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ABSTRACT: The molecular origin of two- (2PA) and three-
photon absorption (3PA) activity in three experimentally studied
chromophores, prototypical dipolar systems, is investigated. To
that end, a generalized few-state model (GFSM) formula is derived
for the 3PA transition strength for nonhermitian theories and
employed at the coupled-cluster level of theory. Using various
computational techniques such as molecular dynamics, linear and
quadratic response theories, and GFSM, an in-depth analysis of
various optical channels involved in 2PA and 3PA processes is
presented. It is found that the four-state model involving the
second and third excited singlet states as intermediates is the
smallest model among all considered few-state approximations that
produces 2PA and 3PA transition strengths (for S0 → S1
transition) close to the reference results. By analyzing various optical channels appearing in these models and involved in studied
multiphoton processes, we found that the 2PA and 3PA activities in all the three chromophores are dominated and hence controlled
by the dipole moment of the final excited state. The similar origins of the 2PA and the 3PA in these prototypical dipolar
chromophores suggest transferability of structure−property relations from the 2PA to the 3PA domain.

1. INTRODUCTION

The invention of lasers in 19601 initiated a series of discoveries
of various nonlinear optical phenomena, eventually marking
the birth of nonlinear optics that was theoretically predicted
much earlier in 1930 by the Nobel Laureate Maria Göppert-
Mayer.2 One of the milestones in this area was the
experimental confirmation of multiphoton absorption;3 in
such process two or more photons are simultaneously
absorbed to reach higher excited state. The lowest-order
multiphoton process, namely, two-photon absorption (2PA), is
nowadays in the limelight due to its diverse applications, such
as photodynamic therapy,4−6 bioimaging,7−11 three-dimen-
sional optical data storage,12,13 microfabrication,14 and two-
photon lasing,15 to name a few. The two-photon microscope is
now standard equipment in biology or neuroscience
laboratories, providing high-resolution images at the cellular
level. Nevertheless, it has some limitations; e.g., the maximum
imaging depth of such a device is restricted by tissue scattering.
Introduction of higher-order multiphoton absorption processes
in imaging techniques has been adopted as the solution for
elimination of background noises. The three-photon fluo-
rescence microscopy, which utilizes three-photon absorption
(3PA) as the excitation mechanism, has been demonstrated to
be a powerful technique for imaging deeply in tissues.16−19 As
lower-energy photons are less scattered and multiphoton

excitation causes significant background suppression, three-
photon microscope provides clear images of regions within
tissue that are unreachable by its two-photon analogue. Xu et
al. demonstrated an efficient, noninvasive three-photon
microscope that, in contrast to a two-photon microscope,
enabled in vivo visualization of subcortical structures within an
intact mouse brain.16 The above-mentioned technological
advances contributed to the increased interest in higher-order
multiphoton absorption effects. The design of multiphoton
absorbing materials has become an important challenge in the
field of material sciences. The need for maximizing the 2PA
strengths has prompted studies on structure−property
relationships. Early reports in this field revealed great potential
of organic, organometallic, and dendrimeric molecules of
dipolar, quadrupolar, and octupolar structures as 2PA materials
for varios applications.20,21 However, the focus has now shifted
toward metal−organic frameworks, perovskites, and materials
with reduced dimensionality (particularly 2D materials).22−25
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Although 3PA-based imaging promises to be a robust
competitor to known 2PA techniques, 3PA processes are still
much less explored than 2PA phenomena, on both the
experimental and theoretical side. It stems from the challenges
of experimental measurements of multiphoton effects, as the
probability of simultaneous absorption of three and more
photons is much smaller than that in the 2PA process.
Therefore, it is necessary to use laser sources providing
ultrashort laser pulses. From the computational point of view,
the crucial factor is the cost of calculating these processes
which, in many cases, can be very prohibitive, especially when
highly accurate electronic-structure methods are employed.
The developments in experimental techniques and modern
computing infrastructures make the studies on multiphoton
absorption feasible nowadays. In this work, we contribute to
these efforts and make an attempt to facilitate the development
of structure−property rules allowing for rational design of
multiphoton absorbing materials.

2. THEORY AND COMPUTATIONAL DETAILS
The analysis of “structure−multiphoton absorption” relation-
ships will be performed in this work on the basis of the results
of electronic-structure calculations and generalized few-state
models (GFSM), which were successfully employed in the field
of nonlinear optical activity (mainly two-photon absorption) of
molecular materials.26−32 The underlying concept comes from
the sum-over-states method, but the key difference is that only
a limited number of intermediate states are included in GFSM.
As a result, the cost of computations is greatly reduced. Careful
selection of the essential states with largest contribution to the
observed nonlinear optical response is necessary to obtain
satisfactory results. The key advantage of GFSM formalism is
that it allows one to express multiphoton absorption strengths
(or other nonlinear optical properties33) in terms of electronic
structure parameters, i.e., excitation energies, dipole moments,
and transition moments. Hence, one can thoroughly
investigate the nature of multiphoton responses. Moreover,
this approach utilizes the concept of optical channels, defined
as a specific transitions between two states, and their
interference.26−28,31 On the basis of GFSM, one can evaluate
the contribution of individual optical channels to the overall
mutiphoton response of the considered chemical system. The
GFSM expression to calculate the 2PA strength at the coupled-
cluster level (note that due to nonhermitian structure of
coupled-cluster theory left and right transition moments may
differ) was derived previously32 and is given by
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where the subscripts distinguish between right (j0) and left
moments (0j), ω ωΔ = −Ei i

1
2 f (ωf represents the excitation

energy for 0 → f transition) and θpq
rs is the angle between the

transition dipole moment vectors μpq and μrs. In this work, we
extended the GFSM for nonhermitian formulation of coupled-

cluster response properties, thus allowing for analysis of the
3PA strength of studied molecules (the derivations can be
found in the Supporting Information file):
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where ΔEi1 = ωi − ωf/3 and ΔEj2 = ωj − 2ωf/3. Any number
of states (as indicated by i, j, m, n) can be chosen in eqs 1 and
2. For instance, in the two-state model (2SM) for the 3PA
strength i, j, m, and n can be either the ground state 0 or the
final excited state f. In what follows, the labeling NSM(i, ..., j,
...) will denote the N-state model with states i, ..., j, ... included
as intermediate ones.
In this work, we will perform analyses of the obtained GFSM

formula by thorough comparison of two- and three-photon
absorption properties of dipolar Y-shaped chromophores based
on an imidazole−thiazole skeleton (see Scheme 1). There are
two primary reasons behind selection of these systems for the
present work: (a) experimental 2PA and 3PA cross sections
were determined under same experimental conditions,34 and
(b) there is a vast literature on the 2PA of dipolar systems, thus
enabling comparative analysis of the 3PA activity more potent.
It should be highlighted that the multibranched topology of
studied compounds may indicate significant vibronic con-
tributions to multiphoton absorption cross sections.35

However, this aspect is beyond the scope of the present study.
The geometries of studied molecules (hereafter denoted as

S−H, S−Me, S−OMe) were optimized at the B3LYP/6-
31G(d,p)36 level of theory accounting for solvent effects
(dimethyl sulfoxide solution) based on the Polarizable
Continuum Model as implemented in the Gaussian 16
program.37 The stationary points on the potential energy
hypersurface were confirmed to be minima by the evaluation of
the Hessian. Subsequently, rigid-body molecular dynamic
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simulations were performed using NAMD program.38 In these
simulations, the chromophore geometry was kept frozen to
avoid its misrepresentation by a classical force field, as it is
well-known that nonlinear optical properties are crucially
dependent on geometrical parameters of π-conjugated
moieties. A total of 100 snapshots were taken from the
resulting trajectory for electronic-structure calculations at the
RI-CC2/cc-pVDZ level of theory with the aid of the
TURBOMOLE 7.3 program.39,40 In more detail, we employed
the electrostatic embedding approximation; i.e., solvent
molecules surrounding a chromophore were represented by
point charges. For further analysis of the two- and three-
photon absorption processes in terms of the GFSM based on
the RI-CC2 method, we selected, separately for S−H, S−Me,
and S−OMe, the chromophore-solvent snapshot with the
S0 → S1 excitation energy closest to the arithmetic mean value
of energy in the considered set of snapshots. More details can
be found in the Supporting Information file.

3. RESULTS AND DISCUSSION
We will start the discussion with the analysis of the results
obtained using response theory (RSP) and various GFSM
variants. Figures 1 and S1 show, respectively, the simulated and
experimental electronic one-photon absorption spectra of S−
H, S−Me, and S−OMe, revealing (a) the presence of strong

low-lying ππ*-type excited state, typical for dipolar push−pull
chromophores, and (b) satisfactory predictions of spectral
shifts by the RI-CC2 method. The experimentally determined
absorption band broadenings are underestimated in rigid-body
MD simulations, as the vibrational fine structure is
neglected.41−45 The SI file contains the analysis of electronic
excitations to lowest-lying states based on the calculations
performed using time-dependent density functional theory.
Figure 2 presents the values of two- and three-photon
absorption strength of S−H, S−Me, and S−OMe molecules
computed for the S0 → S1 transition (hearafter intermediate
states involved are given in brackets after abbreviation of the
few-state model used). As it is seen, RSP and all few-state
models (FSMs) predict an increasing trend of δ2PA and δ3PA on
passing from S−H, through S−Me, to S−OMe. Most of the
considered FSMs overestimate δ2PA with respect to the
reference RSP data. In turn, if we assume 6SM results as a
reference for 3PA investigations, we can see that δ3PA values are
underestimated by most of the other few-state approximations.
2PA and 3PA strengths predicted for S−Me and S−OMe are
significantly larger than the corresponding values obtained for
S−H. As expected, the presence of strong electron-donating
groups is the reason for the increased two- and three-photon
responses of the studied compounds. Solid lines on Figure 2a,b
illustrate the convergence of δ2PA and δ3PA with respect to the
number of electronic excited states. Based on that, it is clear
that 4SM(2,3) is the smallest model (i.e., a model that includes
the smallest number of states) among all that gives satisfactory
results (i.e., close to those predicted by RSP and 6SM),
because adding more states to the analysis does not cause
significant changes in δ2PA and δ3PA. It is worth mentioning that
2SM, which is very often used in the analysis of two-photon
responses, is not sufficient to properly describe the 2PA
strength of the molecules considered herein, as it provides
results that are significantly overestimated in comparison to
RSP and 6SM outcomes. In the case of the S0 → S2 transition,
the RSP calculations show that δ2PA of S−H prevails over the
results obtained for S−Me and S−OMe (see Figure S26 in the
SI). δ2PA of the S−Me molecule is significantly smaller than
δ2PA of the other two molecules. For studied compounds, all
FSMs that include S1 state predict the same behavior of two-
photon response as RSP. Furthermore, they all give similar δ2PA

values that come close to those predicted by RSP
computations. Therefore, one can select 3SM(1) with
confidence as the smallest model that gives satisfactory results.
More significant differences between the results provided by
FSMs are observed for the 3PA (S0 → S2) and it is obvious
that 3SM(1) is not sufficient to properly describe δ3PA. One
should choose at least 4SM(1,3) to obtain δ3PA values close to
these based on 6SM. All FSMs that include the S1 excited state
demonstrate, similarly to the case of the S0 → S1 transition, an
increase of δ3PA across the series of studied compounds.
The experimental measurements, performed previously at

750 and 1400 nm (therefore, they concern the S0 → S1
transition) by Mendonca̧ et al.34 with the aid of open aperture
Z-scan technique, show that 2PA and 3PA cross sections (σexp

2PA

and σexp
3PA, respectively) increase on passing from S−H, through

S−Me, to S−OMe (see Table 1 in ref 34). σexp
2PA of S−Me is

almost 3-fold larger than that determined for S−H, whereas
the growth of σexp

2PA between S−Me and S−OMe compounds is
very small. On the other hand, the increase of σexp

3PA is much
steadier. The comparison of experimental and theoretical
findings for S0 → S1 transition are given in Figure 3. To that

Scheme 1. Structure of the Studied Compounds

Figure 1. Simulated 1PA spectra of S−H, S−Me, and S−OMe
molecules. Shown is the relative intensity.
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end, we calculated the relative two- and three-photon
absorption cross sections using the formula: σrel

nPA =
ω δ

ω δ −
(Molecule)

(S H)

n n

n n

PA

PA , where ℏω is the photon energy and n is equal

to 2 (2PA) or 3 (3PA). For comparison, we only used results
obtained from RSP and 4SM(2,3) calculations (as it was
previously selected as the smallest model that provides reliable
predictions) and 6SM (that gives the most accurate values
among all considered FSMs). The data presented in Figure 3
show that although RSP, 4SM(2,3), and 6SM correctly predict
the growing trend of 2PA and 3PA activity, the values of σrel

2PA

and σrel
3PA deviate from the results of experimental measure-

ments.
A better understanding of the origins of the 2PA and the

3PA of the studied molecules is obtained by analyzing the
individual terms contributing to δ2PA and δ3PA within
previously selected FSMs. It is clear from Figure 4a that for
all molecules, in the case of the S0 → S1 transition,
δ2PA(4SM(2,3)) is largely dominated by the δ0111 term (note
that Cartesian components of dipole moments in the S0 and S1
states are given in Table S6 in the SI file). Moreover, the
behavior of this component follows the growing trend
observed for the total δ2PA obtained using RSP and all FSMs.
Note also that δ0101 and δ0110, although more than 3 times
smaller than δ0111, contribute substantially to δ2PA(4SM(2,3))
in contrast to other terms. Due to the negative sign, δ0101 and
δ0110 decrease the total value of δ2PA(4SM(2,3)). Figure 4b
presents four terms, i.e., δ011111, δ010111, δ011101, and δ010101, that

contribute the most to δ3PA (for S0 → S1 transition) within
4SM(2,3) as well as 2SM and all three- and four-state models
(see Figure S28 in the SI where we demonstrated all
components of δ3PA within one selected 3SM(3) model in
descending order). As it is seen, all four components have
quite significant contributions; however, δ011111 prevails. The
absolute values of these components increase across the series
of studied molecules. Because of the sign difference, these four
terms cancel each other out to a large extent, and as a result,
the values of total δ3PA within 4SM(2,3) and other FSMs are
small compared to δ011111, δ010111, δ011101, and δ010101, especially
in the case of S−Me and S−OMe. As for the S0 → S1
transition, there are three terms with significant contribution
to δ2PA obtained for S0 → S2 within 3SM(1); i.e., δ0211, δ0212,
δ0221, and δ0211 clearly dominate (see Figure S27 in the SI). In
contrast to δ0212 and δ0221 components, δ0211 shows non-
monotonic behavior on passing from one molecule to another
(the same as total δ2PA(3SM(1)), δ2PA(6SM), and δ2PA(RSP)).
Also in the case of δ3PA(S0 → S2) one can select at least three
terms within 4SM(1,3), i.e., δ021111, δ020111, and δ021101, with
substantial contributions (see Figure S29 in the SI where we
demonstrated all components of δ3PA within one selected
3SM(1) model in descending order). Nevertheless, δ021111
dominates over all of them and exhibits a growth, which is
in line with the behavior of total δ3PA(4SM(1,3)) and
δ3PA(6SM).
The δ0111, δ0211, δ011111, and δ021111 components, contributing

the most to δ2PA and δ3PA within few-state approximation, are

Figure 2. Comparison of response theory and few-state model S0 → S1 transition strengths for (a) 2PA and (b) 3PA processes. Solid lines show
δ2PA and δ3PA convergence with respect to the number of electronic states.
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directly related to electronic structure parameters according to
the following formulas:
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Δ Δ

×
E E

2
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11
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12
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δ μ μ μ μ μ= | | | || || || |
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2
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11
2

12
2

where AT stands for the angular part omitted for brevity.
Figure S30 presents the breakdown of δ0111, δ0211, δ011111, and
δ021111 into “energy” and “dipole” terms. The most significant
changes are observed for the |μ11||μ11| component. There is an
increase of its value by around 40 au between S−H and S−
OMe. The other two “dipole” terms undergo much smaller
variations. Similarly, the changes in “energy” components on
passing from one molecule to another are very minor.
Therefore, we can conclude that in the case of the S0 → S1
transition the dipole moment of excited state S1 determines the
behavior of δ2PA and δ3PA. The same is true for three-photon

excitation to S2 state. However, the 2PA response of the
studied molecules for S0 → S2 is mainly governed by variations
in transition moments between S1 and S2 states.

4. SUMMARY

In summary, using various techniques such as molecular
dynamics, linear and quadratic response theory, and general-
ized few-state models (GFSM) at the ab initio RI-CC2 level of
theory, we studied the two- and three-photon excitations to the
first and the second excited singlet states in three
experimentally described chromophores, representing proto-
typical dipolar systems. To that end, a novel nonhermitian
GFSM formula for three-photon absorption strengths is
derived and employed at the coupled-cluster level. A four-
state model involving the second and third excited singlet
states as intermediates is found to be the smallest model
among all considered few-state approximations to produce 2PA
and 3PA transition strengths (for S0 → S1 transition) close to
the reference results (i.e., obtained from response theories or
on the basis of 6SM). By analyzing various optical channels
appearing in these models and involved in 2PA and 3PA
processes, we found that the said two- and three-photon
activities in all the three chromophores are dominated and
hence controlled by the dipole moment of the final excited
state. The similar origins of the 2PA and the 3PA in these

Figure 3. Comparison of calculated and experimental S0 → S1 cross sections
ω δ

ω δ −
(Molecule)

(S H)

n n

n n

PA

PA for (a) 2PA and (b) 3PA processes. See text for details.
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prototypical dipolar chromophores suggest transferability of
structure−property relations from the 2PA to the 3PA domain.
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