_CD4+ T (n=7,858 cells), which expressed high levels of 

ISGs, was mostly composed of cSLE cells (n=7,722) but included a small fraction of cells 

from every cHD (2–28 cells/cHD; n=136 cells).

Unbiased clustering based on ISG and IRG expression enabled the generation of nine groups 

(G1 to G9, Fig. 1f). The most upregulated cSLE-specific ISGs were observed in groups G1 

(ISG15, IFI27), G3 (IFI44L, PARP9), mostly from modules M1.2 and M3.4, and G2 (IFI35, 

ADAR) from M3.4 and M5.12. G4, defined by TMEM140, was preferentially up-regulated 

in MgK. G5 genes (IFNGR1, CASP1, FCGR1A) were preferentially expressed in 

monocytes, DCs and Mgk. The four smallest groups, G6 to G9, included IFNγ pathway-

related genes. G6 genes (CCL4, CCL5, IFNG) were up-regulated in NK cells, 

C3_GzH_acCD8+ T and C19_ISGhi_GzK+_acCD8+ T cells, while most other genes in these 

clusters were similarly expressed in cHD and cSLE samples. Genes in G7, such as SOCS1, 

were up-regulated in cSLE pDCs but also expressed in C5, C10, C2, C9, and C19 T cells 

from both cSLE and cHD cells. G8 included IRF7 and IFNLR1, which were highly 

expressed in both cHD and cSLE pDCs and upregulated in cSLE PCs. All G9 genes, 

including the type I IFN receptor-encoding genes (IFNAR1/2), were highly expressed in 

cHD and cSLE PCs. An ISG score based on the average expression of ISGs from M1.2, 

M3.4 and M5.12 in each individual cell confirmed this ISG distribution (Extended Data Fig. 

2e).

A second round of clustering yielded 37 subclusters (SCs), which were then used to 

calculate ISG scores. cSLE-specific ISGhi SCs were found within each cell lineage except 

for the erythrocyte SC (Extended Data Fig. 2f). scRNA-seq therefore highlighted the 

disproportionate contribution of a few cell clusters and of discrete SCs within each lineage, 

except erythroid cells, to the SLE IFN signature.

An SLE-restricted ISGhi monocyte subcluster co-expresses IL1B.

Alterations in the monocyte compartment have been associated with SLE pathogenesis23,24. 

scRNA-seq analysis yielded two major monocyte clusters (C0 and C13) (Fig. 1b–e) 

including 47,968 cells from 44 subjects. A second round of clustering produced eight Mono-

SCs (Mono-SC0 to Mono-SC7), three of which were expanded in cSLE patients (Mono-

SC0, n= 9,595; 99% cSLE, Mono-SC3, n= 5,957; 91% cSLE and Mono-SC6, n= 4,703; 

94% cSLE; Fig. 2a). Differential gene expression analysis revealed an ISG enrichment in the 

three cSLE-expanded Mono-SCs (Fig. 2b and Supplementary Table 2b). Expression of 

selected genes positioned in a UMAP plot confirmed an expansion of ISGhi CD14 
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monocytes in cSLE. In contrast, monocytes expressing pro-inflammatory cytokine genes 

(IL1B, IL8) were present in both cSLE and cHD (Fig. 2c). Individual UMAP plots revealed 

remarkable cHD sample homogeneity across the age range, contrasting with the cSLE 

heterogeneity. Absent from cHD, ISGhi Mono-SC0 was present in 22/33 cSLE patients 

(11/18 and 11/13 of cSLE patients with SLEDAI <=4 and >4, respectively; Fig. 2d and 

Extended Data Fig. 3a).

Interleukin IL-1β (IL-1β) and Type I IFN mediate distinct inflammatory responses and 

cross-regulate each other within myeloid cells25. We quantified cells co-expressing IL1B 
and ISGs (n=155) across the eight Mono-SCs. Within Mono-SC6, an cSLE-expanded SCs, 

30% cells co-expressed IFITM3 and IL1B, 26 % co-expressed ISG15 and IL1B, while only 

10% of cells in the remaining Mono-SCs co-expressed both signatures (Fig. 2e).

ISG15, a negative regulator of type I interferon, was over-expressed within CD14+ 

monocytes from cSLE patients with high DA (Fig. 2c). Flow cytometry analysis of 17 cSLE 

and 14 cHD PBMCs confirmed higher ISG15 protein expression in CD14+ cells from cSLE 

patients (Extended Data Fig. 3b,c). Thus, together with an expansion of an ISGhi monocyte 

SC in patients with high DA, this analysis identifies a cSLE monocyte subset co-expressing 

ISGs and IL-1β.

SLE-restricted ISGhi pDC and cDC subclusters.

Perturbation of DC frequency and/or phenotype is a feature of SLE26–28. Thus, pDCs are 

underrepresented in SLE blood27,29,30 and this was confirmed by scRNAseq (n=372 in 33 

SLE samples, n=283 in 11 HD samples; Fig. 1d, p<0.05). Subclustering identified four 

pDC-SCs (pDC-SC0 to pDC-SC3), one of which was expanded in cSLE (pDC-SC1; Fig. 

3a). Differential expression analysis revealed the up-regulation of ISGs in pDC-SC1 (Fig. 

3b,c, Supplementary Table 2c). Thus, pDC-SC1, which represents 179 out of 655 cells, 

contributes to the SLE IFN signature.

cDCs were represented in both cSLE (n= 907) and cHD (n=501). Subclustering generated 

four cDC-SCs (cDC-SC0 to cDC-SC3), of which only cDC-SC2 (n=270) was expanded in 

cSLE patients from all SLEDAI categories (Fig. 3d). Genes defining unique DC 

subpopulations mapped to the cDC-SCs (Fig. 3e–f)31. Thus, cDC-SC0 corresponded to 

CLEC9A+ DC (DC1), cDC-SC1 to CD1C+ B (DC3), cDC-SC3 to CD1C+ A (DC2) and 

cDC-SC2 to AXL+SIGLEC6+ DC (DC5), the main ISG-expressing subset (Fig. 3g, 

Supplementary Table 2d). CD1C−CD14−(DC4) cells32 were not clearly defined . Increased 

expression of ISGs is therefore not a universal feature of cSLE DCs but of discrete 

subclusters within both pDCs and cDCs.

An SLE-restricted B cell subcluster exhibits a DN2 phenotype.

SLE patients carry major blood B cell alterations, including expansion of PCs, naïve B cells 

with an activated phenotype32–34 and extrafollicular, double-negative switched memory cells 

(DN2)35, a distinct subset within age-associated B cells (ABCs)36. Our analysis identified 

two B cell clusters displaying similar frequencies in cSLE and cHD. Subclustering 

(n=29,240) led to seven SCs (SC0 to SC6), three of which were expanded in cSLE (B-SC1, 

n= 5,989; 87% cSLE, B-SC4, n= 3,202; 80% cSLE and B-SC5, n= 2,101; 93% cSLE; Fig. 
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4a). Differential analysis revealed that B-SC0 and B-SC3 expressed the memory marker 

CD27, while B-SC1 co-expressed the activation marker CD69 (Supplementary Table 2e). 

ISG expression was restricted to B-SC5, B-SC4 and to a lesser extent B-SC1, the three 

cSLE-expanded SCs (Fig. 4b & Supplementary Table 2e). B-SC5 also exhibited antigen 

presenting-associated genes and upregulated CD19 and MS4A1 (CD20), while lacking 

expression of CR2 (CD21). B-SC5 exclusively expressed TBX21 (T-bet), ITGAX (CD11c), 

FGR, TFEC, FCRL2, FCRL3 and FCRL5, as well as IL10RA, supporting its extrafollicular, 

potentially autoreactive, DN2 phenotype35 (Fig. 4c).

B-SC4 and B-SC5 expressed the highest levels of TLR7 (Fig. 4d). B-SC4 expressed 

TCL1A, CD79A and TMSB10, as well as CD38, CD5 and CD9 (Fig. 4b and Supplementary 

Table 2e). Therefore, this population might represent a mixture of early bone marrow 

transitional emigrants (T1-T3) plus activated naïve B cells37, which are precursors of 

extrafollicular DN2 cells36.

Individual profiling (or UMAP plots) revealed homogeneity across cHD, contrasting with 

the heterogeneity of cSLE. B-SC5, barely detectable in cHD, was present in >50% (18/33) 

of cSLE patients (8/18 and 9/13 of cSLE patients with SLEDAI <=4 and >4, respectively; 

Fig. 4e and Extended Data Fig. 3d). DN2 cell frequency by flow cytometry (CD19+ IgD– 

CD27– CXCR5–), correlated with scRNA-seq data (p<0001 and R2=0.954; Fig.4f)

Despite their known sensitivity to cryopreservation, we detected 724 PCs (17% and 83% in 

cHD and cSLE patients, respectively). PCs contributed a large number of ISGs and 

expressed the highest levels of IFNAR. Further subclustering separated PCs into two main 

SCs (Fig.5a). PC-SC0, (n=451) was ISGhi and expanded in cSLE, while PC-SC1 (n=273) 

was ISGlo and expressed higher levels of mitochondrial protein-encoding genes (Fig. 5b,c; 

Supplementary Table 2f). Thus, cSLE is characterized by expansion of an ISGhi DN2 B cell 

subset and ISGhi plasma cells.

SLE-restricted ISGhi and cytotoxic T cell subclusters.

T cell alterations are common in SLE38,39e . T cells represented 61% of PBMCs in our 

dataset. Combining all T cell clusters defined by CD3E and CD4 or CD8 expression yielded 

158,914 cells (67% ascribed to cSLE). Subclustering yielded six T-SCs (T-SC0 to T-SC5), 

including one considerably expanded in cSLE (T-SC4, n=13,420 cells; 97% cSLE; Fig. 6a). 

Differential expression analysis highlighted the up-regulation of ISGs in T-SC4 (Fig. 6b and 

Supplementary Table 2g). Individual profiling revealed homogeneity across 11 cHD, 

contrasting with the heterogeneity of cSLE samples. While absent from cHD, ISGhi T-SC4 

was present in 23/33 cSLE (11/18 and 12/13 cSLE with SLEDAI <=4 and >4, respectively; 

Fig. 6c and Extended Data Fig. 4a).

T-SC0, 1 and 4 displayed naïve T cell markers (e.g. CCR7 or SELL), while T-SC2, 3 and 5, 

exhibited memory markers including ‘S100A4’. T-SC0 displayed higher ribosomal gene 

expression but also higher counts of non-ribosomal transcripts, suggesting that this 

transcriptional program was not a reflect of cell damage. Cytotoxicity-related markers 

(PRF1, GZMB/A, KLRG1) were detected in two CD8+ T cells SCs, namely T-SC2 and T-

SC5. T-SC5 expressed TH17 markers (RORC, IL17RE), while T-SC3 exhibited markers of 
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TH2 (GATA3, CCR6) and regulatory T cells (FOXP3; Fig. 6d,e). T-SC4 represented 0.2% of 

cHD and 7.3% of cSLE T cells and included CD4+ T cells mapping to the ISGhi 

C11_CD4+_T cluster, which was expanded in cSLE.

In addition to ISGs, cSLE cells up-regulated cytotoxic genes in two CD8+ T-SCs (Fig. 6d,e). 

Flow cytometry analysis of PBMCs from 17 cSLE and 14 matched cHD samples revealed 

high expression of cytotoxic proteins (Granzyme B and Perforin) in cSLE CD8+ T cells but 

did not reach the resolution of scRNA-seq (Extended Data Fig. 4b,c). Taken together, these 

data reveal the presence of unique subpopulations of cSLE T cells expressing ISGs, and a 

strong cytotoxic program in a fraction of cSLE CD8+ T cells.

An SLE-restricted ISGhi NK cell subcluster.

NK cells have not been thoroughly studied in SLE. Our analysis revealed the presence of 

14,929 NK cells (54% cSLE, p<0.05; C7 in Fig. 1e), which after subclustering generated 

four SCs (NK-SC0 to NK-SC3). NK-SC2 (n= 3,206; 97% cSLE) and NK-SC3 (n= 360; 

86% cSLE) were expanded in cSLE (Fig. 7a) and both SCs up-regulated ISGs and 

cytotoxicity-encoding genes (Fig. 7b, Supplementary Table 2h). All the SCs expressed 

NCAM1 (CD56) and ITGAM (CD11b). NK-SC1 was characterized by the up-regulation of 

XCL1, XCL2 and CD27 genes, whereas the remaining NK-SCs up-regulated FCGR3A 
(CD16); (Fig. 7b,c).

Profiling of the 44 subjects based on the four NK-SCs revealed the homogeneity of cHD 

contrasting with the heterogeneity of cSLE samples. While absent from cHD, the ISGhi NK-

SC2 was present in 19/33 of cSLE (8/18 and 10/13 cSLE with SLEDAI <=4 and >4, 

respectively; Extended Data Fig. 4d). ISG15 and CD56 protein expression was increased in 

two out of five cSLE patients (Extended Data Fig. 4e). Thus, our data identifies a potentially 

pathogenic NK cell compartment in cSLE.

Enrichment of genes associated with LRMDs in distinct PBMC SCs.

We next addressed the cellular distribution of LRMD-associated genes across the different 

PBMC SCs (Fig. 8a). These encode proteins involved in a variety of pathways connected to 

SLE pathogenesis, including regulation of IFN in different cell types (BLK, BANK1, IFIH1, 

ACP5), early B cell tolerance (PRKCD), lymphoid and DC development (IKZF1), extra- 

and intra-cellular degradation of nucleic acids (DNASE1, DNASE1L3, TREX1, 

RNASEH2A), nucleic acid editing (ADAR, SAMHD1) or downstream signaling 

(TMEM173), and early complement component activation (C1QA-C, C1R and C2)13,40. 

Except for complement components, the highest density and expression levels of LRMD-

encoding genes were found in cDCs and pDCs, followed by PCs, discrete SCs of B cells, 

especially B-SC5, and NK-SC3, the smallest NK SC41. Two monocyte SCs (SC7 and SC3) 

expressed the highest level of early complement components as well as of antigen 

presentation-related genes. Finally, C1R expression was detected in PCs and to a lower 

extent in NK-SC3. These data therefore highlights the increased expression of monogenic 

lupus-related genes in antigen presenting cells.

Nehar-Belaid et al. Page 7

Nat Immunol. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SC abundance classification reveals distinct cSLE groups

The hierarchical clustering of all cSLE (n=33) and cHD (n=11) samples according to overall 

SC abundance enabled the classification of six main SC Groups (SCG1 to SCG6; Fig. 8b). 

SCG1 through SCG4 included only cSLE patients, while SCG5 and SCG6 included both 

cSLE and cHD.

SCG1 included four cSLE patients (cSLE18, cSLE23, cSLE11 and cSLE11) displaying an 

expansion of ISGhi SCs (B-SC5 and B-SC4, PC-SC0, PC-SC1, T-SC4, NK-SC2 and-SC3; 

Mono-SC0). 5/8 SCs expressed high levels of LRMD-associated genes (Fig. 8a). All SCG1 

patients had high DA scores due to musculoskeletal (arthritis), cutaneous (rash), systemic 

manifestations (fever, pleurisy, vasculitis) or leukopenia (Fig. 8a. bottom for SLEDAI 

components). SCG1 had the highest Erythrocyte Sedimentation Rate (ESR) and lowest 

complement (C3 and C4) levels (Extended Data Fig. 4f) among SCGs. Importantly, these 

patients were not receiving treatment with the broad immunosuppressant Micophenolate 

Mofetil (MMF) (Fig. 8a; top color panel for MMF). SCG2 included a single sample 

(cSLE12) with high DA (SLEDAI=8) and expansion of erythrocyte and Mgk SCs. SCG3 

and SCG4 comprised eight and nine cSLE patients, respectively, with expansions of ISGhi 

cDC and pDC SCs (cDC-SC2 and pDC-SC1), together with non-ISGhi B cell SCs (B-SC1, -

SC3 and -SC6), and monocyte SCs (Mono-SC3, -SC4 and -SC7). Of these, cDC-SC2, pDC-

SC1, and Mono-SC3 and SC7 are enriched in LRMD-associated genes (Fig. 8a). 7/8 and 5/9 

subjects in SCG3 and SCG4, respectively, were treated with MMF, (Fig. 8b). Finally, SCG5 

(n=13; 4 cSLE and 9 cHD) and SCG6 (n=9; 7cSLE and 2 cHD), which included cSLE 

patients with the lowest SLEDAI (8/10) and all the cHDs, were enriched in ISGlo SCs 

including T cells (T-SC1 and -SC5) , B cells (B-SC0 and -SC2), NK cells (NK-SC0 and -

SC1), pDCs (pDC-SC0 and -SC2, -SC3) and cDCs (cDC-SC0 and -SC3; Fig. 8b).

Taken together, these data identify cell subpopulations expanded in SLE patients with high 

disease activity and their sensitivity to conventional broad immunosuppression.

cSLE and aSLE exhibit similar transcriptional profiles

As no study has yet simultaneously assessed the blood transcriptome of cSLE and adult SLE 

(aSLE), we included an independent cohort of eight aSLE and six matched healthy controls 

(aHD). Five aSLE patients had low DA (SLEDAI ≤ 4) and three had high DA (SLEDAI > 

4). Demographic, clinical and laboratory data are summarized in Supplementary Table 1a,b. 

After multiplets removal from each individual, adult and childhood raw data were combined 

resulting in a matrix of ~ 340k PBMCs (33 cSLE, 8 aSLE, 11cHD and 6 aHD; n=58; Fig. 

8c), which respectively yielded 989, 1076, 974 and 936 genes per cell (Extended Data Fig. 

5a). After correction for 10X runs batches20 (Extended Data Fig. 5b,c), unsupervised 

clustering revealed 21 distinct clusters (Extended Data Fig. 5d,e; Supplementary Table 3a).

Monocyte subclustering led to six Mono-caSCs, two of which were expanded in cSLE and 

aSLE (Mono-caSC0, n=18,578 and Mono-caSC4, n=5,586; Extended Data Fig. 6a,b). 

Differential analysis revealed that these two SCs were ISGhi (Extended Data Fig. 6c, 

Supplementary Table 3b). Individual profiling (UMAP plots) of the 58 subjects based on the 

six SCs revealed homogeneity across cHD and aHD, contrasting with the heterogeneity of 
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cSLE and aSLE. ISGhi Mono-caSC0 and Mono-caSC4, nearly absent in healthy subjects, 

were present in 22/33 cSLE patients and 4/8 aSLE patients (Extended Data Fig. 6d), thus 

highlighting the similarity of cSLE and aSLE. Subclustering of pDCs revealed an expansion 

of an ISGhi pDC-caSC3 in both cSLE and aSLE (Extended Data Fig. 7a–c and 

Supplementary Table 3c). cDC analysis showed an expansion of ISGhi cDC-caSC2 in both 

cSLE and aSLE patients (Extended Data Fig. 7d–f). aSLE patients displayed remarkably 

lower B cell numbers compared to both cSLE and HDs (Extended Data Fig. 8a–c and 

Supplementary Table 3e). Finally, ISGhi PC-caSC0, T-caSC6 and NK-caSC3 were detected 

in both cSLE and aSLE (Extended Data Fig. 8d–f, Extended Data Fig. 9a–d, Extended Data 

Fig. 10a–d and Supplementary Table 3f–h). Overall, this single-cell data indicates that cSLE 

and aSLE share leukocyte transcriptomic profiles.

SC-based stratification of children and adult cohorts.

To further explore the patient stratification potential of PBMC scRNA-seq, we performed 

hierarchical clustering on combined childhood and adult matrices based on the caSC 

frequency in each subject (n=58). This yielded four childhood-adult SC groups (caSCG1 to 

caSCG4; Fig. 8d). One arm of the heatmap (caSCG1–2) included SLE patients exclusively 

(23 cSLE and 3 aSLE), while the other (caSCG3–4) encompassed 17 HD (11 cHD, 6 aHD) 

and 15 SLE patients (5 aSLE and 10 cSLE), 10 of whom had mild DA (Fig. 8d). As 

combining adult with childhood data resulted in different SC numbers (n=37 in cSLE vs. 39 

in cSLE and aSLE combined) and composition, we addressed their connectivity by 

calculating SC-caSC correlation scores. This approach revealed a high correlation between 

ISGhi subsets in both the children-only and the combined datasets (Extended Data Fig. 10e). 

caSCG2, which included eight cSLE and two aSLE patients, classified patients with the 

highest disease burden (Fig. 8d, top and bottom for SLEDAI) and was characterized by the 

expansion of ISGhi caSCs. Furthermore, it included all cSLE patients previously classified 

as SCG1 (from Fig. 8b), 4/17 cSLE patients previously in SCG3–4, plus the two sickest 

aSLE patients. 7/10 caSCG2 patients were African-American (compared to 13/39 in the 

entire SLE group) and only 3/10 were on MMF. caSCG1 patients displayed an expansion of 

ISGhi SCs comparable to that of caSCG2 patients (Fig. 8d and Data Fig. 10f). However, 

ISGhi monocytes (Mono-caSC0) were less represented and ISGhi PCs (PC-caSC0) were 

absent. Most caSCG1 patients had a lower disease burden compared to caSCG2 patients, and 

larger fraction (10/16) were on MMF, a drug known to arrest PC development (Fig. 8b,d). In 

contrast, caSCG3–4 patients were characterized by the expansion of “memory” CD4+ T cell 

SC (T-caSC3) and CD8+T cell SC (T-caSC5), and by increased numbers of ISGlow NK-

caSC1, thus resembling the HD pattern (Extended Data Fig. 10f). Collectively, these results 

reveal that pediatric and adult SLE patients display similar alterations in cellular 

compartments associated with SLE disease severity.

DISCUSSION

SLE is clinically heterogeneous, and underpinning clinical heterogeneity are complex blood 

transcriptional signatures, including a prominent one driven by IFN24,39. Here we used 

scRNA-seq to uncover the cell populations giving rise to these signatures. Our dataset 

includes >360K single-cell profiles from 33 cSLE patients, 11 healthy children, eight aSLE 
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patients, and six adult controls. We identified cell clusters and subclusters contributing to the 

IFN signature and those expressing LRMD-associated genes. We confirmed the perturbation 

of subset frequencies, including AXL+ cDCs42 and DN2 B cells, and identified novel 

alterations such as the expansion of ISGhi monocytes, pDCs, PCs, and cytotoxic NK cells in 

the sickest patients.

This first direct comparison of childhood and adult SLE confirmed the presence of similar 

transcriptional patterns across age groups and enabled patient classification according to 

DA. Although ISGs were globally overexpressed in cSLE, eight out of 20 cell clusters 

contributed the most to the IFN signature. These included PCs, which expressed the highest 

levels of type I IFN receptor genes (IFNAR1 and IFNAR2), pDCs, cDCs, CD8+ T cells, NK 

cells and monocytes, the later representing the largest fraction of ISGhi PBMCs. ISG 

expression was also detected in a discrete cluster of CD4+ T cells (C11-T) both in cHD and 

cSLE, suggesting a constitutive activation of the IFN pathway43. Notably, IFNA and IFNL 
transcripts were not detected in any cluster, perhaps reflecting the migration of IFN-

producing cells into tissues23.

Enrichment of ISG-expressing monocytes was detected in the sickest patients. A cSLE-

predominant monocyte SC, Mono-SC6, co-expressed ISGs and IL1B-related genes, 

indicating that cross-regulation of these two pathways is altered in SLE. While overall pDC 

numbers were decreased in cSLE, pDC-SC1, an ISGhi subset, was expanded. This was the 

case as well for an ISGhi cDC cluster (cDC-SC2) expressing AXL31,44.

Mgk signatures were present in both SLE and HD, while erythroid cell signatures were 

found in some patients with high SLEDAI. Most megakaryocyte, but not erythroid SCs, 

carried ISGs. These signatures were not associated with thrombocytopenia or anemia. 

Erythroid cells might be the origin of a unique signature previously reported in cSLE and 

other inflammatory diseases46,47, as well as in pregnancy47. Lack of detection of a 

granulocyte cluster associated with renal inflammation6,8 is likely due to technical 

microfluidics limitations48.

ISGhi B cell SCs (B-SC5 and B-SC4) were expanded in cSLE patients. B-SC5 cells 

corresponded to extrafollicular (CXCR5–), double-negative (IgD–CD27–) memory B cells 

(DN2)35,49, also detected in aSLE kidney cell suspensions50, though the latter carried a low 

ISG score. In addition to ISGs, B-SC5 up-regulate genes (e.g. ACP5, BANK1 and BLK) 

linked to LRMDs. Similar observations apply to SLE-expanded PCs, which expressed 

among the highest ISG scores contrary to what was reported for SLE kidney PCs50. Whether 

these differences result from the cell purification methods or reflect compartment differences 

will require further studies.

T cells represented the largest lineage in both cHD and cSLE PBMCs. Yet, except for naïve 

and memory compartments, scRNAseq clustering algorithms did not classify T cells 

according to established surface markers. This might be due to the preferential capture of 

highly expressed genes. A small fraction (~9%) of T cells expanded in cSLE (T-SC4), but 

also present in HD, expressed higher levels of ISGs. T-SC4 encompassed both CD4+ and 

CD8+ T cells, suggesting that ISG upregulation might define this cluster.
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scRNA-seq revealed SLE-restricted activated NK cells, as recently reported50, and an ISGhi 

NK cell SC associated with disease severity. The smallest NK SC (NK-SC3) was expanded 

in SLE and expressed high levels of the nucleic acid-degrading enzymes RNASEH2A and 

DNASE1, suggesting a potential link to LRMDs and SLE pathogenesis.

Unbiased clustering of cSLE and cHD samples based on PBMC SC frequency classified 

patients into unique groups of either cSLE or combinations of cSLE and cHD. SCs 

expressing high ISG and LRMD associated genes defined patients with high DA and off 

MMF, a drug known to modulate ISGs4 and block PC differentiation51. Additional ISGhi 

SCs, including pDCs, IL1β-ISG co-expressing monocytes and AXL+ DCs, were expanded 

in patients on and off MMF, perhaps reflecting these cells resistance to MMF. Thus, this 

cross-sectional classification highlights molecular pathways and cell types previously 

described as correlates of SLE DA in longitudinal studies of cSLE patients (e.g., ISG, 

plasma cell, erythroid, myeloid)8, though at a higher level of resolution. It also uncovers 

novel cell subpopulations expanded in cSLE patients with high DA that are reproduced in 

the sickest aSLE patients and might represent therapeutic targets.

While this study uncovers important novel leukocyte alterations in SLE, we acknowledge 

limitations due to the sensitivity of certain blood cells to cryopreservation (e.g., “PCs”) 

and/or microfluidic settings (e.g., neutrophils); the limited power of scRNA-seq to 

discriminate subsets of T cells, and the cross-sectional nature of the analyses. Combining 

scRNA-seq with oligonucleotide-tagged antibodies52,53, and cost reduction through 

multiplexing will enable conducting larger, longitudinal studies. This will pave the way 

towards both a better understanding of SLE pathogenesis and heterogeneity as well as the 

implementation of more effective personalized therapeutic approaches.

METHODS

Study design

This study was approved by the Institutional Review Boards of the University of Texas 

Southwestern Medical Center, Texas Scottish Rite Hospital for Children, Baylor-Scott & 

White Health Care Systems, Nationwide Children’s Hospital, the Ohio State University 

School of Medicine, University of Connecticut Health and THE JACKSON LABORATORY. 

Informed consent was obtained from all patients or their parent/guardians. Blood samples 

were obtained from patients fulfilling the diagnosis of SLE according to the criteria 

established by the American College of Rheumatology. Healthy pediatric and adult controls 

were visiting the clinic either for reasons not related to autoimmunity or for surgery not 

associated with any inflammatory diseases. Distribution of gender, race and disease activity 

(SLEDAI) in our cohort reflect the actual demographics and disease severity of the patients 

followed in our clinics8.

IRB information:

Childhood SLE (cSLE) cohort—Baylor Research Institute: IRB 007–221 (healthy 

pediatrics) and IRB 011–200 (autoimmunity in pediatrics). UT Southwestern Medical 

Center: IRB STU 092010–167 (autoimmunity in pediatrics). Texas Scottish Rite Hospital for 
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Children: IRB TSRH-1060 (autoimmunity in pediatrics). Weill Cornell Medicine: IRB 

1711018757. The Nationwide Children’s Hospital: IRB 18–00591. The Jackson Laboratory: 

IRB 16-JGM-26.

Adult SLE (aSLE) cohort—The UConn Health: IRB 18–126J-1.

Exclusion criteria

• Autoimmune disease such as: Rheumatoid Arthritis, Inflammatory Bowel 

Disease.

• HIV, AIDS or other Immunodeficiency

• Use of steroids (prednisone >15mg/ day oral) or methotrexate or equivalent

• Any changes in therapy with Methylprednisolone, Mycophenolic acid, 

Azathioprine or Methotrexate in the last 30 days

• Use of biologics within the last 30 days

• Use of Intramuscular or Intravenous Solumedrol within 30 days of screening

• Current substance and/or alcohol abuse

• Pregnancy

• Prisoners

Flow Cytometry

Cells were stained with fluorochrome-labeled antibodies to the following surface markers: 

CD3 (UCHT1, 1:100, BD Biosciences), CD8a (RPA-T8, 1:100, BioLegend), and CD14 

(MSE2; 1:100, BD Biosciences). Subsequent to surface staining and staining with live/dead 

fixable dye (Aqua, 1:1000, Thermo-Fisher), cells were fixed and permeabilized according to 

the manufacturer’s instructions (Cytofix/Cytoperm and Perm/Wash Buffer; BD 

Biosciences), and stained for 30 min on ice for Granzyme A (GB9, 1:50, BioLegend), 

Granzyme B (GB11, 1:50, BioLegend), Perforin (B-D48, 1:50, BD Biosciences), and ISG15 

(IC8044P, 1:50, R&D Systems). The stained cells were acquired with LSR Fortessa X-20 

(BD) and analyzed with FlowJo software (BD).

Sample processing.

All the adult subject samples were processed within one hour while the children samples 

were processed within three hours from venipuncture.

Samples included in Flow Cytometry

For ISG15 staining on CD14+ monocytes, as well as granzyme A, granzyme B, perforin and 

ISG15 on CD4+ and CD8+ T cells, 17 cSLE samples were included. Of these 17 samples, 11 

were included in the scRNA-seq dataset analyzed, the 6 other samples were from the same 

patients that were included in scRNA-seq dataset, at different visit. These last 6 cSLE 

patients were also used for ISG15 staining on NK cell and DN2 B cell staining.
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Blood preparation for single cell RNA sequencing (scRNA-seq).

Freezing media was 10% DMSO + 90% FBS. PBMCs were thawed quickly at 37°C and 

resuspended into DMEM supplemented with 10% FBS. Cells exhibiting a viability rate less 

than 70% were excluded. Cells were quickly spun down at 400 g, for 10 min. Cells were 

washed once with 1× PBS supplemented with 0.04% BSA and finally re-suspended in 1× 

PBS with 0.04% BSA. Viability was determined using trypan blue staining and measured on 

a Countess FLII. Briefly, 12,000 cells were loaded for capture onto the Chromium System 

using the v2 single cell reagent kit (10X Genomics). Following capture and lysis, cDNA was 

synthesized and amplified (12 cycles) as per manufacturer’s protocol (10X Genomics). The 

amplified cDNA was used to construct an Illumina sequencing library and sequenced on a 

single lane of a HiSeq 4000.

Single-cell Raw data processing and data combining

Illumina basecall files (*.bcl) were converted to fastqs using cellranger v2.1.0, which uses 

bcl2fastq v2.17.1.14. FASTQ files were then aligned to hg19 genome and transcriptome 

using the cellranger v2.1.0 pipeline, which generates a gene - cell expression matrix. The 

samples were merged together using cellranger aggr from cellranger, which aggregates 

outputs from multiple runs, normalizing them to the same sequencing depth 

(normalize=mapped) and then re-computing the gene-barcode matrices and analysis on the 

combined data. The sequencing information for each individual included in the study (e.g., 

number of reads per cell or UMI counts per cell) are shown in Supplementary Table 1c.

Scrublet for multiplet prediction and removal

Generally, we expected about 2 to 8% of the cells to be hybrid transcriptomes or multiplets, 

occurring when two or more cells are captured within the same microfluidic droplet and are 

tagged with the same barcode. Such artifactual multiplets can confound downstream 

analyses. We applied Scrublet19 python package to remove the putative multiplets. Scrublet 

assigns each measured transcriptome a ‘multiplet score’, which indicates the probability of 

being a hybrid transcriptome. Multiplet scores were determined for each individual (using 

the raw data), and 1.7% - 9.7% in children and 3.4% - 10.1% in adult cohort of highest 

scoring cells were tagged as multiplets after visual inspection of doublet score distributions 

and excluded from the further analysis. Next, UMAP of cells from each patient was built 

using Scanpy and clusters with a large fraction of potential doublets were removed after 

inspecting expression of putative cell surface markers. Before/after multiplet removal, the 

number of cells in cSLE and caSLE cohorts was 283,857/275,588 and 375,559/340,629 

cells, respectively.

Single-cell preprocessing, dimension reduction, graph-based clustering, and cluster 
annotation

The cleaned (after multiplet removal using scrublet19) aggregated matrices were fed into the 

Python-based Scanpy54 workflow (https://scanpy.readthedocs.io/en/stable/), which includes 

preprocessing, visualization, clustering and differential expression testing. The pipeline we 

used was inspired by the Seurat55 R package workflow and can be found here: https://

github.com/dnehar/SingleCells_SLE_paper.
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Quality control and cell filtering

We applied the following filtering parameters: (i) all genes that were not detected in ≥ 3 cells 

were discarded, using pp.filter_genes function, (ii) cells with less than 400 total unique 

transcripts were removed prior to downstream analysis using pp.filter_cells function, (iii) 

cells in which > 20% of the transcripts mapped to the mitochondrial genes were filtered out, 

as this can be a marker of poor-quality cells and (iv) cells displaying a unique gene counts > 

2,500 genes were considered outliers and discarded. The number of cells before and after 

these filtration steps, including the multiplet removal is shown for each individual in 

Extended Data Fig. 1a.

Data normalization

We normalized the data using the pp.normalize_per_cell function. Thus, library-size 

normalization was performed based on gene expression for each barcode by scaling the total 

number of reads per cell to 10,000. We log-transformed the data (pp.log1p function) and 

then regressed out using the total number of genes and the fraction of mitochondrial 

transcript content per cell. We then regressed out effects of total counts per cell and the 

percentage of mitochondrial genes expressed using pp.regress_out function . The data was 

then scaled data to unit variance using pp.scale function (with the following parameters: 

max_value=10). The 1205 highly variable genes (HVG) were identified using 

filter_genes_dispersion function (with the following parameters: min_mean=0.0125, 

max_mean=3, min_disp=0.5).

Linear dimensional reduction using PCA

To reduce the dimensionality of the data, we ran principal component analysis (PCA) using 

tl.pca function, which reveals the main axes of variation and denoises the data. The 

contribution of each PCs to the total variance was assessed using pl.pca_variance_ratio 
function.

Neighborhood graph computing, embedding and clustering

The neighborhood graph of cells was computed based on the PCA representation of the data 

matrix, using pp.neighbors function (with the following parameters: n_neighbors=10, 

n_pcs=40). The neighborhood graph was then embedded using UMAP22 (tl.umap function) 

and visualized using pl.umap function. We finally used the Louvain graph-based clustering 

using tl.louvain function with resolution=1.2.

Batch effect correction.

To account for technical source of variation, such as 10X runs, we applied a batch effect 

correction using BBKNN20 (github.com/Teichlab/bbknn).

bbknn.bbknn() function was ran using the following parameters: metric=“angular”, 

approx=True, neighbors_within_batch=5, n_pcs=20, trim=50. Additionally, we tested the 

Harmony21 R package (github.com/immunogenomics/harmony). We first converted 

the .h5ad object into Seurat object using a virtual environment with the following module 

Nehar-Belaid et al. Page 14

Nat Immunol. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Teichlab/bbknn
https://github.com/immunogenomics/harmony


versions scanpy==1.4 anndata==0.6.18 numpy==1.15.4 scipy==1.2.1 pandas==0.22.0 

scikit-learn==0.20.2 statsmodels==0.9.0 python-igraph==0.7.1 louvain==0.6.1.

For the sake of comparing Harmony batch correction to BBKNN (in terms of number of 

clusters), we ran the RunHarmony function on the Seurat pipeline following by FindClusters 
function using the 15 first PCs and a resolution value of 1 (Extended Data Fig. 2c).

All the analyses presented in this study were done on the BBKNN corrected data. UMAP 

visualization and louvain clustering were then computed on the BBKNN corrected using the 

following parameters:

• sc.tl.umap(BBKNN_corrected_object , min_dist=0.3,n_components=3)

• sc.tl.louvain(BBKNN_corrected_object, resolution=1.2)

Finding marker genes/evaluation of cluster identity

To annotate the clusters generated from the BBKNN corrected object, we used both 

differential expression analysis between clusters and classification based on putative marker 

gene expression. We applied tl.rank_genes_groups function to compute a ranking for the 

differential genes in each cluster/Subcluster, comparing each cluster to the rest of the cell 

using Wilcoxon test (Supplementary Table 2 & 3). We only considerate clusters/Subclusters 

that showed distinct transcriptomic programs. The top 100 marker genes for cluster and 

subclusters, in cSLE and caSLE are included in Extended Data Fig. 2 and 3.

The top 10 marker genes were visualized using the sc.pl.rank_genes_groups_matrixplot 

function.

Subclustering parameters and data cleaning:

A script showing the subclustering process can be found here: github.com/dnehar/

SingleCells_SLE_paper. Based on the number of cells and to avoid over-clustering, we used 

different clustering resolutions. For both cSLE and caSLE, the following parameters of 

resolution were used: 0.8 (T and B cells), 0.6 (Monocytes, PCs, cDC and pDC), 0.4 (NK 

cells) and 0.3 (megakaryocytes/mgk and Erythrocytes/Eryth). We only considered SC 

defined by a distinct gene sets, by merging similar ones (for T, B cells and plasma cells 

especially).

We discarded two small SC of T (n = 2128) and NK (n = 483) cells, which were exclusively 

defined by mitochondrial genes. Some SCs (i.e. PC-SC1) expressed high number of 

mitochondrial genes, which might be linked to metabolic changes56,57. Concerning the mgk 

and Eryth, we discarded SCs that were suspected to include multiplets with other cells types. 

The number of cells in each cluster/SC within both cSLE and caSLE datasets is shown in 

Supplementary Table 4.

Overall, the number of cells after multiplet removal and the filtration steps was 252,279 and 

332,641 in cSLE and caSLE cohorts, respectively.

Nehar-Belaid et al. Page 15

Nat Immunol. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/dnehar/Lupus-paper
https://github.com/dnehar/Lupus-paper


IFN score

ISGs (from previously described interferon-related modules, as well as Gene Ontology) 

were used to score IFN expression in each cluster/subcluster generated in the cSLE dataset. 

To do so, we calculated the mean expression for each cell, within each cluster/subcluster 

using the h5ad object (adata), as follow: adata.obs[‘ISG_score’] = 

adata.X[:,IFN_markers].mean(1).

The scores were then plotted, as shown in Extended Data Fig. 2e,f.

Correlation matrices

Hierarchical clustering was computed based on the first 50 PCs were performed using 

sc.tl.dendrogram function from the scanpy pipeline, then the Pearson correlation heatmaps 

were generated using sc.pl.correlation_matrix. The results showing the inter-individual, or 

inter SLEDAI-categories correlation are shown in Extended Data Fig. 2c and Extended Data 

Fig. 2d, respectively.

Children and adult-single cell subcluster frequency calculation and heatmaps

Frequency of cSLE subclusters (n = 37) generated in children cohort were calculated per 

subject and used for hierarchical clustering using ‘ward.D2’ algorithm using heatmap.2 in 

gplots R package. Independent subclusters (n = 39) generated in entire children and adult 

cohort (caSLE) were used for calculating frequency per subject and used for heatmap 

generation using the same algorithm.

Statistical analysis

Statistical analysis was performed using R/3.4.1. Tests were used to determine data 

distribution and depending on the normality of the data, comparisons were performed using 

the Student t test (for two groups, parametric) or the non-parametric the Wilcoxon signed 

rank test (for two groups, paired) with two-tailed P values unless otherwise stated. 

Differences were considered to be significant when P <0.05 (*), P < 0.01 (**), P < 0.001 

(***) and P < 0.0001 (****).

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

DATA AVAILABILITY.

scRNA-seq data from childhood and adult cohorts reported in this study have been deposited 

in the dbGAP database under accession number phs002048.v1.p1.

The processed data can be viewed using an interactive R Shiny App here: https://scrnaseq-

sle.jax.org/
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CODE AVAILABILITY.

Jupyter notebooks used for the analysis, including processing, clustering, batch effect 

correction and subclustering are available on GitHub: github.com/dnehar/

SingleCells_SLE_paper.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to J.F.B., V.P. or D.N.-B.

Extended Data
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Extended Data Fig. 1. childhood SLE (cSLE) dataset overview and batch effect correction
(a). Number of cells per individual (n=44). cSLE (n=33, in purple) and cHD (n=11; in 

green).

(b). Number of genes per individual. cSLE (n=33, in purple) and cHD (n=11; in green).

(c). Number of cells before and after filtration (which includes multiplet removal and other 

filtration steps that are described in Method), across the 44 individuals (33 cSLE and 11 

cHD).

(d). Bar plot highlighting the cell abundances across clusters (n=27) for cSLE and cHD (left 

panel) and 10X run batches (right panel) before batch effect correction.
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(e,f). Bar plot highlighting the cell abundances across clusters (n=20) for cSLE and cHD 

(left panel) and 10X run batches (right panel) after BBKNN (e), or Harmony (f) batch effect 

correction.
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Extended Data Fig. 2. Global information after BBKNN batch correction and ISG scores 
throughout clusters/subclusters
(a). Bar plot displaying the cell composition of the 20 clusters.

(b). Bar plot highlighting the individual (n=44) cell abundances across clusters (n=20) after 

BBKNN batch effect correction.

(c,d). Heatmap representing Pearson correlation between individuals (n=44; c) or SLEDAI 

categories (d) based on overall scRNA seq dataset. The hierarchical clustering was based on 

the first 50 PCs. Red and blue colors, indicate positive and negative correlation, respectively.
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(e,f). ISG scores across the clusters (n=20; e) or SCs (n=37; f). Based on the average 

expression IFN modules M1.2, M3.4, M5.12, ISG scores have been calculated for each cell, 

across the clusters (e), or SCs (f). Erythrocyte cluster was a negative control.
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Extended Data Fig. 3. Individuals’ UMAP for Monocytes and B cells subclusters.
(a). Individual UMAP plots from 11 cHD (left), 33 cSLE (right) based on monocyte SCs 

(Mono-SCs, n=8). Each color represents a distinct SC.

(b). Flow cytometry detection of ISG15 in PBMCs gated on CD14+ monocytes from 17 

cSLE patients with different SLEDAI scores, as well as 14 cHD.

(c). Percentage of ISG15+ CD14+ monocytes in cHD and cSLE as categorized based on 

SLEDAI (cHD cells ‘none’ in gray, SLEDAI <=4, in yellow; n=9, and SLEDAI >4, in red; 

n=8). T-test was used for statistical analysis. P-values are shown for the respective 

comparisons.

(d). Individual UMAP plots from 11 cHD (left), 33 cSLE (right) based on B cells SCs (B-

SCs, n=7). Each color represents a distinct SC.
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Extended Data Fig. 4. Individuals’ UMAP for T and NK cells subclusters
(a). Individual UMAP plots from 11 cHD (left), 33 cSLE (right) based on T cells SCs (T-

SCs, n=6). Each color represents a distinct SC.

(b). Percentage of GzB+, or Perforin+ CD8+ T cells within cHD and cSLE as categorized 

based on SLEDAI categories (cHD cells ‘none’ in gray, SLEDAI <=4 in yellow; n=9 and 

SLEDAI >4, in red; n=8).

(c). Flow cytometry detection of GzB and perforin proteins in PBMCs, gated on CD8+ T 

cells, from cSLE (n=17) with different SLEDAI scores and cHD (n=14). T-test was used for 

statistical analysis. P-values are shown for the respective comparisons.
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(d). Individual UMAP plots from 11 cHD (left), 33 cSLE (right) based on NK SCs (NK-

SCs, n=4). Each color represents a distinct SC.

(e). Flow staining of ISG15 on PBMCs gated on CD57+ NK cells from six cSLE patients (in 

purple) with different SLEDAI scores and nine matched cHD (in green). MFI values are 

represented.

(f). Boxplots representing the ESR (left panel), C4 (middle panel) and C3 (right panel) levels 

across the six cSLE subcluster groups (SCGs) depicted in Fig. 8b.

(g). Dotplot representing the correlation between hemoglobin (HGB) levels (g/dL) and 

proportion of cells from the Erythrocyte cluster across the cSLE samples.
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Extended Data Fig. 5. Overview of cSLE and aSLE combined (caSLE) dataset
(a). Number of detected genes across cells in cSLE (n=33), aSLE (n=8), cHD (n=11) and 

aHD (n=6). Vertical lines represent the mean.

(b,c). Bar plot highlighting the cell abundances across cluster (n=26) for cSLE, aSLE, cHD 

and aHD groups (left panel) and 10X run batches (right panel) before (b) and after (c) 

BBKNN batch effect correction. Each color represents groups (left) and batch (right).

(d). UMAP plot representing the 21 clusters across 340,629 PBMCs from cSLE (n=33), 

aSLE (n=8), cHD (n=11) and aHD (n=6). Each color represents a distinct cluster.
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(e). Cluster annotation. Dot plot representing expression values of selected genes (x-axis) 

across each cluster (y-axis). Dot size represents the percentage of cells expressing the 

marker of interest. Color intensity indicates the mean expression within expressing cells.
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Extended Data Fig. 6. caSLE monocytes analysis.
(a). UMAP plots representing caSLE monocyte subclusters (Mono-caSCs, n=6), groups 

(cSLE, cHD, aSLE or aHD) and SLEDAI categories.

(b). Bar plot highlighting the cell abundances across Mono-caSCs (n=6) for cSLE, cHD, 

aSLE or aHD groups (left panel) and SLEDAI categories (right panel).

(c). Heatmap representing scaled expression values of the top 10 genes defining each of the 

Mono-SCs (n=6).

(d). Individual UMAP plots from cSLE (n=33), aSLE (n=8), 11 cHD (n=11), or aHD (n=6), 

based on Mono-caSCs (n=6). Each color represents a distinct caSC.
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Extended Data Fig. 7. caSLE pDC and cDC cells analysis.
(a). UMAP plots representing caSLE pDC subclusters (pDC-caSCs, n=5), groups (cSLE, 

cHD, aSLE or aHD), SLEDAI categories and selected genes.

(b). Bar plot highlighting the cell abundances across pDC-caSCs (n=5) for cSLE, cHD, 

aSLE or aHD groups (top panel) and SLEDAI categories (bottom panel).

(c). Heatmap representing scaled expression values of the top 10 genes defining each of the 

pDC-SCs (n=5).

(d). UMAP plots representing cDC-caSCs (n=4), groups (cSLE, cHD, aSLE or aHD), 

SLEDAI categories and selected genes.
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(e). Bar plot highlighting the cell abundances across cDC-caSCs (n=4) for cSLE, cHD, 

aSLE or aHD groups (top panel) and SLEDAI categories (bottom panel).

(f). Heatmap representing scaled expression values of the top 10 genes defining each of the 

cDC-caSCs (n=4).
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Extended Data Fig. 8. caSLE B cells and plasma cells analysis.
(a). UMAP plots representing caSLE B cell subclusters (B-caSCs, n=8), groups (cSLE, 

cHD, aSLE or aHD) and SLEDAI categories.

(b). Bar plot highlighting the cell abundances across B-caSCs (n=8) of cSLE, cHD, aSLE or 

aHD groups (left panel) and SLEDAI categories (right panel).

(c). Heatmap representing scaled expression values of the top 10 genes defining each of the 

B-caSCs (n=8).

(d). Individual UMAP plots from cSLE (n=33), aSLE (n=8), 11 cHD (n=11), or aHD (n=6), 

based on B-caSCs (n=8). Each color represents a distinct caSC.

Nehar-Belaid et al. Page 30

Nat Immunol. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(e). UMAP plots representing PC SCs (n=2), Groups (cSLE, cHD, aSLE or aHD), SLEDAI 

categories and selected genes.

(f). Bar plot highlighting the cell abundances across PC SCs (n=2) for cSLE, cHD, aSLE or 

aHD groups (left panel) and SLEDAI categories (right panel).

(g). Heatmap representing scaled expression values of the top 10 genes defining each of the 

PC-caSC (n=2).
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Extended Data Fig. 9. caSLE T cells analysis.
(a). UMAP plots representing caSLE T subclusters (T-caSCs, n=8), groups (cSLE, cHD, 

aSLE or aHD), and SLEDAI categories.

(b). Bar plot highlighting the cell abundances across T-caSCs (n=8) for cSLE, cHD, aSLE or 

aHD (Groups; upper panel) and SLEDAI categories (lower panel).

(c). Individual UMAP plots from cSLE (n=33), aSLE (n=8), 11 cHD (n=11), or aHD (n=6), 

based on SCs (n=8). Each color represents a distinct caSCs.

(d). Heatmap representing scaled expression values of the top 10 genes defining each of the 

T-caSC (n=8).
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Extended Data Fig. 10. caSLE NK cells analysis, correlation of cSC and caSC, and boxplots of 
caSC abundance throughout caSCGs.
(a). UMAP plots representing caSLE NK subclusters (NK-caSCs, n=4), groups (cSLE, cHD, 

aSLE or aHD) and SLEDAI categories.

(b). Bar plot highlighting the cell abundances across NK-caSCs (n=4) for cSLE, cHD, aSLE 

or aHD (Groups; left panel) and SLEDAI categories (right panel).

(c). Individual UMAP plots from cSLE (n=33), aSLE (n=8), 11 cHD (n=11), or aHD (n=6), 

based on NK-caSCs (n=4). Each color represents a distinct caSC.

(d). Heatmap representing scaled expression values of the top 10 genes defining each of the 

NK-caSC (n=4).
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(e). Correlation plot of cluster memberships for each single cell in cSLE vs. caSLE datasets. 

SC membership information from the caSLE combined dataset (excluding aSLE samples) 

was correlated with cSLE dataset.

(f). Boxplots representing the proportion of ISGhi Monocytes (Mono-caSC0), ISGhi NK 

cells (NK-caSC3), ISG+ AXL+ cDCs(cDC-caSC2), ISGhi pDCs (pDC-caSC3), ISGhi T 

cells (T-caSC6), CD4+ Memory T cells (T-caSC3), ISGhi PCs (PC-caSC0), ISGhi B cells 

(B-caSC3), CD8+ Memory T cells (T-caSC5), IL1B+ ISGhi Monocytes (Mono-caSC4), 

DN2 B cells (B-caSC5), NK-SC0 (NK-caSC1) SCs across the four caSCGs. Patients with 

Mono-caSC0 >0.08, NK-caSC3>0.01, cDC-caSC2>0.02, pDC-caSC3>0.0005, T-caSC6 

>0.05, PC-caSC0>0.002, B-caSC3 >0.01, T-caSC5 >0.05, Mono-caSC4 >0.025, B-caSC5 

>0.01, NK-caSC1> 0.022 are labelled with their sample names. *, P<0.05; **, P<0.01; ***, 

P<0.001: ****, P<0.0001
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Figure 1. scRNA-seq reveals altered PBMCs composition in SLE patients.
(a). Overview of the pipeline. Raw data (n=275,588 cells) from 33 cSLE and 11 cHD were 

first cleaned from the multiplets, using Scrublet19, then merged together, resulting in a 

dataset containing ~258k cells. After batch correction using BBKNN20, the Scanpy55-based 

pipeline was ran (see Methods section).

(b). UMAP plot representing the 20 clusters across 258,868 PBMCs from 44 individual (33 

cSLE and 11 cHD). The putative identity of each cluster was specified on the basis of Fig. 

1c and Supplementary Table 2a. The cluster labels were added manually.
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(c). Cluster annotation. Dot plot represents expression values of selected genes (x-axis) 

across each cluster (y-axis). Dot size represents the percentage of cells expressing the 

marker of interest. Color intensity indicates the mean expression within expressing cells.

(d). Barplot representing the cell abundance of each cluster (n=20) across the 44 individuals 

(33 cSLE and 11 aHD).

(e). Violin plot comparing the proportion of each cluster (n=20) across the individual (n=44). 

cSLE are shown in purple, and cHD in green. P values were calculated using Wilcoxon test 

comparing the mean(cSLE) with mean(cHD). *, P<0.05; **, P<0.01; ***, P<0.001: ****, 

P<0.0001.

(f). Heat map representing the mean expression of IFN-related genes (n=100 unique genes, 

from Gene ontology and modules9) across the clusters (n=20) and groups (cSLE in purple 

and cHD in green). Color indicates the mean expression within each cluster. Column-side 

color key represents annotations of IFN genes. IFN, interferon.

Nehar-Belaid et al. Page 39

Nat Immunol. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Monocyte clusters display altered transcriptional profiles in cSLE.
(a). Bar plot highlighting cell abundances across monocyte subclusters (Mono-SCs; n=8) for 

the cSLE and cHD groups (left panel) and SLEDAI categories (right panel).

(b). Heatmap representing scaled expression values of the top 10 genes defining each of the 

Mono-SC (n=8).

(c). UMAP plots representing Mono-SCs (n=8), groups (cSLE or cHD), SLEDAI categories 

and expression values of selected genes.

(d). Individual UMAP plots from five representative cHD (left) and cSLE (right, entire 

figure provided in Extended Data Fig. 3a) based on Mono-SCs (n=8). Each color represents 

a distinct SC.
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(e). Heatmap showing the percentage of double positive cells (i.e. co-expressing “IL1B” and 

ISGs genes) across SCs (n=8, columns). For visualization purposes, only the clusters 

showing more than 5% of double positive cells have been considered.
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Figure 3. Characterization of pDC and cDCs single cell landscape in cSLE.
(a). Bar plot highlighting cell abundances across pDC-SCs (n=4) for the cSLE and cHD 

groups (left panel) and SLEDAI categories (right panel).

(b). UMAP plots representing pDC-SCs (n=4), groups (cSLE or cHD), SLEDAI categories 

and expression values of selected genes.

(c). Heatmap representing scaled expression values of the top 10 genes defining each of the 

pDC-SC (n=4, see methods).

(d). Bar plot highlighting cell abundances across cDC-SCs (n=4) for the cSLE and cHD 

groups (left panel) and SLEDAI categories (right panel).
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(e). UMAP plots representing cDC-SCs (n=4), groups (cSLE or cHD), SLEDAI categories 

and expression values of selected genes.

(f). Heatmap representing scaled expression values of the top 10 genes defining each of the 

cDC-SC (n=4, see methods).

(g). Heat map representing the scaled average expression of DC markers based on previous 

study32 and of ISGs across the four cDC-SCs. ISG, Interferon Stimulated-Genes.
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Figure 4. B cells reveals the presence of double-negative (CD19+ IgD− CD27− and CXCR5−) B 
cells in cSLE.
(a). Bar plot highlighting cell abundances across B-SCs (n=7) for the cSLE and cHD groups 

(left panel) and SLEDAI categories (right panel).

(b). Heatmap representing scaled expression values of the top 10 genes defining each of the 

B-SC (n=7, see methods).

(c). UMAP plots representing B-SCs (n=7), groups (cSLE or cHD), SLEDAI categories and 

expression values of selected genes.

(d). Heatmap representing scaled expression values of DN2, selected ISGs and other B cell 

gene markers across the seven B-SCs.
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(e). Individual UMAP plots from five representative cHD (upper panel) and cSLE (lower 

panel, entire figure in Extended Data Fig. 3d) based on B-SCs (n=7). Each color represents a 

distinct SC.

(f). Correlation analysis comparing the percentage of DN2 (CD19+ IgD− CD27− and 

CXCR5−) as quantified by flow cytometry, with the percentage of B-SC5 within the total B 

cells as quantified by scRNA-seq.
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Figure 5. cSLE plasmablast/plasma cells analysis revealed an expansion of ISGhi subcluster.
(a). Bar plot highlighting cell abundances across PC-SCs (n=2) for the cSLE and cHD 

groups (left panel) and SLEDAI categories (right panel).

(b). Heatmap representing scaled expression values of the top 10 genes defining each of the 

PC-SC (n=2, see methods).

(c). UMAP plots representing PC-SCs (n=2), groups (cSLE or cHD), SLEDAI categories 

and expression values of selected genes.
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Figure 6. cSLE T cells analysis revealed an expansion of ISGhi subcluster.
(a). Bar plot highlighting the cell abundances across T-SCs (n=6) for cSLE and cHD groups 

(left panel) and SLEDAI categories (right panel).

(b). Heatmap representing scaled expression values of the top 10 genes defining each of the 

T-SC (n=6; c).

(c). Individual UMAP plots from five representative cHD (left) and cSLE (right, entire 

figure in Extended Data Fig. 4a) based on T-SCs (n=6). Each color represents a distinct SC.

(d). Heat map representing the scaled average expression of T cell lineage markers 

(columns) across the T-SCs (rows; n=6).
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(e). UMAP plots representing T-SCs (n=6), groups (cSLE or cHD), SLEDAI categories and 

expression values of selected genes.
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Figure 7. cSLE NK cells analysis revealed an expansion of ISGhi subcluster.
(a). Bar plot highlighting the cSLE and cHD groups (left panel) and SLEDAI categories 

(right panel) cell abundances across the four NK-SCs.

(b). Heatmap representing scaled expression values of the top 10 genes defining each of the 

NK-SC (n=4).

(c). UMAP plots representing NK-SCs (n=4), groups (cSLE or cHD), SLEDAI categories as 

well as expression values of selected genes.
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Figure 8. Subcluster-based clinical stratification of children and adult cohorts.
(a). Heatmap representing scaled expression values of lupus related monogenic disorder 

(LRMD)-associated genes (n=19), across the 37 subclusters (SCs).

(b). Heat map representing frequencies of SCs (n=37) from childhood cohort, across cSLE 

(n=33, in purple) and cHD (n=11, in green) samples. Groups (cHD and cSLE), race (African 

American; AA, Hispanic; H Asian; As and Caucasian; C), mycophenolate mofetil (MMF) 

treatment and SLEDAI categories are indicated by color on the column-side key. 

Components of SLEDAI score on the visit date for SLE patients are color-coded on the 

bottom. Six main groups of samples are generated and denoted as subcluster groups (SCGs). 

Euclidian distance and ward.D2 clustering algorithm were used.
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(c). Overview of the pipeline. Raw data from cSLE (n=33; dark purple), aSLE (n=8; light 

purple), cHD (n=11; dark green) and aHD (n=6; light green) were first cleaned from the 

multiplets using Scrublet19, then merged together, resulting in a dataset containing ~ 333k 

PBMCs. After batch correction, the Scanpy-based pipeline was then run (see Methods 

section).

(d). Heat map representing frequencies of subclusters (caSCs, n=39) generated from 

childhood-adult combined cohorts across cSLE (n=33), aSLE (n=8), cHD (n=11) and aHD 

(n=6). Groups, race, MMF, SLEDAI, and SCGs are indicated by color on the column-side 

key. SCG are the groups determined in Fig. 6b. SLEDAI components distribution on the visit 

date for SLE patients are color-coded on the bottom. SLEDAI scores for aSLE patients are 

denoted in the bottom of the SLEDAI component. Four main groups of samples are 

generated and denoted as Childhood-Adult combined Group (caSCG). Euclidian distance 

and ward.D2 clustering algorithm were used.
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