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Abstract 

Purpose:  This study aimed to investigate the impact of a deep learning (DL)-based 
denoising method on the image quality and lesion detectability of 18F-FDG positron 
emission tomography (PET) images.

Methods:  Fifty-two oncological patients undergoing an 18F-FDG PET/CT imaging with 
an acquisition of 180 s per bed position were retrospectively included. The list-mode 
data were rebinned into four datasets: 100% (reference), 75%, 50%, and 33.3% of the 
total counts, and then reconstructed by OSEM algorithm and post-processed with 
the DL and Gaussian filter (GS). The image quality was assessed using a 5-point Likert 
scale, and FDG-avid lesions were counted to measure lesion detectability. Standardized 
uptake values (SUVs) in livers and lesions, liver signal-to-noise ratio (SNR) and target-to-
background ratio (TBR) values were compared between the methods. Subgroup analy-
ses compared TBRs after categorizing lesions based on parameters like lesion diameter, 
uptake or patient habitus.

Results:  The DL method showed superior performance regarding image noise and 
inferior performance regarding lesion contrast in the qualitative assessment. More than 
96.8% of the lesions were successfully identified in DL images. Excellent agreements on 
SUV in livers and lesions were found. The DL method significantly improved the liver 
SNR for count reduction down to 33.3% (p < 0.001). Lesion TBR was not significantly 
different between DL and reference images of the 75% dataset; furthermore, there was 
no significant difference either for lesions of > 10 mm or lesions in BMIs of > 25. For the 
50% dataset, there was no significant difference between DL and reference images for 
TBR of lesion with > 15 mm or higher uptake than liver.

Conclusions:  The developed DL method improved both liver SNR and lesion TBR 
indicating better image quality and lesion conspicuousness compared to GS method. 
Compared with the reference, it showed non-inferior image quality with reduced 
counts by 25–50% under various conditions.

Keywords:  Positron emission tomography and computed tomography (PET/CT), 
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Introduction
Positron emission tomography and computed tomography (PET/CT) is a non-invasive 
imaging modality widely used in oncology, providing both anatomical and functional 
information. In oncology, PET/CT is a powerful tool for diagnosis, cancer staging and 
re-staging, radiation therapy planning, prognosis, and treatment‐response monitoring 
[1–5].

To provide diagnostic PET images with sufficient image quality, a certain activ-
ity administered to the patient combined with an adequate acquisition time is rec-
ommended in the guideline for oncological 18F-FDG PET imaging [1]. As radiation 
exposure is always a concern for both patients and operators, especially in radiation-sen-
sitive populations [6]. In addition, the reduction on the administered activity is expected 
in the clinical management on the patients including those who need multiple PET 
examinations to monitor the therapy response [7–9]. Over the years, with the advent of 
advanced PET/CT scanners and image reconstruction algorithms such as time of flight 
(TOF), activity reduction is possible in pre-clinical studies and clinical practice [10–12]. 
However, the reduced injected activity/acquisition time always causes increased noise, 
lower signal-to-noise ratio (SNR), and potentially unnecessary artefacts in PET images.

Many post-processing techniques have been employed to reduce PET image noise, 
such as Gaussian filtering, Metz filtering [13], wavelet transform [14, 15], non-local mean 
[16, 17] and BM3D [18]. In general, the noise distribution is modelled in either the trans-
form domain or the spatial domain, and a dedicated filter or a chain of well-designed fil-
ters are used to remove the noise. The mathematics behind these conventional methods 
are explicit, and only a few parameters are involved in the whole process. Thus, these 
methods are of limited performance in compromising the image noise and lesion detect-
ability. Recently, deep learning methods have achieved great successes in image recog-
nition, segmentation, registration, super-resolution, and image de-noising [19–22]. So 
far, three commercialized deep learning-based algorithms, designed to reduce the noise 
in PET images, have been approved by the U.S. Food and Drug Administration (FDA). 
They are SubtlePET (Subtle Medical), AiCE DLR (Canon Medical Systems Corporation), 
and HYPER DLR (United Imaging Healthcare).

HYPER DLR has been implemented in more than 10 sites worldwide where various 
clinical demands emerged according to their specific situations. Undoubtedly, a reduced 
injected activity is of great importance to reduce the radiation exposure to improve the 
patient care. On the other hand, due to the limited number of PET/CT scanners per 
unit population in China and other developing countries, the patient’s throughput of the 
department was large. Thus, a reduced PET acquisition time is expected to reduce the 
work burden while maintaining an acceptable image quality. In addition, the algorithm 
has also been used on the mobile PET/CT scanners whose working time for a certain 
place was critical. Previous studies have been conducted to evaluate the image quality 
and lesion detectability of commercialized deep learning algorithms with clinical cases 
[23, 24]. In this study, the nuclear medicine physicians identified all the suspected lesions 
as in the clinical practice Furthermore, a detailed analysis on the lesion and patient char-
acteristics, including the patient body mass index (BMI), lesion size and uptake, was per-
formed to comprehensively investigate the performance of the proposed deep learning 
method. This study aimed to investigate both the image quality and lesion detectability 
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of HYPER DLR with standard and reduced administered activity in comparison to the 
Gaussian filter in ordered subset expectation maximization (OSEM) approach. Moreo-
ver, several subgroup analyses based on different categories were performed to investi-
gate the performance and limitation of its application in the oncological studies.

Methods
Network structure

The network used in HYPER DLR is based on the UNet architecture, and adopts the 
techniques of residual connection and dense connection used in the ResNet [25] and the 
DenseNet [26]. The structure of the proposed network is shown in Fig. 1. The top layer 
of the network is a long residual connection from the input to the output, which allows 
the network to learn the residual, i.e. the noise component, between the target image 
and the input image and accelerates the convergence of the deep network. From top to 
bottom, the upper layer has a larger dimension and higher resolution, and a dense con-
nection is used to reduce the loss of the information. By contrast, a sparse connection 
is adopted in the lower layer. The network uses a large number of residual blocks which 
can solve the problem of gradient disappearance while improving the performance and 
ensuring the convergence of the deep network.

Network training and validation

In this network, a total number of 313 studies were used for training and another 80 
studies were used for validation. The data were obtained from 4 sites where the PET/
CT scanners manufactured by UIH have been installed. The patient age ranged from 18 

Fig. 1  Network architecture of HYPER DLR. relu: An activation function defined as the positive part of its 
argument: f(x) = max(0,x), where x is the input to a neuron. conv: Convolution is the most basic operation 
in convolutional neural networks. The input image is convolved with the network to extract features in the 
image. bn: A technique for improving speed, performance, and stability of the artificial neural network. 
It is used to normalize the input layer by adjusting and scaling the activations. dropout: A regularization 
technique for reducing overfitting in neural networks by preventing complex co-adaptations on training 
data. skip connection: A technique to help solve the problem of vanishing gradients, allowing faster training. 
It builds shortcuts to jump over some layers
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to 90 years, with a median of 55 years. The injected dose was 3.1–4.3 MBq/kg, while the 
acquisition time was 90–180 s/bed for the body part. The retrospective PET reconstruc-
tion with 50% acquisition time was used as a training input, i.e. high-noise PET images. 
The retrospective reconstruction with full acquisition time as the training target, i.e. 
low-noise PET image. Longer acquisition time results in better training target images, 
and may further improve the performance of the network. All images were recon-
structed with OP-OSEM algorithm incorporating TOFand point spread function (PSF). 
The iteration number and the subsets were fixed at 2 and 20, respectively. The voxel size 
of the training image was 2.34 × 2.34 × 2.68 mm. In order to further improve the robust-
ness of the network and reduce the effect of overfitting, data augmentation techniques 
such as horizontal and vertical flips were also used. All training images were resampled 
such that the images had the same size and resolution. The image intensity was normal-
ized within the range [0, 1]. A 2.5D processing was done for the normalized PET images. 
That is, five slices of the input images correspond to one slice of the target image. More 
specifically, the network uses the image patches with a dimension of 64 × 64 × 5 as the 
training input and the image patches with a dimension of 64 × 64 × 1 as the training tar-
get. During the training process, L1 Loss function was adopted. The model was trained 
with the Adaptive Moment Estimation (ADAM) optimizer. The initial learning rate was 
set to 10–4 and then halved after 20 epochs. The batch size used to train the network 
was set to 32, and the total number of epochs to train the network was set to 200. Our 
network was implemented in the PyTorch framework and Python 3.7. The testing was 
performed on a computer with one Quadra P5000 GPU. The CUDA library was 8.0 and 
cuDNN version was 7.0.5.

Patients

The study included 52 consecutive patients (female/male: 19/33, age: 24–87 years) with 
known or suspected malignancies who were referred to the Shanghai General Hospital 
from 3 to 19 November 2020 for clinical 18F-FDG PET/CT examinations. Their demo-
graphic and clinical data are listed in Table 1. All patients had fasted for at least 6 h prior 
to the PET/CT scans and a blood glucose level of ≤ 10 mmol/mL was confirmed by fin-
ger-prick sampling. A weight-based 18F-FDG dose (259 ± 48 MBq, range: 188–407 MBq) 
was administered as an intravenous bolus to the patient. Patients were instructed to stay 
in a warm environment and drink 0.5–1.0 L water during the uptake. The uptake time 
was 66 ± 12 min (range: 45–97 min). This retrospective study was approved by the Insti-
tutional Review Board of Shanghai General Hospital, and the need for written informed 
consent was waived.

PET/CT imaging

Images were acquired on a digital PET/CT scanner (uMI 780, United Imaging Health-
care, China), configured with a 30-cm axial field of view. A CT scan was performed 
prior to PET imaging for attenuation correction and anatomical localization with a 
fixed tube voltage of 120 kV and an auto-mAs technique for dose modulation. Subse-
quently, a whole-body PET scan was performed from the skull to the mid-thigh. Data 
were acquired in a 3D list-mode with 180-s acquisition for each bed position and auto-
adjusted overlap (25–50%).
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PET raw data were reconstructed with four different acquisition durations (180, 
135, 90, and 60 s) by rebinning the list-mode data to simulate reduced injected activ-
ity. Two post-processing methods, Gaussian filter with full width at half maximum 
of 3  mm and HYPER DLR, were applied to each dataset. For each patient, eight 
series of images were generated, referred to as GS_180, GS_135, GS_90, GS_60, 
DLR_180, DLR_135, DLR_90, and DLR_60 groups. For the OSEM algorithm, recon-
struction was performed with two iterations, 20 subsets, 192 × 192 matrix, 600 field 
of view, as well as TOF and PSF. For HYPER DLR, a body model was selected for the 
whole-body reconstruction instead of the Gaussian filter, while all other reconstruc-
tion parameters in the OSEM algorithm remained the same as those in the above-
mentioned GS method. All PET reconstructions included standard corrections like 
decay, scatter, random, dead time, attenuation, and normalization.

Table 1  Patient demographic characteristics

BMI, body mass index
a Data are presented as the mean ± standard deviation [minimum, maximum]
b Number of patients

Parameter Value

Age (years) 62.7 ± 14.0 [24, 87]a

Weight (kg) 65.6 ± 11.8 [46, 110]a

Height (cm) 165.00 ± 8.79 [150, 184]a

BMI 23.9 ± 3.3 [16.3, 32.5]a

Injected activity (MBq) 259 ± 48 [188, 407]a

Uptake time (min) 66 ± 12 [45, 97]a

Primary cancer type

Leukaemia 1b

Nasopharyngeal cancer 2b

Gallbladder cancer 2b

Multiple myeloma 1b

Lung cancer 8b

Liver cancer 1b

Cervical cancer 3b

Laryngeal carcinoma 2b

Colon cancer 4b

Colorectal cancer 1b

Lymphoma 7b

Ovarian cancer 2b

Bladder cancer 2b

Renal cancer 2b

Adrenocortical carcinoma 1b

Oesophageal cancer 3b

Gastric cancer 1b

Pancreatic cancer 4b

Rectal cancer 2b

Endometrial cancer 3b
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Image analysis

Qualitative analysis

The PET image quality was assessed by two nuclear medicine physicians each with more 
than ten years of experience in interpreting PET/CT images. For each patient, the read-
ing order of the 8 series of PET images was randomized by an independent operator. 
In addition, the patient’s history, as well as the acquisition duration and reconstruction 
algorithm, were blinded to the reader. A 5-point Likert scale was used for the independ-
ent assessment of the image quality in two perspectives: lesion contrast and overall 
image noise. A score of 1 rated images with excessive noise and unfavourable lesion con-
trast. Images with sub-optimal noise and lesions with blurring leading to impaired diag-
nostic confidence were rated with a score of 2. A score of 3 was given if image noise and 
lesion contrast were substantially equivalent to those in routine oncological 18F-FDG 
PET/CT images. A score of 4 indicated preferred image noise and good lesion contrast 
with diagnostically irrelevant blurring, whereas images with optimal noise and clear 
lesion contrast were rated with a score of 5. Figure 2 shows reference images with dif-
ferent Likert scores. The image quality scores independently assessed by the two raters 
were documented for the inter-reader agreement test.

In addition, the number of 18F-FDG-avid lesions in each PET series was determined to 
assess the lesion detectability. The GS_180 group was used as a reference. If the result of 
the two physicians was not consistent, the result was determined in a consensus meeting 
held by a third physician experienced in nuclear medicine.

Semiquantitative analysis

Semiquantitative analyses were performed on a dedicated workstation (uWI, United 
Imaging Healthcare, China). A region of interest (ROI) with a diameter of 30 ± 3  mm 
was manually drawn at the same position and slice on a homogeneous area of the right 
liver lobe. The SUVmean, SUVmax, and standard deviation (SD) values of the liver for 
each series were recorded. The liver SNR, as a measure of image quality, was obtained by 
dividing the SUVmean by its SD. For identified FDG-avid lesions, SUVmax was recorded 
by drawing a ROI on the transverse slice with the maximum diameter. Furthermore, 
the target-to-background ratio (TBR) for each identified lesion, calculated by divid-
ing the lesion SUVmax by the liver SUVmax, was used as a measure of image contrast. 
The diameters of the lesions were measured on the CT images for further investigation. 
For any missed lesion that cannot be identified in the image interpretation, a small ROI 

Fig. 2  Illustration of the scores from 5 to 1 (from left to right) in two perspectives. Overall image noise (upper 
row). Lesion contrast (bottom row)
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with a diameter of around 10 mm was carefully drawn adjacent to the lesion to meas-
ure the background uptake. The tumour-to-surrounding-background ratio (TsBR) was 
additionally obtained by dividing the lesion SUVmax by the SUVmax of the surrounding 
background.

Statistical analysis

Continuous parameters are presented as the mean ± SD and range. Inter-reader agree-
ment was evaluated using Cohen’s kappa test. The subjective scores of the image qual-
ity were subsequently compared using the Wilcoxon signed-rank test. All parameters in 
the semiquantitative analysis were tested for normality using the Kolmogorov–Smirnov 
test. Bland–Altman plot analyses were performed to assess the agreement of the SUVs 
between the GS and DLR groups. Concordance correlation coefficient (CCC) and linear 
regression were used to quantify the agreement on SUVs between groups. Subsequently, 
the two-tailed paired samples t-test was performed to investigate the differences in liver 
SNR, SD, and lesion TBR between groups. Furthermore, subgroup analyses were per-
formed using the paired samples t-test to compare lesion TBRs between groups. Statisti-
cal significance was considered for a p-value less than 0.05, and all statistical tests were 
performed using SPSS Statistics, version 25 (IBM, Armonk, NY, USA) and Microsoft 
Excel.

Results
Qualitative image quality

The overall inter-reader agreement regarding lesion contrast and image noise showed 
kappa values of 0.705 and 0.913, indicating excellent agreement between the readers. 
The average scores of the two readers for each GS and DLR group are listed in Table 2. 
Images in all DLR groups showed significantly suppressed image contrast and reduced 
image noise compared to the reference GS_180 group (all p < 0.001). When compar-
ing GS and DLR images with the same acquisition time, DLR method yielded more 
smoothed images with less noise (p < 0.05, Figs.  3 and 4). Moreover, all images of the 
DLR_180 group were rated with a score of 5 by both physicians, demonstrating the 
superior performance of HYPER DLR in noise reduction.

A total number of 314 FDG-avid lesions were identified in the GS_180 group and 
used as a reference (Fig. 5). For the DLR groups, more than 96.8% of the lesions were 

Table 2  Qualitative image quality scores

Contrast Noise

GS_180 4.62 ± 0.53 3.81 ± 0.44

GS_135 4.64 ± 0.52 3.70 ± 0.50

GS_90 4.65 ± 0.52 3.28 ± 0.49

GS_60 4.38 ± 0.83 2.54 ± 0.54

DLR_180 4.28 ± 0.65 5.00 ± 0.00

DLR_135 4.26 ± 0.70 4.97 ± 0.17

DLR_90 4.13 ± 0.66 4.77 ± 0.45

DLR_60 4.00 ± 0.19 4.13 ± 0.41
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successfully identified. The DLR_180 and DLR_135 groups had the best performances 
where only two 18F-FDG-avid lesions were missed. Both lesions were overlooked due to 
an uptake similar to that of the surrounding tissue, with a low TsBR value ranging from 
1.09 to 1.18. In the DLR_90 group, additional two lesions were not detected by the read-
ers. The DLR_60 group showed the worst performance among the 8 groups regarding 
lesion detection with 10 missed lesions. All missed lesions had a diameter of less than 
10 mm. However, the missed lesions had no impact on the cancer staging. In subsequent 
analyses at the location of the missed lesions, we found that all lesions were metastases, 
including metastatic lymph nodes and bone and liver metastases. Moreover, all missed 
lesions had uptake values similar to those of the surrounding tissues. The signals of these 
metastases were also suppressed although the image noise of the surrounding tissue was 
reduced.

Fig. 3  Transverse images of the liver metastasis of an 80-year-old male patient with renal cancer. The upper 
and bottom row were reconstructed with GS and HYPER DLR approach, respectively. The acquisition time is 
180, 135, 90, and 60 s (left to right). The bottom row shows the superior performance in noise reduction

Fig. 4  Transverse images showing lymph node metastasis of a 61-year-old female patient with colorectal 
cancer. The upper and bottom row were reconstructed with GS and HYPER DLR algorithm, respectively. The 
acquisition time is 180, 135, 90, and 60 s (left to right). The bottom row indicates a performance equivalent to 
the one in the upper row regarding lesion detection with decreased image noise in the surrounding tissue
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Semiquantitative image quality

The liver SUVmean between groups agreed well as shown in Bland–Altman plots 
(Fig. 6). The CCCs of the liver SUVmean were all larger than 98.7% for the DLR groups 
compared to the GS groups, as shown in Table 3, demonstrating very strong agreement 
between the DLR and GS groups (Fig. 7). Because the HYPER DLR algorithm was able to 
suppress image noise, the liver SNR in the DLR groups was significantly higher than that 
in the reference GS_180 group. In this study, even the DLR_60 group showed a signifi-
cantly higher SNR value than the reference GS_180 group (Fig. 8).

The equivalent tests comparing lesion SUVmax between GS and DLR groups are 
presented in Table  3. The CCCs of the lesion SUVmax demonstrated a very strong 

Fig. 5  Characteristics of the identified lesions (n = 314). Left: Diameters of the lesions measured in computed 
tomography images. Right: SUVmax of the lesions measured in the reference GS_180 PET images. SUV, 
standardized uptake value

Fig. 6  Bland–Altman plots of liver SUVmean between GS and DLR groups. Subfigures a-d demonstrate the 
agreement of liver SUVmean between GS and DLR images with the same acquisition durations. Subfigures 
a, e, f and g demonstrate the agreement of liver SUVmean between DLR groups and the reference GS_180 
group. The above plots show minimal differences in liver SUV between groups. SUV, standardized uptake 
value
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agreement between the GS and DLR groups with all values higher than 97.7% (Table 3 
and Fig. 9). The DLR groups also showed a better performance in the TBR compared 
to the corresponding GS group with the same acquisition time (Fig. 10). There was no 
significant difference between the TBR values of the DLR_135 group and the reference 
GS_180 group (p = 0.713), demonstrating its improvement on lesion contrast with lower 
counts. Both DLR_90 and DLR_60 groups showed a significantly lower TBR value than 
the reference (Fig. 10).

Subgroup analyses

Subsequently, a subgroup analysis was performed with different parameters. To inves-
tigate the performance of HYPER DLR regarding image contrast, a subgroup analysis 
was performed by dividing the lesions into two groups based on the lesion diameter 
measured on diagnostic CT images: a small lesion group with diameters of less than 

Table 3  Differences in SUV of liver and lesion tissues

CCC, concordance correlation coefficient; SUV, standardized uptake value

Parameter Comparison group A–B Pearson coefficient R2 CCC​

Liver SUVmean GS_180-DLR_180 0.998 0.997

GS_180-DLR_135 0.991 0.993

GS_180-DLR_90 0.990 0.990

GS_180-DLR_60 0.996 0.987

GS_135-DLR_135 0.988 0.995

GS_90-DLR_90 0.981 0.994

GS_60-DLR_60 0.979 0.997

Lesion SUVmax GS_180-DLR_180 0.994 0.991

GS_180-DLR_135 0.991 0.989

GS_180-DLR_90 0.984 0.985

GS_180-DLR_60 0.975 0.977

GS_135-DLR_135 0.993 0.989

GS_90-DLR_90 0.990 0.985

GS_60-DLR_60 0.986 0.978

Fig. 7  Linear regression of liver SUVmax between GS and DLR groups. Subfigures a-d show the results 
between GS and DLR images with the same acquisition time. Subfigures a, e, f and g indicate a strong 
relationship between DLR groups and the reference GS_180 group. The above results demonstrate the good 
agreement of SUV between the groups. SUV, standardized uptake value
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15 mm and a large lesion group with diameters of at least 15 mm [27]. In the small 
lesion group (n = 196), the TBR was not significantly different between the DLR_180 
group and the reference GS_180 group (p = 0.051) whereas the TBR values in other 
DLR groups were significantly lower than that in the reference GS_180 group (all 
p < 0.001). In the large lesion group (n = 118), the TBR values in the DLR_180 and 
DLR_135 groups were significantly improved compared to that in the reference 
GS_180 group (p < 0.001 and p = 0.028, respectively), and there was no significant dif-
ference between the DLR_90 group and the reference group (p = 0.19). This indicates 
that for these relatively larger lesions, the HYPER DLR algorithm has a better contrast 
enhancement.

Fig. 8  Comparison of the liver SNR between DLR groups and the referenceGS_180 group. All DLR groups 
show a significantly improved liver SNR compared to the reference group, indicating reduced image noise. 
***p < 0.001. SNR, signal-to-noise ratio

Fig. 9  Linear regression of lesion SUVmax between GS and DLR groups. Subfigures a–d show the results 
between GS and DLR images with the same acquisition time. Subfigures a, e, f and g indicate a strong 
relationship between DLR groups and the reference GS_180 group. The above results demonstrate the good 
agreement of SUV between the groups. SUV, standardized uptake value
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In addition, we further divided the lesions using another threshold since all missed 
lesions had a diameter of less than 10 mm: a small lesion group with a diameter below 
10  mm and a large lesion group with a diameter of 10  mm or above. In the small 
lesion group (n = 112), the TBR values of all DLR groups were significantly lower than 
that of the reference GS_180 group (all p < 0.001). However, in the large lesion group 
(n = 202), there was no significant difference in TBR between the DLR_135 group and 
the reference GS_180 group.

In a subsequent subgroup analysis, the lesions were divided based on whether their 
mean uptake value was lower than the liver uptake in the reference group. Group 
G1 comprised lesions whose uptake values were lower than the liver uptake values 
whereas all other lesions were classified as Group G2. Group G1 (n = 37) revealed a 
limitation of the HYPER DLR algorithm for lesions with lower uptake because the 
TBR values in all DLR groups were significantly lower than that in the reference 
GS_180 group (all p < 0.001). In Group G2 (n = 277), there was no significant differ-
ence between the DLR_135 group and the reference GS_180 group (p = 0.208).

Finally, a subgroup analysis was performed based on patient habitus. The image 
quality of overweight or obese patients is decreased according to a previous study 
[28]. In our subgroup analysis, the enrolled patients were according to WHO crite-
ria divided into a Group B1 with a body mass index (BMI) of less than 25 kg/m2 and 
a Group B2 with a BMI of at least 25  kg/m2. In Group B1 with a total number of 
220 lesions, the DLR groups showed a significant improvement in TBR compared to 
the corresponding GS groups with the same acquisition time. However, there was no 
significant difference between the DLR_135 group and the reference GS_180 group 
(p = 0.501). In Group B2 with a total number of 94 lesions, there was no significant 
difference between the reference GS_180 group and the DLR_180, DLR_135, and 
DLR_90 groups (p = 0.094, 0.685, and 0.098, respectively). These findings suggest 
that the HYPER DLR algorithm has the capability of improving the lesion contrast in 
images of inferior quality.

Fig. 10  Comparison of the lesion TBR between GS and DLR groups. Left: The HYPER DLR algorithm can 
improve the lesion contrast significantly compared to that achieved by GS approach with the same 
acquisition duration. Right: Compared with the reference GS_180 group, the DLR_135 group shows no 
significant difference in TBR, indicating a similar lesion contrast. **p < 0.01; ***p < 0.001; ns, no significant 
difference. TBR, target-to-background ratio
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Discussion
Deep learning-based denoising algorithms provide an effective solution for maintain-
ing image quality with shortened acquisition time or reduced injected activity. Stud-
ies have been performed to evaluate the performance of deep learning-based methods 
either approved by authority organization that can be implemented in clinical use [23, 
24] or still within the research field at different noise levels [29–34]. The performance of 
the algorithms depends on the network structure, the training strategy and the training 
dataset. In a recent real-world low-dose PET study on a deep learning-based denoising 
technique, the patients were injected with a reduction of 18F-FDG by 33%, and it dem-
onstrated the non-inferiority of AI processed image quality and lesion detectability com-
pared with the standard method [23]. Moreover, this study included an assessment of a 
business case. In another study with a deep learning enhancement (DLE) model, images 
reconstructed with block sequential regularised expectation maximisation (BSREM) was 
used as the target images during the training. This study compared the results of DLE 
methods for different acquisition time with the full-duration BSREM method and found 
the models may allow a reduction in acquisition time/injected activity by 50% [34]. Our 
study lacked such a business case assessment, and used the standard OSEM images dur-
ing the network training. However, subgroup analyses on the lesion detectability and 
the characteristics of the enrolled patients, lesions (size and uptake) were performed to 
comprehensively evaluate the performance and limitation of the HYPER DLR method. 
In our study, the enrolled patients were from an independent site and presented various 
conditions regarding age, weight, height, and cancer type to provide a heterogeneous 
sample reflecting common clinical practice. Short-duration datasets were reconstructed 
with the OSEM and the proposed HYPER DLR method, of which the image quality and 
lesion detectability were compared. In our clinical evaluation, the HYPER DLR method 
had a superior capability for noise reduction compared to the GS method from both 
subjective and semiquantitative perspectives. Moreover, it can improve the image qual-
ity with a shorter acquisition time, indicating its potential in studies with lower admin-
istered activity. According to our study results, the administered activity can be reduced 
by 25% without compromising quantitative SUV and TBR values compared to the stand-
ard dose.

In addition, the HYPER DLR algorithm can provide better performance in patients 
with higher BMI. It is well-known that the PET image quality deteriorates with increas-
ing patient weight for linear weight-based 18F-FDG dose regimens [26]. However, our 
study demonstrates that the administered activity in overweight and obese patients can 
even be reduced by 50% without compromising image quality as compared to the stand-
ard FDG administration. This will be helpful in reducing the total activity administered 
to overweight and obese patients and will reduce radiation exposure-induced risks for 
patients and operators [35, 36].

In oncology, lesion detectability is important in the early diagnosis and staging of 
patients. Early detection of lesions can lead to a positive patient prognosis, so the ability 
to detect small, low-intensity/uptake lesions is of high importance and was evaluated in 
the study. HYPER DLR was able to maintain a lesion detectability over 98.6% even if the 
acquisition time was reduced by 66.7% of that during standard acquisition. If the acquisi-
tion time was only reduced by 25%, the lesion detectability can be up to 99.4%, with only 
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two lesions missed in our study. These two lesions were adjacent to the aorta and the 
scalp, respectively, where the physiological uptake of the surrounding tissues was rela-
tively high. After checking the uptake of the missed lesions, the maximum SUVmax was 
up to 3.64, measured in a liver metastasis of a 74-year-old female with gallbladder car-
cinoma (Additional file 1: Fig. S1). In both DLR_90 and DLR_60 images, this metastasis 
was overlooked due to high image noise and respiratory motion artefacts. Moreover, the 
liver was found to have a relatively high uptake which may also have impacted the iden-
tification of this metastasis. Similarly, all missed lesions had uptake values approximately 
comparable with those of the surrounding tissues, with TsBR values from 1.004 to 1.595. 
We further investigated the lesion with the maximum TsBR value and found it to be a 
pelvic metastatic lymph node adjacent to the intestinal tract (Additional file 2: Fig. S2). 
It was challenging to distinguish this small lesion with a diameter of 6.1 mm from the 
physiological uptake observed in the adjacent intestinal tract. The missed lesions had 
an average diameter of 8.6 ± 1.3 mm (range: 6.1–10.0 mm). According to our subgroup 
analysis, TBR values, as a measure of contrast, of small lesions with a diameter of less 
than 10  mm were suboptimal compared to those in GS groups. This may impede the 
lesion identification in HYPER DLR PET images.

The subjective assessment of the image quality performed by nuclear medicine physi-
cians demonstrated the superior noise reduction performance of the HYPER DLR algo-
rithm. Even if the acquisition time was reduced by 66.7% in the HYPER DLR group, the 
performance of this group regarding image noise was superior to that of the reference 
GS_180 group. The noise reduction in PET images can help physicians better interpret 
PET/CT images where false-positive uptakes were reduced. However, regarding lesion 
contrast, the subjective assessment showed a better performance of the GS method 
compared to the HYPER DLR algorithm which was not consistent with the later semi-
quantitative analysis in this study. This bias may mainly be due to the long-term experi-
ence in using the GS method. The subjective assessment might improve when physicians 
get used to the assessment of HYPER DLR images.

Deep learning methodologies, although achieved superior performance against con-
ventional methods, still have room to improve. Firstly, the network architecture should 
be re-designed. For example, using a fully 3D architecture instead of 2.5D or incorpo-
rating the attention mechanism into the network. Secondly, a large and high quality 
training dataset is helpful. To train a stable and reliable network, the training dataset is 
expected to cover a large population with a variety of age, sex, weight, races, types of dis-
eases, and covers typical clinical scenarios such as acquisition time and injected activity. 
Moreover, the learning target is expected to have the lowest image noise and the highest 
image contrast. To achieve this goal, the acquisition time should be long enough to col-
lect adequate counts. It is very hard for the conventional PET/CT scanners because of 
their limited sensitivity. Benefits from its ultra-high sensitivity, total-body or long axial 
field-of-view (LAFOV) PET/CT scanners such as uEXPLORER [37], PennPET [38] and 
Biograph Vision Quadra [39] have demonstrated extraordinary image quality than con-
ventional PET/CT scanners. So if the training data are from the total-body or LAFOV 
PET/CT scanners, the network performance may be greatly improved. Thirdly, the 
denoising step could be integrated into the iterative reconstruction algorithm, not just 
work after the image reconstruction. Contrast loss is inevitable when post-processing 
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the high noise images. This is because the small lesions are almost overwhelmed by 
the background noise. The signal features extracted by the network are too weak to be 
differed from the noise. To tackle this problem, combination of iterative reconstruc-
tion algorithm and neural networks has been actively studied [39–42]. This may inspire 
the development of deep learning methodologies with both reduced image noise and 
improved image contrast.

This study has several limitations. It was a single-centre study with limited retrospec-
tive data from one PET/CT system. Further studies on a larger number of patients in a 
clinical setting using different PET/CT systems may be required. The cohort of over-
weight and obese patients enrolled in this study was small, which may introduce bias 
into quantitative analyses for this group of our study population. Detectability of small 
lesions is affected by many factors, e.g. lesion size, uptake, shape, location, respiratory 
motion, and, most importantly, the acquisition time. The analysis of statistical fluctua-
tions of reduced acquisition time in small lesion measurements is necessary, but it is 
beyond the scope of this study. This study used shorted acquisition time to simulate 
the scenario of reduced activity, and future study can be performed with a real-world 
reduced injected activity to validate our findings. Up to now, HYPER DLR method has 
only been trained with 18F-FDG PET images, and thus can only be applied to 18F-FDG 
PET applications. However, PET imaging with other tracers, such as prostate specific 
membrane antigen (PSMA) and Fibroblast activation protein inhibitor (FAPI), is becom-
ing more widely used. The HYPER DLR can be applied in other tracers if the network is 
trained in the future.

Conclusion
In PET/CT oncological images used in this study, the developed deep learning algorithm 
HYPER DLR showed improvements in image quality compared to that post-processed 
by Gaussian filter. HYPER DLR reconstruction yielded improved results in liver SNR 
even if the acquisition duration was shortened to 33.3% of that in the reference group, 
indicating the superior noise reduction of this approach. In addition, HYPER DLR can 
generate images with uncompromised lesion contrast with an acquisition duration 
shortened by 25–50%. Thus, it offers potential applications in PET imaging with reduc-
tions in required FDG activity or acquisition time.
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Additional file 1. Fig. S1: Liver metastasis of a 74-year-old female with gallbladder carcinoma. The lesion (red arrow) 
was identified in the reference OSEM_180 images with a measured SUVmax of 3.64 (left) but missed in the DLR_90 
and DLR_60 images due to the high image noise and respiratory motion artefacts. SUV, standardized uptake value.

Additional file 2. Fig. S2: The lesion with the maximum TsBR value among all missed lesions was found to be a 
pelvic metastatic lymph node of a 66-year-old male with bladder cancer. It was challenging to distinguish the lesion 
with a diameter of 6.1 mm from the physiological uptake observed in the intestinal tract (line intersection, right). 
TsBR, tumour-to-surrounding-background ratio.
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