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ABSTRACT Eight siphoviral phages isolated from various soil types and locations in
southwestern Pennsylvania using Arthrobacter sp. strain ATCC 21022 were sequenced.
The phages all have relatively small genomes, with each genome containing 15,556 bp.
All 8 phages are closely related to previously described cluster AN Arthrobacter phages
(K. K. Klyczek, J. A. Bonilla, D. Jacobs-Sera, T. L. Adair, et al., PLoS One 12:e0180517, 2017,
https://doi.org/10.1371/journal.pone.0180517; J. Y. Lee-Soety, S. Bhatt, T. L. Adair, J. A.
Bonilla, et al., Genome Announc 5:e01092-17, 2017, https://doi.org/10.1128/genomeA
.01092-17).

Arthrobacter spp. are soil bacteria useful for their ability to protect themselves from
heavy-metal toxicity and to survive long periods under stressful conditions induced

by starvation, temperature shifts, ionizing radiation, oxygen radicals, and toxic chem-
icals (1–3). Arthrobacter phages contain diverse genomes, forming clusters from AK to
FG and 68 singletons (4).

We have isolated and characterized an additional eight bacteriophages that
infect Arthrobacter sp. strain ATCC 21022 (5). All the phages were isolated from soil
samples by students in the Science Education Alliance-Phages Hunters Advancing
Genomics and Evolutionary Science (SEA-PHAGES) program (6) at six different
locations (Table 1) using an enrichment procedure (7). Soil samples were incubated
with phage buffer, and bacteriophages were extracted from the mixture by filtering
through a 0.22-�m filter. For virus replication, the filtered medium was incubated
with Arthrobacter sp. ATCC 21022 at 30°C for 24 h. Plaque assays of isolated
Arthrobacter phages resulted in small to medium plaques. Genomic DNA was
isolated using a phenol-chloroform protocol (8).

Sequencing, assembly, and finishing of the genomes were performed according to
Russell (9). Phage genomes were prepared using the NEBNext Ultra II kit v3 and
sequenced using the Illumina MiSeq platform using 150-bp unpaired reads. Sequences
were assembled using Newbler 2.9 (10) with default settings, generating major contigs
with coverages from 2,032- to 12,826-fold. Phage ends were determined as previously
described (9) using Consed v29 (11) to check for completeness and accuracy of the
termini. The genomes were annotated using DNA Master v5.23.3 (http://cobamide2.bio
.pitt.edu/computer.htm), with coding sequences predicted by GeneMark v2.5p (12) and
GLIMMER v3.02b (13), and 26 protein-coding genes were identified (Table 1). Pham-
erator (14) was used for comparative genomic analysis. No tRNA or transfer-messenger
RNA (tmRNA) genes were detected by ARAGORN v1.2.38 (15) or tRNAscan-SE v2.0 (16).
See Table 1 for genomic characteristics.
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Each genome contains 26 putative genes. Given that the assignment of gene
products to Phams was based on amino acid sequences similarity (4), all of the phages
are closely related to each other with 100% gene content similarity, except for Arby,
which shares 25 out of 26 Phams with our other 7 phages. Differences in the nucleotide
sequences were also noted in the tape measure gene. All the genes in the genome are
transcribed in the forward direction, except gene product 21, a helix-turn-helix (HTH)
DNA-binding gene which is transcribed in the reserve direction (leftward). All genomes
contain the typical structural and assembly genes, including the terminase, portal,
capsid and protease fusion, tape measure, and major and minor tail proteins. Next, the
lysis cassette contains 2 lysin genes, each with separate peptidase and amidase
domains, followed by 4 genes encoding HTH DNA-binding motifs and an HNH endo-
nuclease. The HTH gene GP23 N-terminal portion predicts strong coding potential and
encodes the HTH domain (12). The GP23 C-terminal portion predicts very low coding
potential with similarity to Vibrio cholerae O1 (12, 17). The poor-coding-potential region
contains a series of inverted and direct repeats that are highly conserved, more than
the HTH region, as well as an AT-rich region.

Data availability. GenBank accession numbers are provided in Table 1.
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