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Non-small-cell lung cancer (NSCLC) is one of the most common malignancies, and
specific molecular targets are still lacking. Angiogenesis plays a central regulatory role
in the growth and metastasis of malignant tumors and angiogenic factors (AFs) are
involved. Although there are many studies comparing AFs and cancer, a prognostic
risk model for AFs and cancer in humans has not been reported in the literature. This study
aimed to identify the key AFs closely related to the process of NSCLC development, and
four genes have been found, C1QTNF6, SLC2A1, PTX3, and FSTL3. Then, we
constructed a novel prognostic risk model based on these four genes in non-small-cell
lung cancer (NSCLC) and fully analyzed the relationship with clinical features, immune
infiltration, genomes, and predictors. This model had good discrimination and calibration
and will perform well in predicting the prognosis of treatment in clinical practice.
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1 INTRODUCTION

Lung cancer is one of the malignant tumors with the highest incidence and mortality worldwide
(Hirsch et al., 2017). Every year, 1.8 million people (11.6% of total cases) are diagnosed with lung
cancer, and about 1.6 million people (18.4% of total cancer deaths) died because of lung cancer. There
are two basic forms of lung cancer, small cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC), and NSCLC accounts for approximately 85% (Ettinger et al., 2013; Gridelli et al., 2015).
NSCLC is characterized by poor survival, and despite significant advances in new chemotherapeutic
drugs and clinical surgery, the prognosis remains suboptimal (Ettinger et al., 2013; Gridelli et al., 2015;
Ettinger et al., 2021).With the advent of targetedmolecular therapy and immune checkpoint inhibitors,
the use of biomarkers in identifying patients is becoming increasingly common (Ma et al., 2019; Wang
et al., 2019). The existing evidence has suggested that targeted therapies have favorable therapeutic
effects. However, acquired resistance has become a major obstacle in the field of targeted therapies
(Chatterjee and Bivona 2019). Thus, more novel driver genes, therapeutic targets, and prognostic
biomarkers must be discovered and used for targeted therapy in larger populations, more accurate
prognosis prediction, and a better understanding of the mechanisms of lung cancer development.

Tumors can promote tumor angiogenesis, leading to angiogenesis, which is the one of hallmarks
of cancer (Hanahan and Weinberg 2000). The process of new blood vessel formation is critical in
supporting tumor growth, and solid tumors secrete angiogenic factors (AFs) implicated in the
complex regulation of angiogenesis (Goveia et al., 2020). Numerous important target molecules of
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AFs in NSCLC and other cancers, such as vascular endothelial
growth factor (VEGF) (Zhang 2015) and epidermal growth factor
receptor (EGFR) (Oxnard et al., 2011), have all become clinical
targets for antitumor angiogenesis. Antiangiogenic medications
are increasingly used as anticancer drugs for first-line treatment.
Moreover, since the introduction of the first humanized anti-
VEGF monoclonal antibody, bevacizumab (Avastin), available in
2004 (Ferrara et al., 2005), there have been nearly 30
antiangiogenic drugs approved by the FDA (Lugano et al.,
2020). AFs are also expected to be optimal therapeutic targets.
Several significant global studies noted that angiogenesis
inhibitors combined with immunotherapy can enhance the

curative effect. There is increasing evidence that targeting
angiogenesis improves the efficiency of cancer
immunotherapy. A programmed cell death 1 (PD-1) inhibitor
and camrelizumab (AiRuiKa™) can improve the treatment effect
of chemotherapeutics in multiple types of cancers (Markham and
Keam 2019). However, apatinib, a vascular endothelial growth
factor receptor 2 (VEGFR2) tyrosine kinase inhibitor, has been
shown to increase the infiltration of CD8+ T cells, reduce the
recruitment of tumor-associated macrophages, and improve the
effect of PD-1 inhibitors (Zhao et al., 2019).

Despite many studies investigating the association between AFs
and cancers, whether AFs can be used as biomarkers to predict the
prognosis of NSCLC patients is still unknown. In our study, based
on the machine algorithms and bioinformatics methods, AF-
related risk score (AFRS) was established. Four key prognosis-
related AFs, C1QTNF6, SLC2A1, PTX3, and FSTL3, were first
screened using bioinformatics analysis of differentially expressed
genes (DEGs). Then, we attempted to construct a new risk score
model to predict NSCLC, and we further analyzed the clinical
features, immune infiltration, genomes, and multiple predictors.
To further validate the AF-related prognostic risk score model, we
used external dataset validation. An overview of this study is shown
in Supplementary Figure S1.

2 RESULTS

The expression profile data of NSCLC patients were downloaded
from the UCSC database. The detailed clinical features of these
patients are summarized in Table 1.

2.1 Differential Expression Analysis and
Functional Enrichment Analysis of
Non-Small-Cell Lung Cancer
We identified a total of 372 differentially expressed AF genes in
cancer and normal samples (with a threshold of adj.P.Val<0.01 &
|log (FC) |≥1) (Figures 1A,B). GO and KEGG functional
enrichment analyses of the differentially expressed AF genes

TABLE 1 | Clinic pathological data of patients with NSCLC in this study.

Characteristic Number

Age <60 720
≥60 221

Pathologic_M M0 698
M1 30
MX 208
NA 5

Pathologic_N N0 600
N1 213
N2 106
N3 7
NX 14
NA 1

Pathologic_T T1 262
T2 529
T3 108
T4 39
TX 3

Clinical stage Ⅰ 476
Ⅱ 264
Ⅲ 159
Ⅳ 31
NA 11

Follow up status Alive 570
Dead 371

FIGURE 1 | Batch effect removal. (A) Before batch effects were removed. (B) After batch effects were removed.
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FIGURE 2 | Differential expression and functional enrichment of AF genes in non-small-cell lung cancer. (A) Heatmap and clustering of differentially expressed AF
genes. (B) Volcano map of differentially expressed AF genes. (C) GO biological processes (D) GO molecular functions (E) GO cellular components and (F) KEGG.
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were then performed (Figures 1C–F). The enriched GO terms of
DEGs were classified into three categories: molecular functions,
cellular components, and biological processes. The results
revealed that these genes were enriched for GO terms such as
regulation of vasculature development, regulation of
angiogenesis, ameboidal-type cell migration, and positive
regulation of vasculature development, epithelial cell
proliferation, and tissue migration. The KEGG pathway
enrichment showed the enrichment of critical pathways
involved in tumorigenesis and metastasis, including pathways
in cancer, focal adhesion, the MAPK signaling pathway, the
chemokine signaling pathway, the TGF-β signaling pathway,
and renal cell carcinoma. The top 15 highly enriched KEGG
pathways are presented in Figure 1F.

2.2 Cox Regression Analysis of Differentially
Expressed Angiogenic Factor Genes
We performed a univariate Cox regression analysis of these
differentially expressed AF genes and identified 58 AF-related
genes that were associated with the prognosis of NSCLC. We

performed survival analyses of the top five genes in terms of the
p-value (Figures 2A–E). The low expression of these five genes
was associated with a worse prognosis (Figure 2F).

2.3 Development of Risk Model Using Lasso
Regression
A total of five AF genes significantly associated with prognosis
(p < 0.001) in the univariate Cox regression were further selected
for lasso regression (Supplementary Figure S2). We first used
cross-validation to identify the minimal lambda, i.e. lambda min,
and then selected the four most significant genes using lambda
min to develop the prognostic risk model. The optimized model
was: risk score = 0.104 * SLC2A1 + 0.138 * FSTL3 + 0.069
*C1QTNF6 + 0.046 * PTX3. We calculated the risk scores of each
sample using this formula and classified all the samples into high-
and low-risk groups according to the median for further analysis.

To validate the performance of our model, we plotted the
Kaplan–Meier survival curves of the high- and low-risk groups
(Figure 3A). A significant association was shown between the risk
group and survival (p < 0.0001), suggesting that the model had a

FIGURE 3 | Univariate Cox regression analysis. (A–E) Top five prognostic genes. (F) Forest plot of the top 20 genes.
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high prognostic value. Time-dependent ROC curves were further
plotted, which showed AUC>0.6 in the 1-year, 3-years, and 5-
years ROC curves. This indicated that the model had good
prediction ability (Figure 3B). Based on the optimistic cutoff,
the patients were divided into high AF risk score and low AF risk
score groups (Figures 3C–F).

We used the GSE4573 and GSE68465 datasets to validate the
model (Figures 4A–D). We combined the two datasets and
removed the batch effect. We selected the prognostic genes in
the datasets (C1QTNF6 was not identified) and calculated the risk
score using the coefficients in the model for validation. The
Kaplan–Meier plot showed that the samples in the high-risk
group had a worse prognosis with a p-value < 0.05, which
indicated that our model had high accuracy.

2.4 Differential Analysis and Association
Analysis of the Angiogenic Factor Risk
Score
We analyzed the difference in AF risk scores of each group that was
stratified by clinical characteristics. The risk score of LUSC was
significantly higher than that of LUAD (Figure 5A). The risk score
of the samples with EGFRmutations was significantly lower than that
of samples without EGFR mutations (Figure 5B). The risk score also

differed significantly across the different tumor stages andTNMstages,
which was consistent with the process of carcinogenesis (Figures
5C–F). The patients with a smoking history also had significantly
higher risk scores than those who never smoked (Figure 5G).

We also visualized the association of the risk score with tumor
mutational burden (TMB), homologous recombination deficiency
(HRD), neoantigen burden, chromosomal instability (CIN), and
stemness index (mRNAsi) (Figures 6A–D). TMB is a marker for
genomic instability measured by sequencing the whole tumor
genome and has been shown to correlate with immunotherapy
(Gibney et al., 2016). Therefore, TMB is emerging as a predictor of
immunotherapeutic responses. For all indexes, the highest
correlation was obtained for TMB (Figure 6A). This further
illustrates that the interaction of AFs can affect immunotherapy.
The discovery of homologous recombination deficiency (HRD) in
lung cancer is of great importance for patients who will benefit
from poly ADP-ribose polymerase inhibitor (PARPi) (Weston
et al., 2010). However, we did not find a correlation between
HRD and AFs (Figure 2B). Neoantigens are another important
index for predicting the clinical response to immunotherapy. The
current studies of neoantigen sources mainly focus on single
nucleotide variants (SNVs), such as small insertions and
deletions (indels), somatic copy number variations (SCNVs),
and large scale transition (LSTms). Similarly, we found no

FIGURE 4 | Assessment of the risk model based on TCGA data. (A) Kaplan–Meier curve validation. (B) ROC curve validation. (C) Risk score of all samples. (D)
Scatter plot of the survival time of all samples. (E) Heatmap of the prognostic genes in high- and low-risk groups.
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FIGURE 5 | Validation results of datasets GSE4573 and GSE68465. (A) Kaplan–Meier plot. (B) Risk score of all samples. (C) Scatter plot of the survival time of all
samples. (D) Heatmap of the prognostic genes in high- and low-risk groups.
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significant differences in these parameters (Figures 6C–H). The
stemness index (mRNAsi) is used to measure the tumor
development and evaluate the reliability of stem cell indexes as
shown in Figures 6A,I significant positive correlation was found
between AFs and mRNAsi. These results confirmed that AFs were
related to biological processes, cancer metastasis, and the immune
microenvironment.

2.5 Immune Infiltration Analysis of High- and
Low-Risk Groups
The immune infiltration status was highly associated with the
prognosis of NSCLC. We used the CIBERSORT algorithm to
calculate and compare the proportion of immune infiltration in
the high- and low-risk groups based on TCGA data (Figure 7A).
The proportions of naive B cells, memory activated CD4 T cells,
gammadelta T cells, and resting dendritic cells were significantly
increased in the low-risk group, while the proportions of memory
B cells, and macrophages. M0, macrophages. M2, and activated
mast cells was significantly higher in the high-risk group, which
indicated that the immune infiltration status was different in the
high- and low-risk groups.

We also found that the stroma score (p = 7.8e-16), immune
score (p = 0.012), and tumor purity (p = 1.7e-08) were
significantly higher in the high-risk group than in the low-risk
group (Figures 7B–D).

2.6 Differences in the Mutation Profile
Between High- and Low-Risk Groups
We further investigated the difference in the mutation profiles
between the high- and low-risk groups based on TCGA data. The

mutation rate of the high-risk group was slightly higher than that
of the low-risk group (92.81 vs. 90.91%). The mutation rate of
TP53 was the highest in both the high- and low-risk groups.
Additionally, missense mutations were the most dominant
among all mutation types. Single nucleotide polymorphisms
(SNPs) occurred more frequently in the high-risk group than
in the low-risk group (Figures 8A,B).

We also investigated the difference in CNV between the high-
and low-risk groups (Figures 8C–E). The copy numbers of
amplification and deletion were distributed differently in the
same position. Significant differences in distribution could be
observed in the figures (Figures 8C,D). We analyzed the Z-score
of the high- and low-risk groups (Figure 8E) by t-test. The results
showed a significant difference between them (p < 2.22e-16).

2.7 Independent Prognosticator Analysis of
Risk Score
Immunotherapy offers a new approach to cancer treatment. For a
long period of time, immunotherapy approaches targeting PD1,
PDL1, and ctla-4 have all been successfully applied in cancer, with
largely promising outcomes. Tumor immune dysfunction and
exclusion (TIDE) is a gene expression biomarker developed for
predicting the clinical response to immune checkpoint blockade.
We used the TIDE score to assess the performance of the risk
score to predict the response to immunotherapy and visualized it
in R software. A significant difference in the TIDE score was
demonstrated between the high- and low-risk groups (p = 0.0027)
(Figure 9A), while its prediction accuracy was lower than that of
the risk score (Figure 9B).

To assess the effect of the risk score on prognosis, we
performed univariate and multivariate Cox regression analyses

FIGURE 6 | Association analysis with clinical characteristics. (A) Disease code. (B) EGFR mutation status. (C) Tumor stage. (D) T stage. (E)M stage. (F) N stage.
(G) Smoking history.
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of the above clinical characteristics and validated the risk model
using validation datasets (Figures 10A–D). The risk score
showed a significant effect on the prognosis in both univariate
and multivariate regression analyses.

2.8 Prognostic Analysis of Risk Score and
Clinical Characteristics
Finally, we developed nomograms using the risk score and clinical
characteristics and validated them with calibration plots
(Figure 11A). The risk score showed the highest accuracy of
prediction (Figure 11B). The 1-year, 2-years, and 3-years
calibration plots demonstrated the highest accuracy of our
nomograms (Figures 11C–E).

3 DISCUSSION

Angiogenesis is essential for tumor growth and metastasis and
can provide space and nutrients for tumor cells. Multiple
angiogenic growth factors play critical roles in this process.
The previous studies indicate that targeting tumor
angiogenesis is a promising way to fight tumor growth and
dissemination in numerous types of cancer (DeBusk et al.,
2010; Meng et al., 2017; Chu et al., 2021; Pan et al., 2021).

With the development of next-generation sequencing, more
extensive molecules have been discovered as therapeutic targets.
However, no study has previously constructed a prediction model
of NSCLC based on AFs. In this study, we first identified 372 DE-
AFs based on the UCSC database and then confirmed that four

FIGURE 7 | Association analysis of AF risk score. (A) Tumor mutational burden and AF risk score. (B) Homologous recombination deficiency and AF risk score.
(C–D) Neoantigen burden and AF risk score. (E) Loss of heterozygosity (LOH) in chromosome instability and AF risk score. (F) SCNV of chromosome instability and AF
risk score. (G) Telomeric allelic imbalance (NtAI) of chromosome instability and AF risk score. (H) Large scale transition (LSTm) (I) Stemness index and AF risk score.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8940248

Gu et al. Angiogenesis-Prediction Model of NSCLC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


genes, C1QTNF6, SLC2A1, PTX3, and FSTL3, were significantly
correlated with prognosis by constructing Cox regression and
Lasso regression models. High expression of the four genes was
also associated with poor prognosis in NSCLC patients. Second,
according to the medium-risk score, NSCLC patients were
divided into high- and low-risk groups. We calculated each
AUC value of the ROC curves for predicting prognosis, which
all had significantly good sensitivity. The 1-, 3-, and 5-years AUC
values of the ROC were 0.623, 0.658, and 0.609, respectively. The
risk score also performed well in validation sets GSE4573 and
GSE68465. We also evaluated our AF risk score models on
GSE4573 and GSE68465 validation data (batch effect
correction). The results showed significant differences between
the high- and low-risk groups.

The results of our study were consistent with those of other
past studies. Wei et al. (Zhang and Feng 2021) reported that
C1QTNF6 was significantly highly expressed in NSCLC tissues
and cells and regulated tumor growth, migration, and apoptosis.
Similar results have been reported in Japan (Tamotsu et al.)

(Takeuchi et al., 2011), in which C1QTNF6 has been implicated
in tumor angiogenesis in hepatocellular carcinoma. Solute carrier
family 2 member 1 protein (SLC2A1) plays an important role in
glucose metabolism in the human body. A previous study
suggested that the upregulated expression level of SLC2A1
may increase the tumor cell proliferation and metastasis
(Xiong et al., 2020). Hongwei et al. (Xia et al., 2021) found
that lncRNA PVT1 can regulate cell growth, migration, and
invasion by targeting the miR-378c/SLC2A1 axis. PTX3 is
involved in tumor progression in multiple types of cancer and
has also been identified as an independent prognostic predictor of
cancer (Bonavita et al., 2015; Giacomini et al., 2018). Follistatin-
related gene 3 (FSTL3) was proven to be an oncogene, and
upregulated the expression of FSTL3 could activate migration
by promoting F-actin and BMP/SMAD signaling (Chu et al.,
2020; Liu et al., 2021). Although C1QTNF6, SLC2A1, PTX3, and
FSTL3 may serve as potential targets for antiangiogenic
therapeutic strategies, the molecular mechanisms of
angiogenesis remain unclear.

FIGURE 8 | Immune infiltration levels of 22 immune cell types in the low-risk group and high-risk group. (A) CIBERSORT algorithm was used to assess the
difference in immune infiltration: *, p < 0.05; **, p < 0.001; ***, p < 0.01; ****, p < 0.001; ns, p > 0.05 (nonsignificant). (B) Stromal score; (C) Immune score; and (D)
ESTIMATE score.
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FIGURE 9 |Distribution of mutations and CNVs in the high- and low-risk groups. (A)Mutations in the high-risk group. (B)Mutations in the low-risk group. (C)CNVs
in the low-risk group. (D) CNVs in the high-risk group. (E) Distribution of the G-score and the p-value of the Wilcoxon test in the high- and low-risk groups.
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Third, to better guide clinical decision-making, we applied
AFRS to different clinical samples. We were pleasantly surprised
that AFRS in LUSC patients was significantly higher than that in
LUAD patients. AFRS was significantly lower in the patients with
EGFR mutation or without smoking. Furthermore, we conducted
a correlation between AFRS and different clinical stages and
found that AFRS was closely related to the clinical stage and
TNM stage.

Fourth, in recent research, immunotherapy has been
increasingly recognized for its potential therapeutic effect on a
variety of tumors. For example, immune checkpoint (PD-1, CTLA-
4) blockade has become an increasingly important part of cancer
therapy (Passiglia et al., 2021). There were plenty of clinical trials
(Reck et al., 2019; Herbst et al., 2020; Patel et al., 2020) that proved
the combination of ICI therapy and angiogenesis therapy can
reprogram the immune microenvironment and prune cancer

FIGURE 10 | Prediction performance of the TIDE score. (A) Difference in TIDE scores in the high- and low-risk groups. (B) ROC curve.

FIGURE 11 | Univariate and multivariate regression analyses. (A) Univariate analysis. (B) Multivariate analysis. (C) Univariate analysis of the validation set. (D)
Multivariate analysis of the validation set.
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growth-related blood vessels (Ramjiawan et al., 2017; Yi et al., 2019;
Giannone et al., 2020), which could have a synergistically better
performance in prolonging overall survival, especially in patients
with activating mutations of EGFR (Reck et al., 2019). By detecting
the immunity indexes of TMB and mRNAsi, we believed that this
research might provide bioinformatics evidence to support the
design of a combination of immunotherapy and antiangiogenic
therapy for NSCLC patients in the future.

Fifth, we found that of all clinical samples, the TP53mutation
type had the highest rate of mutations, neither in the low nor
high AFRS group. The SNP mutation in the high AFRS group
was remarkably higher than that in the low AFRS group.
Numerous studies have proven that TP53 mutation in
cancers can influence drug activity, tumor apoptosis, and
immune evasion (Alexandrova et al., 2015; Srihari et al.,
2018). Notably, gain-of-function p53 mutation promotes
neutrophils to tumors, which leads to resistance to
immunotherapy (Siolas et al., 2021). As a result, we further
analyzed the correlation of AFRS with the infiltration of various
immune cells. We found that the immune response was
significantly altered between the low and high AFRS groups,
including immune cell infiltration (i.e., M2 macrophages and
M0, mast cells, B cells), immune score, stromal score, and

ESTIMATE score. These results indicated that the high AFRS
group could induce stronger immunity activity.

For better clinical applications, we strive to develop a
nomogram to predict the prognosis of NSCLC patients. The
established nomogram showed a great performance in predicting
the clinical outcomes for NSCLC patients.

However, this study has several limitations. First, due to
limited resources and funding available, no clinical samples
were analyzed, hence, clinical relevance was not assessed.
Second, the lack of experimental verification was also limited.
We will further confirm our conclusions by performing cell line
and animal model experiments in the future and prove the
changes in the protein levels by western blot analysis.

4 CONCLUSION

In conclusion, assessing the global gene expression profile of Afs
in this study was the first. From the perspective of a reliable risk
score model using angiogenic factors, the present study provided
a new method for NSCLC treatment in the clinic. However, the
established model needs to be further confirmed in the future by
large scale multicenter clinical studies.

FIGURE 12 |Nomogram and calibration plots. (A)Nomogram of age, tumor stage, and TNM stage. (B)ROC curve of risk score, age, tumor stage, and TNM stage.
(C) 1-year calibration plot. (D) 2-years calibration plot and (E) 3-years calibration plot.
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5 MATERIALS AND METHODS

5.1 Sources of Non-Small-Cell Lung Cancer
Datasets
The expression profile combined with patients’ clinical and
annotation information in LUAD and LUSC datasets were
downloaded from UCSC (https://xenabrowser.net/). Next, we
averaged the expression level of genes with the same name
and removed the genes with expression levels lower than 30%.
We merged the two expression profiles after processing and
converted the data type from FPKM to TPM. The samples
from patients aged >18 years were extracted, and batch effects
were removed (Figures 12A,B). We then searched the NCBI
database (https://www.ncbi.nlm.nih.gov/gene/?term=angiogenic)
using “angiogenic factor (AF)” as the keyword and extracted AF
expression data of 1,054 samples from the downloaded
expression profile.

5.2 Enrichment Analysis of Angiogenic
Factors Expression
We used the R package “limma” to identify AF-related
differentially expressed genes (DEGs) (threshold:
adj.P.Val<0.01 & |log (FC) |≥ 1) in 372 cancer and normal
samples. Next, gene ontology (GO) enrichment analysis
(p-value cutoff < 0.05) and KEGG pathway enrichment
analysis (p-value cutoff < 0.05) of differentially expressed
genes were performed using the R package “clusterProfiler”.

5.3 Univariate Cox Regression Analysis
Other data of cancer samples were further extracted, and a
univariate Cox regression analysis of DEGs associated with
overall survival was performed using the R packages
“survival” and “survminer” with a threshold of p < 0.05.
DEGs associated with prognosis were identified after
screening.

5.4 Prognostic Risk Model Development
Based on Lasso Regression
Lasso regression was performed using the R package “glmnet” for
downscaling prognostic genes.We first screened lambda by cross-
validation, and then selected the model with lambda. min. Next,
the expression matrix of the selected genes for the model was
extracted, and the risk score of each sample was calculated using
the following formula:

Riskscorei � ∑
n

i�1
expji p βj.

It represented the expression level of gene j in sample i, and
represented the coefficient of gene j in the lasso regression model.
All the samples were stratified into high- and low-risk groups
according to the median-risk score.

5.5 Risk Model Assessment
Kaplan–Meier survival curves were plotted according to high- or
low-risk groups. The ROC curves were drawn based on the
predicted risk score of each sample.

5.6 Analysis of Angiogenic Factor Risk
Scores According to Clinical
Characteristics
The samples with AF risk scores were grouped according to
clinical characteristics. We used the R package “ggplot2” to show
the distribution of AF risk scores in each group and the R package
“ggpubr” to illustrate the significant difference between groups.

5.7 Association Analysis of Angiogenic
Factor Risk Score
We calculated tumor mutational burden, homologous
recombination deficiency (HRD) (from technical support),
tumor neoantigen burden (according to the literature The
Immune Landscape of Cancer), chromosome instability (CIN)
(according to the literature The Immune Landscape of Cancer),
and stemness index (according to the literatureMachine Learning
Identifies Stemness Features Associated with Oncogenic
Dedifferentiation) based on AF risk scores and performed
association analyses.

5.8 Assessment of Immune Infiltration in the
High- and Low-Risk Groups Using
CIBERSORT
The proportion of 22 immune cells in the samples can be derived
using the CIBERSORT algorithm based on the expression of
certain genes. We assessed the difference in immune infiltration
between the high- and low-risk groups by t-test with a
significance threshold of p < 0.05.

5.9 Assessment of Immune Score, Stromal
Score, and Tumor Purity Using ESTIMATE
We analyzed the differences in the immune score, stromal score,
and tumor purity of AF in high- and low-risk groups using the R
package “ESTIMATE” and assessed the differences in immune
infiltration in the high- and low-risk groups by t-test with a
threshold of p < 0.05.

5.10Mutation Analysis in High and Low-Risk
Groups
MAF files of NSCLC were downloaded from the GDC database,
and we extracted the mutation information of AF from the
somatic mutation profile. The mutation profile of AF in high-
and low-risk groups was demonstrated with the help of the
“oncoplot” function, using the R package “maftools”.
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5.11 Copy Number Variation Analysis of
High- and Low-Risk Groups
The copy number variation (CNV) data of LUSC and LUADwere
downloaded from UCSC. The copy numbers of the high- and
low-risk groups were extracted to generate files and plotted on the
gadget using the “CNV distribution chart - bar graph section”.

5.12 Prediction of Response to
Immunotherapy
The expression profiles of immune genes were extracted from the
processed data of endometrial cancer samples, and the immune
gene sets were obtained from the ImmPort database (https://
www.immport.org/) and InnateDB database (https://www.
innatedb.ca/). The expression profiles of the immune gene sets
were subsequently normalized. The predicted TIDE scores of the
samples were calculated using the TIDE online database. The
distribution of TIDE scores in the high- and low-risk groups was
illustrated with box plots using ggpubr, and the significance was
tested by t-test.

5.13 Independent Prognostic Factor
Analysis
To validate whether the risk score was an independent prognostic
factor, univariate Cox regression analyses of the candidate
prognostic factors using TCGA sample data were first
performed, including risk score, age, tumor stage, and TNM
stage. A multivariate Cox regression analysis was subsequently

performed to assess the effect size of the risk score. We used the
function cph in the R package “rms” to plot the nomograms and
calibration plots for visualization.

5.14 Statistical Analysis
All statistical analyses were performed using R software version
4.0.3. p < 0.05 was set as the significance criterion.
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GLOSSARY

AFRS: angiogenic factors related risk score

AFs: angiogenic factors

CIN: chromosomal instability

CNV: copy number variation

DEGs: differentially expressed genes

EGFR: epidermal growth factor receptor

HRD: homologous recombination deficiency

LASSO: least absolute shrinkage and selection operator

WHO: World Health Organization

LSTm: large scale transition

NSCLC: non-small-cell lung cancer

SCLC: small cell lung cancer

SCNV: somatic copy number variations

SNPs: single nucleotide polymorphisms

TMB: tumor mutational burden

VEGF: vascular endothelial growth factor

VEGFR2: vascular endothelial growth factor receptor 2
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