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SUMMARY

During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous 

subsets that together provide immediate and durable protection. To elucidate the dynamic 

transcriptional changes that underlie this process, we applied a single-cell RNA sequencing 

approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a 

viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that 

had undergone their first division and identified previously unknown molecular determinants 

controlling CD8+ T lymphocyte fate specification. These findings suggest a model of terminal 

effector cell differentiation initiated by an early burst of transcriptional activity and subsequently 

refined by epigenetic silencing of transcripts associated with memory lymphocytes, highlighting 

the power and necessity of single-cell approaches.

INTRODUCTION

Heterogeneity of cell fate is a hallmark of T lymphocyte responses to microbial infection. 

During an immune response to a microbial infection, responding naïve T lymphocytes give 
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rise to terminal effector cells that mediate acute host defense and self-renewing memory 

cells that provide long-lived protection. Terminally differentiated effector T cells are 

characterized by high expression of the killer lectin-like receptor KLRG1 and low 

expression of the interleukin-7 receptor (IL-7R)1. Circulating memory T cells can be divided 

into two subsets, central memory T (TCM) cells and effector memory T (TEM) cells, 

distinguished by differences in their expression of homing and cytokine receptors such as L-

selectin (CD62L) and CCR7, proliferative capacity, and anatomical localization2. A third 

subset of memory cells, tissue-resident memory T cells (TRM), do not circulate, but instead 

remain in peripheral tissues after pathogen clearance3.

Transcriptional profiling approaches have greatly advanced our understanding of the 

molecular regulation of T lymphocyte fate specification4,5. By comparing the gene 

expression of CD8+ T lymphocytes during the course of microbial infections, these studies 

have identified many transcription factors and pathways that play a role in the specification 

of terminal differentiation versus long-lived memory (reviewed in 6). However, most prior 

studies have been conducted on bulk populations of cells, thereby masking potential 

heterogeneity among individual cells. We previously sought to address these limitations by 

applying single-cell qRT-PCR analyses to interrogate the gene expression patterns of single 

CD8+ T lymphocytes responding to bacterial infection in vivo7. Although we identified 

dynamic changes in gene expression in individual cells during differentiation, pre-selection 

of previously known genes for analysis precluded the discovery of novel genes and 

molecular pathways.

Single-cell RNA sequencing (scRNA-seq) has recently emerged as a powerful tool that has 

substantially advanced our understanding of diverse biologic processes, including 

development8, CD4+ TH17 cell pathogenicity9, and innate immune responses10. In the 

current study, we applied a scRNA-seq approach to analyze transcriptome-wide changes in 

individual CD8+ T cells as they differentiated in vivo. We observed remarkable 

transcriptional heterogeneity among lymphocytes that had undergone their first division, 

revealing two distinct subpopulations that were distinguished in their expression of hundreds 

of genes involved in diverse biological functions, including cell cycle regulation, 

metabolism, effector function, and fate specification. The expression of many transcription 

factors previously implicated in effector and memory cell differentiation, along with 

chromatin regulators, was markedly increased in cells differentiating along the terminal 

effector pathway and extinguished by the peak of the adaptive immune response. This initial 

transcriptional program was subsequently refined by selective epigenetic repression of 

molecular determinants associated with memory cell differentiation. By contrast, induction 

of the memory program appeared to be associated with more nuanced alterations in the 

expression levels of a few specific genes. Together, these findings provide unexpected new 

insights into the tightly coupled transcriptional and epigenetic mechanisms underlying CD8+ 

T lymphocyte fate specification and highlight the power and necessity of single-cell 

approaches.
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RESULTS

scRNA-seq of CD8+ T cells differentiating in vivo

To investigate transcriptional changes in individual CD8+ T lymphocytes responding to 

microbial infection in vivo11, P14 CD8+ T lymphocytes, which have transgenic expression 

of T cell antigen receptors (TCRs) that recognize an immunodominant epitope of 

lymphocytic choriomeningitis virus (LCMV), were adoptively transferred into congenic 

wild-type recipients one day prior to intraperitoneal (i.p.) infection with LCMV-Armstrong. 

On days 2, 4, and 7 of infection, activated P14 CD8+ T lymphocytes (CD44hi) were enriched 

from spleens of infected mice using a magnetic bead-based approach and sorted using flow 

cytometry. On day 42 of infection, TCM (CD44hiCD62Lhi) and TEM (CD44hiCD62Llo) cells 

were similarly isolated; naïve P14 CD8+ T cells (CD44loCD62Lhi) were also included in our 

analysis. For certain time points (days 2 and 4 post-infection), high numbers of P14 cells 

were adoptively transferred into recipient mice4,7,11 to enable isolation of sufficient numbers 

of cells for scRNA-seq analysis; high cell transfer can alter the magnitude and kinetics of the 

immune response12 and, therefore, represents a caveat of the study.

The C1 Single-Cell Auto Prep system (Fluidigm) was used to perform PCR amplification of 

full-length, polyadenylated transcripts13, followed by preparation and sequencing of single-

cell cDNA libraries (Fig. 1a). 10 to 20 million reads per cell were achieved (Supplementary 

Fig. 1a) with slight variations among populations, with 60–90% uniquely mapped reads 

(Supplementary Fig. 1b,c). At least two technical replicates for each cell population were 

performed on separate sequencing plates to ensure reproducibility and absence of batch 

effects (Supplementary Fig. 1d–f). After undertaking these quality control measures, we 

included 288 single-cell libraries divided into 224 unique sequencing samples and 32 pairs 

of duplicates for further in-depth analyses.

We detected over 6000 genes with a mean expression of at least 1 transcript per million 

reads (TPM) per cell. Assessment at the single-cell level of a subset of genes previously 

linked to CD8+ T cell differentiation with bulk population analyses suggested patterns of 

expression consistent with their previously assigned roles in this process. For instance, genes 

associated with effector cell differentiation and function, such as Batf, Id2, and Gzmb, were 

highly expressed in cells isolated at days 4 and 7 post-infection (Fig. 1b,c), time points at 

which terminally differentiated effector cells are known to predominate. Conversely, 

memory-associated genes such as Tcf7 and Il7r were highly expressed in TCM and TEM cells 

(Fig. 1b,c). These findings demonstrate that the expression of previously described effector- 

and memory-associated genes can be readily detected in the expected lymphocyte subsets 

using a single-cell approach.

Importantly, our single-cell analysis also revealed patterns of gene expression that were not 

previously discernable using bulk population analyses. For instance, heterogeneous 

expression of many genes including Tbx21, Gzmb, Id3, Il7r, Il2ra, Sell, Eomes, and Irf4 was 

observed among individual cells derived from the same time point that would otherwise have 

been interpreted as identical by bulk population analyses (Fig. 1b,c). Thus, single-cell 

transcriptomic analyses capture the remarkable heterogeneity in gene expression exhibited 
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by individual CD8+ T lymphocytes throughout their differentiation in response to microbial 

infection.

Molecular heterogeneity among Division 1 CD8+ T cells

We performed unsupervised t-distributed Stochastic Neighborhood Embedding (tSNE) 

clustering analysis to visualize individual CD8+ T lymphocytes isolated at all time points in 

an unbiased manner (Fig. 2a). In tSNE analysis, naïve cells (gray), TCM cells (purple), and 

TEM cells (green) each formed distinct clusters (Fig. 2a), suggestive of unique molecular 

homogeneity within each population (Supplementary Table 1). Similarly, most Day 4 

(orange) and Day 7 (yellow) cells formed their own separate clusters; however, a few cells 

from each time point grouped near the naïve and TCM populations. Strikingly, unsupervised 

tSNE analysis revealed two distinct subpopulations among single CD8+ T lymphocytes that 

had undergone their first cell division (red, Division 1) (Fig. 2a). Importantly, it should be 

emphasized that Division 1 cells were isolated on the basis of CFSE dilution (2nd CFSE 

peak) and not phenotypic cell surface marker expression, other than high expression of the 

activation marker CD44 to ensure that all sorted cells had been activated in vivo. One 

subpopulation of Division 1 cells (Fig. 2a inset, red cells) appeared to be most similar to Day 

4 and Day 7 effector CD8+ T lymphocytes, whereas the other subpopulation of Division 1 

cells (Fig. 2a inset, blue cells) appeared to be most similar to TCM and naïve cells (Fig. 2a). 

The two Division 1 subpopulations were provisionally designated Div1TE and Div1MEM 

(Fig. 2a inset) on the basis of their similarities with terminal effector and memory cell 

populations, respectively.

Differential gene expression analysis revealed that 930 genes distinguished Div1TE and 

Div1MEM cells, with 903 more highly expressed in Div1TE cells and 27 more highly 

expressed in Div1MEM cells (Fig. 2b and Supplementary Table 2). Gene ontology analysis 

revealed that genes upregulated by Div1TE cells were enriched for diverse molecular and 

cellular processes involving transcription, protein transport, ribosome biogenesis, cell 

division, and mRNA processing, among others (Supplementary Table 3). Moreover, Div1TE 

cells expressed higher levels of transcription factors, cytokine receptors, and signaling 

molecules previously associated with terminal effector cell differentiation and metabolic 

reprogramming6 (Fig. 2c).

By contrast, Div1MEM cells expressed higher levels of several factors that have been 

previously associated with memory lymphocytes6 including Il7r, S1pr1, and Klf2 (Fig. 2d), 

in addition to previously unappreciated molecules such as the anti-proliferative gene Btg114 

(Supplementary Table 2). Notably, however, the majority of transcription factors associated 

with memory lymphocytes were either expressed at comparable levels (Lef1, Bach215, and 

Tcf7) by Div1TE and Div1MEM cells (Fig. 2e), or at higher levels (Eomes, Id3, and Foxo1) 

by Div1TE cells (Fig. 2c). Taken together, these data demonstrate that CD8+ T lymphocytes 

that have undergone their first cell division exhibit marked transcriptional heterogeneity that 

was not previously discernible7, with the vast majority of differentially expressed genes 

upregulated by Div1TE cells, including many transcripts previously associated with memory 

lymphocytes.
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Identifying cells in intermediate stages of differentiation

The observation that two distinct subpopulations of cells that had undergone their first 

division in vivo could be discerned by virtue of disparate gene expression patterns suggested 

that these two subpopulations might represent cells that had already begun to diverge in fate. 

We sought to determine whether we could systematically predict the identity of cells in 

subsequent, intermediate stages of differentiation. We hypothesized that using two distinct 

supervised classifiers, one trained on the two Division 1 subpopulations (‘early state’ 

classifier, Fig. 3a,b) and the other trained on bona fide memory (TCM and TEM) and terminal 

effector cell populations (‘fate’ classifier, Fig. 3c,d), would enable us to identify cells in 

intermediate states of differentiation as they progressed towards a terminally differentiated 

versus long-lived memory fate.

Using both early state and fate classifiers, we then developed a ‘future-past’ computational 

approach to independently predict the identity of cells in intermediate states of 

differentiation (Fig. 3e). The early state classifier, trained on Division 1 cells, was deployed 

into the ‘future’ on Day 4 cells at intermediate states of differentiation, whereas the fate 

classifier, trained on Day 7 effector cells and Day 40 memory cells, was deployed into the 

‘past’ to analyze the same Day 4 cells. Remarkably, the early state and fate classifiers agreed 

on the identity of intermediate cells (Fig. 3f), yet used largely non-overlapping sets of genes 

to predict pre-terminal effector or pre-memory cell states (Supplementary Tables 4 and 5). 

Thus, intermediate states of differentiation can be readily predicted using supervised binary 

classifiers trained on the preceding or subsequent states.

Identifying regulators of CD8+ T cell differentiation

We next sought to identify previously unknown regulators of CD8+ T cell differentiation by 

searching for commonality between the set of genes differentially expressed between 

Div1TE and Div1MEM cells and that between terminal effector and memory cells. From the 

sets of 930 genes differentially expressed between Div1TE and Div1MEM cells 

(Supplementary Table 2) and 834 genes differentially expressed between terminal effector 

and memory cells (Supplementary Table 6), only 115 genes were shared (Fig. 4a,b). We next 

selected genes common only to Div1TE and effector cells or common only to Div1MEM and 

memory cells to identify genes encoding regulators of terminal effector or memory cell 

differentiation, respectively.

This analysis yielded 89 putative regulators of CD8+ T cell fate specification 

(Supplementary Table 7). We visualized their temporal expression patterns by clustering 

single-cell expression of these genes across all time points (Fig. 4c). Because application of 

the ‘future-past’ binary classifiers enabled us to predict the identity of cells at intermediate 

time points, we were able to infer pathways of terminal effector or memory cell 

differentiation, based on gene expression of these putative regulators in Day 4 cells 

classified as being in either pre-memory or pre-effector states of differentiation (Fig. 4d and 

Supplementary Fig. 2). We observed that genes expressed in cells differentiating along the 

terminal effector pathway tended to exhibit a marked increase at the first division followed 

by a rapid decline (Fig. 4d), raising the possibility of epigenetic repression in differentiating 

effector cells. We selected Ezh2, a catalytic subunit of the Polycomb Repressive Complex 2 
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(PRC2) complex that mediates gene repression by mediating histone H3 trimethylation at 

lysine 27 (H3K27me3)16, for further analysis and functional validation, given prior studies 

suggesting a critical role in CD4+ T cell differentiation and function17,18,19.

Ezh2, along with genes encoding other PRC2 components Eed, Suz12, and Set, was highly 

expressed in Div1TE cells relative to Div1MEM cells (Fig. 5a), suggesting a role of Ezh2 in 

regulating terminal effector cell differentiation. Consistent with this finding, we observed 

that CD8+ T cells that had undergone their first division exhibited a bimodal pattern of Ezh2 

protein expression (Fig. 5b), with high and low levels in putative ‘pre-effector’ 

IL-2RαhiCD62Llo and ‘pre-memory’ IL-2RαloCD62Lhi cells (Fig. 5c), respectively7. 

Moreover, the kinetics of Ezh2 expression during differentiation at the protein level 

paralleled that at the mRNA level (Fig. 5d).

We next generated Ezh2fl/flCd4Cre P14 transgenic mice and adoptively transferred Ezh2-

deficient and control P14 CD45.1+ CD8+ T cells (Supplementary Fig. 3a) into wild-type 

CD45.2 recipient mice that were subsequently infected with LCMV-Armstrong. Compared 

to control cells, Ezh2-deficient CD8+ T cells were substantially reduced by days 5 and 7 

post-infection (Fig. 5e, Supplementary Fig. 3b) and exhibited an impaired capacity to secrete 

inflammatory cytokines (Fig. 5f,g). Importantly, the absence of effector cells was not due to 

the failure of Ezh2-deficient CD8+ T cells to undergo activation or proliferation 

(Supplementary Fig. 3c,d). However, Ezh2 deficiency was associated with increased 

apoptosis by day 5 post-infection (Fig. 5h) and preferentially affected early ‘effector-like,’ 

but not ‘memory-like,’ cells in an in vitro model of CD8+ T cell differentiation20,21 (Fig. 5i–

k and Supplementary Fig. 3e and 4). Taken together, these findings suggest that Ezh2 plays a 

critical role in regulating terminal effector cell differentiation.

Epigenetic silencing of memory-associated determinants

Because the PRC2 complex mediates transcriptional repression, we hypothesized that high 

expression of Ezh2 in Div1TE cells catalyzes repressive H3K27me3 marks on a set of key 

genes, thereby promoting terminal effector differentiation. Focusing on the ~6000 genes 

detected in our scRNA-seq analysis, we mapped H3K27me3 peaks derived from chromatin 

immunoprecipitation sequencing (ChIP-seq) analysis performed on naïve, terminal effector 

(KLRG1hiCD44hi), and total memory (CD44hi) CD8+ T cells (Yu et al., manuscript under 

consideration). Relative to promoter regions in naïve cells, those in terminal effector cells 

exhibited significant gains in H3K27me3 coverage that correlated with reduced gene 

expression, whereas promoter regions in memory cells exhibited considerable losses in 

H3K27me3 coverage (Fig. 6a–c and Supplementary Tables 8 and 9), suggesting that 

epigenetic silencing may be more crucial for the differentiation of terminal effector cells 

compared to that of memory cells.

We next investigated Ezh2 binding and H3K27me3 levels in differentiating CD8+ T cells by 

ChIP-seq (Fig. 6d,e), identifying 1564 genes bound by Ezh2 and 261 genes marked by 

H3K27me3 (Supplementary Table 10). Gene ontology analysis revealed that Ezh2 gene 

targets were enriched for processes involving transcriptional regulation, cytoskeletal protein 

binding, phosphoinositide binding, Wnt receptor signaling, and apoptosis (Supplementary 

Table 11). We observed that genes with expression that was reduced in Day 4 cells relative 
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to Div1TE cells were more likely to exhibit Ezh2 binding than those with increased 

expression (Fig. 6e). Comparison of the expression patterns of H3K27me3-marked and 

unmarked genes during terminal effector and memory cell differentiation revealed that 

H3K27me3-marked genes tended to exhibit more repression during terminal effector cell 

differentiation (distributions are shifted in Fig. 7a, top, and Supplementary Fig. 5a) than 

during memory cell differentiation (distributions are not different in Fig. 7a, bottom, and 

Supplementary Fig. 5b,c). These findings raised the intriguing possibility that the same set 

of genes were being selectively repressed during differentiation of terminal effector but not 

memory cells, due, in part, to differential expression of Ezh2 in cells progressing along these 

disparate pathways.

We investigated this possibility by analyzing a subset of Ezh2 target genes whose expression 

decreased during effector but not memory cell differentiation. This analysis revealed that 

many genes previously linked to memory, but not effector differentiation, exhibited 

significant Ezh2 association relative to input DNA control (Fig. 7b and Supplementary Table 

10). These Ezh2 gene targets included memory-associated transcription factors, including 

Tcf7 and Eomes; molecules that mediate TGF-β signaling, including Smad2, which has 

been implicated in CD8+ T cell fate decisions22,23,24; metabolic regulators such as the 

branched chain aminotransferase isoenzyme Bcat125; factors that control T cell survival and 

homing, including Klf226,27,28; and a recently discovered regulator of mitochondrial fusion, 

Opa1, that plays a critical role in differentiating memory CD8+ T lymphocytes29. Several of 

these genes, like Foxo1 and Tcf7, underwent rapid decreases in expression following the 

first division; others, like Eomes and Id3, underwent an initial increase at the first division 

followed by a rapid decline, suggesting a possible role for these memory-associated genes in 

effector differentiation (Fig. 7c, orange line). By contrast, analysis of these same genes in 

differentiating memory cells revealed a distinct expression pattern characterized by modest 

increases at the first division followed by stable or increased levels as the cells became 

mature TCM or TEM (Fig. 7c, purple and green lines). A similar pattern of expression was 

observed for memory-associated genes, such as Il7r, Lef1, and Bcl2, that were not targeted 

by Ezh2 (Fig. 7d). Lastly, we observed that Ezh2 deficiency was associated with reduced 

H3K27me3 coverage and increased mRNA expression of many genes, including a number 

of memory-associated genes such as Eomes, Tcf7, and Klf2 (Fig. 7e–h, Supplementary Fig. 

6–8, and Supplementary Tables 12 and 13), consistent with a role for H3K27me3-mediated 

transcriptional repression by Ezh2. Thus, unique expression patterns of memory-associated 

genes in differentiating terminal effector and memory cells may result, in part, from the 

presence or absence of epigenetic repression owing to distinct levels of Ezh2 expression in 

these cells.

In parallel with analysis of memory-associated genes, we also examined the expression 

patterns of genes previously associated with effector differentiation, including transcription 

factors (Batf, Irf4, and Tbx21), signaling molecules (Il2ra and Akt1), and metabolic 

regulators (Hif1a and Myc), along inferred terminal effector or memory cell pathways. The 

expression patterns of these genes in differentiating effector cells resembled those of Ezh2-

targeted memory-associated genes, with a marked early increase at the first division 

followed by a rapid loss by day 4 post-infection (Fig. 7i); by contrast, these same genes were 

expressed at much lower levels during the process of memory differentiation. The 
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observation that these effector-associated genes were not targeted by Ezh2 or marked by 

H3K27me3 suggests that regulation of these genes during differentiation may be due to 

alternative mechanisms. Taken together, these findings suggest a model of terminal effector 

cell differentiation initiated by a rapid burst of transcriptional activity that includes 

upregulation of genes that promote the effector and memory fates as well as chromatin 

regulators, followed by subsequent epigenetic repression of the memory program.

DISCUSSION

In the present study, we sought to discover novel molecular determinants and gain new 

insights into the molecular regulation of CD8+ T lymphocyte fate specification by 

performing scRNA-seq on antigen-specific CD8+ T cells derived sequentially throughout the 

course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence 

among cells that had undergone their first division, with hundreds of genes differentially 

expressed between these two subpopulations, provisionally termed Div1TE and Div1MEM 

cells. The vast majority (97%) of these genes were more highly expressed by Div1TE cells, 

with diverse functions that spanned cell cycle regulation, transcription, translation, 

metabolism, and differentiation. Unexpectedly, transcription factors linked to both effector 

and memory differentiation were highly upregulated in Div1TE cells, suggesting that 

memory-associated transcription factors may play a transient but important role in terminal 

effector cell differentiation. Moreover, the patterns of differentially expressed genes between 

Div1TE and Div1MEM cells were unique, in that genes more highly expressed by Div1TE 

cells were largely undetectable in Div1MEM cells. By contrast, genes more highly expressed 

by Div1MEM cells were also expressed by Div1TE cells, albeit at slightly lower levels. These 

dichotomous patterns suggest that the earliest steps of terminal effector cell differentiation 

are associated with a profound transcriptional burst involving marked upregulation of 

hundreds of genes, whereas induction of the memory program may be associated with more 

nuanced alterations in the expression levels of a few specific genes.

Based on their molecular similarities with effector and memory cells, we hypothesized that 

Div1TE and Div1MEM cells represented early differentiation states of these cellular subsets. 

Application of ‘future-past’ binary classifiers enabled us to predict the identity of cells at 

intermediate time points and thereby infer pathways of terminal effector or memory cell 

differentiation. Visualization of the trajectories of individual genes suggested distinct 

patterns of expression between differentiating effector and memory cells as well as between 

differentiating TCM and TEM cells. Although it has been previously appreciated that TCM 

and TEM cells are molecularly distinct30,31, the ontology of these cells remains poorly 

understood32,33. Our data suggest the possibility that Div1MEM cells may represent a 

common progenitor of both circulatory memory subsets, but it remains unknown when 

differentiating TCM and TEM cells diverge in fate. Future studies with more precise time 

points are likely to provide additional insight into this question and may also elucidate 

whether TRM cells are derived from Div1MEM cells, as it has been recently shown that TRM 

and TCM cells share a common clonal origin34.

What factors control the remarkable transcriptional divergence observed following the first 

cell division remains an open question. One contributing factor could be asymmetric 
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division, an evolutionarily conserved mechanism that enables activated T lymphocytes to 

apportion certain determinants unequally to daughter cells during mitosis11. Asymmetric 

segregation of factors such as IL-2Rα and IFN-γR during mitosis7,11,35, for example, could 

promote IL-2 and IFN-γ signaling and result in the increased expression of Il2ra, Stat5a, and 

Tbx21 observed in Div1TE cells. Increased expression of mediators of metabolic 

programming in Div1TE cells, moreover, is consistent with the asymmetric mitotic 

distribution of Myc, mTOR, and phosphatidylinositol-3-OH kinase signaling pathways that 

has been recently reported36,37,38. Finally, our recent demonstration that activated CD8+ T 

cells deficient in atypical protein kinase c (PKC), a central regulator of asymmetric division, 

give rise to daughter cells with an effector-like transcriptional signature39 supports a possible 

role for asymmetric division in mediating the transcriptional heterogeneity in Division 1 

cells observed in the current study.

We sought to uncover new candidate regulators of differentiation by searching for 

commonality between the set of genes differentially expressed amongst Div1MEM and 

Div1TE cells and that amongst terminal effector and memory cell subsets. This approach 

yielded 89 candidate molecular determinants, whose functions spanned regulation of 

proliferation, chromatin structure, transcription, and energy metabolism. We demonstrated 

that one candidate, Ezh2, played a critical role in effector differentiation in vivo, thus 

demonstrating the success of our experimental and computational approaches in discovering 

functionally important regulators of CD8+ T cell differentiation. Consistent with our 

findings, Ezh2 was recently shown to regulate human effector CD8+ T cell polyfunctionality 

and survival through H3K27me3-mediated repression of pro-apoptotic genes as well as 

components of the Notch signaling pathway40.

A role for epigenetic regulation of CD8+ T cell fate determination has been increasingly 

appreciated, with prior studies showing the importance of DNA methylation and histone 

modifications in this process41,42,43. Recent studies have examined the overall epigenetic 

landscapes of naïve, effector, and memory CD8+ T cells, demonstrating significant 

differences in permissive H3K4me3 and repressive H3K27me3 deposition among cell 

subsets and during differentiation44,45. Our study extends these observations by 

demonstrating that transcription factors that promote alternative fates may be differentially 

targeted by Ezh2 in a T cell state-specific manner. In differentiating terminal effector cells, 

transcription factors associated with the alternative memory fate were selectively targeted by 

Ezh2. These findings suggest that repression of memory-associated genes may serve to 

enforce the terminal effector differentiation program set into motion by effector-associated 

genes. However, it remains possible that repressed memory-associated genes may remain in 

a poised, bivalent (H3K4me3+H3K27me3+) state44,45, thereby conferring effector cells with 

a certain degree of plasticity.

In summary, our data suggest a model of terminal effector cell differentiation initiated by a 

rapid and profound transcriptional burst and refined by epigenetic silencing of transcripts 

associated with memory lymphocytes. By contrast, induction of the memory transcriptional 

program appears to occur in a distinct subpopulation of differentiating lymphocytes and is 

associated with more nuanced, gradual increases in the expression levels of a few specific 

genes. Together, these findings suggest that closely linked transcriptional and epigenetic 
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mechanisms together control CD8+ T lymphocyte fate specification and underscore the 

power and necessity of single-cell approaches in future studies.

ONLINE METHODS

Mice

All animal work was approved by the Institutional Animal Care and Use Guidelines of the 

University of California, San Diego. All mice were bred and housed in specific pathogen-

free conditions. Wild-type C57BL/6J and Ezh2fl/fl mice were obtained from the Jackson 

Laboratory. Ezh2fl/fl mice were crossed with P14 Cd4Cre mice. Donor mice were male or 

female, 6 to 8 weeks old. Recipient mice were male, 6 to 8 weeks old. For infection 

experiments, no randomization or blinding was used and no animals were excluded from 

analysis.

Antibodies and flow cytometry

The following antibodies were purchased from Biolegend, eBiosciences, or Sigma-Aldrich: 

CD8α (53–6.7), CD45.1 (A20), CD62L (MEL-14), KLRG1 (2F1), CD44 (1M7), IL-2Rα 
(PC61), Va2 (B20.1), Vβ8.1/8.2 (KL16–133.18), IL-7Rα (A7R34), T-bet (4B10), IRF4 

(IRF4.3E4), Granzyme B (GB11), IFN-γ (XMG1.2), TNF (MP6-XT22). Ezh2 (11/Ezh2) 

antibody was purchased from BD Pharmingen. Annexin V Apoptosis Detection Kit and 

Mito Flow were purchased from Biolegend and Cell Technology. Biotinylated H-2Db gp33 

monomer (NIH Tetramer Facility) was conjugated to streptavidin-PE (Prozyme) to generate 

H-2Db gp33 tetramer for flow cytometry analysis. For intracellular detection of IFN-γ and 

TNF, CD8+ T cells were stimulated ex vivo with LCMV gp33-41 peptide (KAVYNFATM) 

(GenScript) in the presence of Brefeldin A (Sigma) for 6 h at 37 °C; cells were stained with 

surface antibodies and then fixed in 4% paraformaldehyde (Electron Microscopy Services) 

and permeabilized prior to staining with intracellular antibodies. All samples were analyzed 

on an Accuri C6, FACS Aria II, or FACS Canto (BD Biosciences).

Adoptive cell transfer and virus infection

5 × 103 P14 CD45.1+ CD8+ T cells were adoptively transferred into congenic wild-type 

CD45.2+ recipient mice, followed by intraperitoneal infection (i.p.) 1 day later with 2 × 105 

plaque forming units (pfu) per mouse of LCMV-Armstrong. Splenocytes were isolated from 

recipient mice at 7 d post-infection (n = 4) and splenocytes and lymph nodes were harvested 

at 42 d (n = 40) post-infection. For the isolation of CD8+ T cells at 4 d post infection, 5 × 

104 P14 CD8+ T cells per mouse were adoptively transferred into 24 recipient mice. For the 

isolation of CD8+ T cells that had undergone their first cell division, 2 × 106 P14 CD8+ T 

cells were first labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE) prior to 

adoptive transfer into recipient mice (n = 24) and harvested 2 d following LCMV infection.

Cell culture and differentiation

Splenocytes obtained from P14 mice were activated with gp33-41 peptide (500 ng/ml). After 

1 d of activation, P14 CD8+ T cells were isolated using the CD8+ T Isolation Kit (Miltenyi). 

CD8+ T cells were then cultured with IL-2 (10 U/ml) or IL-15 (15 ng/ml) (PeproTech) for an 

additional 3 d.
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Single-cell transcriptome amplification and RNA-sequencing

The C1 Single-Cell Auto Prep System (Fluidigm) was used to perform whole transcriptome 

amplification (WTA) of up to 96 single cells simultaneously. After cell isolation, 2.5 × 105 

to 2 × 106 FACS-sorted P14 CD8+ T cells were loaded onto the C1 Single-Cell Auto Prep 

mRNA Array IFC for single-cell capture on chip. Live/dead stain (Invitrogen) was included 

to exclude dead cells. Viable single cells captured on chip were manually imaged. Cell lysis 

and RT-PCR were performed on chip. SMARTer chemistry (Clontech) WTA was performed 

according to the manufacturer’s instructions. Illumina Nextera XT single-cell 

complementary DNA (cDNA) libraries were generated according to the manufacturer’s 

instructions (Illumina). Quality control measures of the single-cell cDNA libraries were 

performed on the 2100 Bioanalyzer (Agilent Technologies), Qubit 3.0 Fluorometer (Thermo 

Fisher Scientific), and MiSeq Sequencing System (Illumina). Single-cell cDNA libraries 

were sequenced (paired-end 100 or single-end 100) on the HiSeq2500 Sequencing System at 

the UCSD Institute for Genomics Medicine (IGM) Center.

Ezh2 and H3K27me3 chromatin immunoprecipitation (ChIP)-Seq

For Ezh2 and H3K27me3 ChIP seq, wild-type CD8+ T cells (from n = 4 mice) were 

activated in vitro with plate-bound anti-CD3 and anti-CD28 antibodies for 4 days and sorted 

by flow cytometry to exclude dead cells. 4 × 106 CD8+ T cells were crosslinked in 1% 

formaldehyde and ChIP performed using the EZ-Magna ChIP kit (Millipore) according to 

the manufacturer’s instructions. Briefly, nuclear extracts were prepared and chromatin 

sheared to an average size of 300 bp using a Covaris E220 hydro-shearing instrument. For 

each immunoprecipitation (IP), chromatin from 1 million cells and 3 μg of antibody were 

used. Antibodies used were: rabbit anti-Ezh2 antibody (H-80; Santa Cruz Biotechnology), 

rabbit anti-H3K27me3 (Millipore), mouse anti-RNA polymerase II (Millipore), and mouse 

and rabbit normal IgG. Sequence-indexed libraries were prepared from immunoprecipitated 

DNA and input controls (1%) using the NEB Next ChIP Library Preparation Reagent Set 

(NEB), according to the manufacturer’s instructions. Library amplification by PCR used 10 

cycles for pol II IPs, 12 cycles for input controls and H3K27me3 IPs, 14 cycles for Ezh2 IPs, 

and 17 cycles for IgG controls. For the H3K27me3 coverage comparison between wild-type 

and Ezh2-deficient cells, chromatin from 500,000 cells was used and amplified for 14 cycles 

(H3K27me3 IPs) or 17 cycles (IgG controls). Amplification yielded 200–600 fmoles per 

sample. Two hundred fmoles of each library were pooled, size-selected to 250–650 bp on a 

PippinPrep instrument (Sage Science), and sequenced to a depth of 30 million reads (50 nt 

SE) on an Illumina HighSeq4000 instrument.

Bulk cell RNA-seq

For isolation of CD8+ T cells at 4 d post-infection, 5 × 104 P14 wild-type (n = 4) or Ezh2-

deficient CD8+ T cells (n = 8) were adoptively transferred into recipient mice and sorted by 

flow cytometry. mRNA stranded cDNA libraries were generated and sequenced on an 

Illumina HighSeq4000 instrument. The bulk samples were processed with Kallisto46, using 

GENCODE GRCm38.p4 transcriptome as the reference, with the following parameter: −1 

200 –s 20 – single. The read count of each transcript derived from Kallisto was summed 

according to gene names and normalized to a 1,000,000 read-count of all genes in total for 
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each sample. Differentially expressed genes were calculated by the assumption that the read 

count of each gene follows a Poisson distribution. The p-value threshold was Bonferroni-

corrected and ranged from 5−5 to 5−6 for selection of differentially expressed genes for Gene 

Ontology analyses, depending on the gene number in each set.

Single-cell RNA-seq data pre-processing

Single-cell mRNA sequencing data from 256 CD8+ T cells were processed with a 

bioinformatics pipeline focusing on quality control (QC) and robust expression 

quantification. For each cell, raw RNA-seq reads were: checked for quality metrics with 

fastqc (v0.10.1)47; poly-A and adaptor-trimmed with cutadapt (v1.8.1)48; quantified by 

Kallisto (v0.42.1)49 to a reference transcriptome (Gencode vM3)47 without bias correction; 

and aligned by STAR (v2.4.1b)50 to the reference mouse genome (mm10)51 with default 

parameters for quality control and downstream analysis. Next, the transcript per million 

(TPM) outputs of Kallisto for all cells were combined into a cell-by-gene expression matrix 

(C=288 cells=rows, G=22425 genes=columns) by summing the expression values for all 

quantified transcripts of a given gene. Finally, the TPM value for each cell c and gene g was 

natural log-transformed to yield a normalized expression value: EXPRc,g = ln(1+TPMc,g).

Dimensionality reduction and cell heterogeneity visualization

To reduce the dimensionality of the cell-by-gene expression matrix EXPR and visualize the 

diversity of gene expression among CD8+ T cells of different subtypes in a 2-dimensional 

scatter plot, we applied the t-distributed Stochastic Neighborhood Embedding (tSNE)52 

algorithm via its Barnes-Hut approximation (bhSNE)53. tSNE is an unsupervised technique 

based on a non-convex objective which solves the so-called crowding problem, and has been 

successfully used to visualize millions of single-cell cytometry measurements where the 

original dimension is D≈40 approximately54,55,56,57. In contrast, our total RNA sequencing 

data for each cell gave signal for over 22,000 genes (6000 of which had a mean expression 

over all cells greater than 1 TPM). Therefore, we first applied standard Principal Component 

Analysis (PCA) to reduce the dimensionality down to D=10, and only then applied bhSNE 

to visualize in D=2 (with perplexity=30 and theta=0.75 parameters). This composition of 

transformations is standard practice and results in a dimensionality reduction that is invariant 

to reflection57. After dimensionality reduction, each point on the resulting 2-dimensional 

scatter plot was colored by the stage of its corresponding T cell population. Since we 

observed two distinct clusters of Division 1 T cells (red dots) in our tSNE plot (Fig. 2a), we 

re-colored those cells distinctly for the inset scatterplot according to their proximity to the 

centroids of the terminally differentiated effector (TTE) and memory (TMEM) T cell clusters. 

Specifically, the proposed Div1MEM cells (inset) were re-colored blue because they were 

closer (in tSNE space) to the overall centroid of all TCM (purple) and all TEM (green) cells 

than to that of all Day 7 cells (yellow). The remaining Div1TE cells (Fig. 2a, inset) remained 

red because they were closer (in tSNE space) to the centroid of all Day 7 cells (yellow) than 

to that of the memory T cells (purple and green).
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Gene Ontology (GO) Analysis

Generated gene lists were uploaded to DAVID for analysis. Default background and default 

threshold were used and GOTERM_BP_FAT, GOTERM_MF_FAT, SP_PIR_KEYWORDS, 

UP_SEQ_FEATURE were chosen for target categories.

Supervised analysis of gene expression data

In contrast to the unsupervised dimensionality reduction (PCA, tSNE) and hierarchical 

clustering methods which are blind to the cell type labels, we also applied two supervised 

methods which utilize the extra information to give more interpretable results: (1) 

Differential gene expression analysis. We performed differential gene expression analysis 

between all pairs of T cell sub-populations from two non-overlapping sets of rows in the log-

transformed expression matrix EXPR. Since single-cell gene expression does not conform to 

the usual negative binomial distribution58,59 and can even be bimodal due to dropout60, we 

used two non-parametric statistical tests for heterogeneity of expression: Mann Whitney 

Wilcoxon (MWW, also known as MWU)61 rank-sum test which relies on a large sample to 

approximate normality, and Kolmogorov-Smirnov 2-sample (KS2) test62 which finds the 

largest difference between the empirical cumulative distributions, even between two small 

samples such as our 1st division sub-types Div1TE (n = 36) and Div1MEM (n = 24). (2) Cell 

type classifier. We trained two binary T cell classifiers to identify gene expression signatures 

that not only differentiate the examined T cell sub-populations (like the differential gene 

expression described above) but can also be used to predict the ‘memory-‘ or ‘effector-ness’ 

of previously unseen cells. Each classifier constructed an independent ensemble of 

Extremely Randomized Trees63. Using the terminally differentiated effector and memory 

(TCM, TEM) populations, we built a training set for a fate classifier for CD8+ T cells. Using 

the newly observed segregation of daughter T cells into Div1TE and Div1MEM 

subpopulations after the first division, we built a second training set for another early state 

classifier. Both classifiers were provided their respective training sets and evaluated using 

10-fold cross-validation. A Receiver Operating Characteristic (ROC) curve was computed 

by combining the predictions on each 10% held-out test set while training on the remaining 

90%64. After both the fate and early state classifiers were trained on their respective 

subpopulations, they were both provided previously unseen intermediate Day 4 CD8+ T 

cells. Their predicted ‘memory-ness’ scores were scatter-plotted and shown to correlate in 

Fig. 3f. For each T cell, its ‘effector-ness’ scores is 1 minus the ‘memory-ness’ score and is 

redundant for this analysis. The signature genes for each classifier were selected from all 

G=22,425 genes by their GINI score64. The surprisingly small overlap in gene expression 

signatures between the two classifiers was computed to contrast with their seeming 

agreement in their ‘memory-ness’ score predictions.

Temporal expression trajectories through inferred lineage paths

To understand the temporal dynamics of expression for key genes along the effector and 

memory lineages, we constructed hypothetical differentiation timecourses for each lineage. 

Briefly, we sampled with replacement 50 cells from each population and constructed all 

trajectories through the cross-product of populations ordered in a particular lineage. These 

orders were determined a priori based on our earlier work with similar timecourses of RT-
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qPCR data7. Specifically, the ‘effector’ lineage starts from the naïve population, and 

progresses through the Div1TE subpopulation, then onto Day 4, and finally Day 7. In 

contrast, the ‘effector memory’ and ‘central memory’ lineages start from naïve, through the 

Div1MEM subpopulation, ending with TEM and TCM respectively. These bootstrapped 

trajectories were visually summarized by a Seaborn software package timeseries plot65 

which links the average expression for each population sample with a solid line segment and 

represents the 95% confidence interval by a shaded area around it.

H3K27me3 coverage data analysis

H3K27me3 ChIP data performed on CD8+ T cells sorted at 8 days (effector cells) and 60 

days (memory cells) post-infection were mapped to mm10 reference genome with STAR 

(v2.4.1b) with the following options: outSAMunmapped None; outFilterMultimapNmax 10; 

outFilterMultimapScoreRange 1; limitOutSJoneRead 1; outReadsUnmapped Fastx; and all 

other options as default. ChIP peaks were called by ‘Homer findPeaks’-style histone 

command with Poisson p-value cutoff as 0.1% and fold-enrichment over input threshold as 

4.0. To analyze coverage changes around the Transcriptional Start Site (TSS) for the 6000 

expressed genes (Fig. 6a), the overlap of peaks and the 20 bins of 100 bp around TSS 

regions were calculated by BEDtools Intersect66. The coverage change was then calculated 

by deducting naïve cell coverage around TSS from memory and effector cells, respectively. 

Reads intensity around TSS (Fig. 6b) was calculated by the sum of the total reads that were 

located in the TSS region, normalized for both the input reads that were located in TSS 

regions and the total number of reads obtained for each sample. In a similar way, the read 

intensity of each TSS region was derived, and any region that have 3X read coverage over 

input was considered as significantly covered. In Fig. 6c, absolute TPM changes greater than 

0.5 and absolute TSS ChIP coverage changes greater than 600bp were considered 

significant. Data was expressed as ratio of H3K27me3-marked genes over total genes with 

decreased expression.

Ezh2 ChIP data analysis

All ChIP data were mapped to mm10 reference genome with STAR (v2.4.1b)50 with the 

following options: outSAMunmapped None; outFilterMultimapNmax 10; 

outFilterMultimapScoreRange 1; limitOutSJoneRead 1; outReadsUnmapped Fastx; and all 

other options as default. ChIP and input data were then converted into tag directory with 

HOMER67 command ‘makeTagDirectory’ with following options: keepOne; tbp 1; 

normGC; iterNorm 0.01. H3K27me3 ChIP regions were called by HOMER ‘findPeaks’ 

command, using input as background with following options: size 200; minDist 1000; L 0; 

and all other options as default. Ezh2 and PolII ChIP peaks were identified by using the 

HOMER software package ‘findPeaks’ command using input as background with following 

options: size 100; and all other options as default. In order to get the coverage of TSS of the 

6000 expressed genes (Fig. 6a,d), the overlap of peaks and the 20 bins of 100 bp around TSS 

regions were calculated by BEDtools66. The changes of coverage (Fig. 6a) were then 

calculated by deducting naive cell coverage around TSS from memory and effector cells, 

respectively. In order to quantify the impact of H3K27me3 and Ezh2 on gene expression in 

memory and effector differentiation (Fig. 6c,e), artificial bulk gene expression TPM was 

calculated from single-cell data. In the two sets of comparisons (effector vs. naïve, memory 
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vs. naïve), genes were marked as increased or decreased if bulk gene expression changed 

more than 2-fold. Fisher’s exact test was then performed to determine whether Ezh2- or 

H3K27me3-targeted genes negatively correlated with TPM changes. To be included as Ezh2 

or H3K27me3 targets in Fig. 6 and 7, a gene must have >=100bp TSS region covered by 

Ezh2 peaks or >= 600bp TSS region covered by H3K27me3. In Fig. 6e, data were expressed 

as a percentage of unbound or Ezh2-bound genes in total genes that have either loss or gain 

of expression in Day 4 cells compared to Div1TE cells. In Fig. 7, normalized TPM was 

calculated to ensure that all genes had mean expression TPM = 1 across all single-cell 

samples.

Statistical analysis

Pearson correlation and Spearman correlation were used to assess the significance of 

memory score prediction by supervised classifiers (Fig. 3f). Pearson correlation was used to 

determine the most significant differentially expressed genes (Fig. 4b). Student’s unpaired t-
test was used for comparisons involving two groups (Fig. 5d–k). Fisher’s Exact Test was 

used for comparisons of H3K27me3- and Ezh2-targeted genes identified by ChIP (Fig. 

6c,e). Differences with an associated P value < 0.05 were considered statistically significant.

Data availability

Source RNA-seq and ChIP-seq datasets are available at Gene Expression Omnibus, 

GSE89405 and GSE89036.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Single-cell RNA-seq analysis of CD8+ T lymphocytes responding to viral infection. (a) 

Experimental and analytical approaches. (b) Single-cell expression of selected genes 

previously associated with CD8+ T cell differentiation among cells from the following 

populations: naïve cells (gray), Division 1 (red, CD44hi), Day 4 (orange), Day 7 (yellow), 

central memory (TCM) (green), and effector memory (TEM) cells. (c) Expression of selected 

genes previously associated with CD8+ T cell differentiation measured in (b), presented as 

violin plots, ordered alphabetically. TPM, transcripts per million reads.
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Figure 2. 
Cells that have undergone their first division exhibit transcriptional heterogeneity. (a) t-

distributed Stochastic Neighborhood Embedding (tSNE) of 6000 expressed genes from 

single CD8+ T cells from the following populations: naïve (gray), Division 1 (red), Day 4 

(orange), Day 7 (yellow), central memory (TCM) (green) and effector memory (TEM) cells. 

Each circle represents a single cell. Inset, separation of Division 1 cells by tSNE clustering 

analysis into two distinct subpopulations, labeled Div1TE (red) and Div1MEM (blue) cells. 

TE, terminal effector; MEM, memory. (b) Differential expression of genes among Div1TE 

(top) and Div1MEM (bottom) cells presented as a heatmap. (c–e) Expression of selected 

genes previously associated with CD8+ T cell differentiation among individual naïve (gray), 

Div1TE (red), and Div1MEM (blue) cells, presented as violin plots, ordered alphabetically. 

Higher expression in Div1TE relative to Div 1MEM cells (c), lower expression in Div1TE 

relative to Div1MEM cells (d), or equal expression in Div1TE and Div1MEM cells (e).
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Figure 3. 
Generation and application of early ‘state’ and ‘fate’ classifiers to predict the identity of 

cells in intermediate states of differentiation. Early state and fate classifiers learn differences 

in the gene expression signatures of early memory-like cells (Div1MEM) versus early 

effector-like cells (Div1TE) identified in Fig. 2a and Day 7 effector cells versus memory 

cells, respectively. (a, c) Schematic representation of Extra Trees Classifier (ETC) that 

separates Division 1 lymphocyte clusters (Div1MEM, blue, n=24; Div1TE, red, n=36) (a) and 

Day 7 effector, yellow, n=48 versus total memory cells, teal, n=96, including TCM cells 

(n=48) and TEM cells (n= 48) (c). (b, d) Kernel density histograms of cross-validated scores 

on Division 1 CD8+ T lymphocytes (b) and Day 7 effector and memory CD8+ T 

lymphocytes (d) from which early state and fate classifiers were trained, respectively. (e) 

Schematic representation of applying early state and fate classifiers to predict the fate of 

individual Day 4 CD8+ T lymphocytes, n=34. The black and purple dashed lines indicate the 

boundary between predicted memory-like or effector-like Day 4 cells. (f) Prediction analysis 

of individual Day 4 CD8+ T lymphocytes as measured by (e). Memory score distribution of 

early state classifier (x-axis, 0=effector to 1=memory) versus memory score distribution of 

final fate classifier (y-axis, 0=effector to 1=memory). Squares represent individual Day 4 

CD8+ T lymphocytes. Early state and fate classifier scores correlate well in both linear 

(Pearson: r=0.78, p=4.8 × 10−8) and monotonic sense (Spearman: r=0.71, p=2.2 × 10−6). 

The dashed black and purple lines indicate the fate classifier’s decision boundary between 

memory and Day 7 effector cells. The orange line indicates the early state classifier’s 

decision boundary between Div1MEM and Div1TE cells. Both of these lines are stylized 

estimates of the real decision boundaries, which are complex piecewise-linear functions and 
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can be much more furrowed. The orange shaded area around the linear regression line 

indicates the 95% confidence interval assuming Gaussian error.
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Figure 4. 
Identification of putative regulators of CD8+ T lymphocyte differentiation. (a) Venn diagram 

of differential expression (DE) of genes between Division 1 cells (Div1TE, Div1MEM) (red), 

and DE of genes between effector and memory cells (blue). (b) Change in mean expression 

of DE genes in memory cells compared to effector cells (y-axis) versus the change in mean 

expression of DE genes in Div1MEM cells compared to Div1TE cells. Pearson correlation 

r=0.78, p=3.6 × 10−13. Circles represent individual genes (c) Differential expression of 89 

common genes (rows) clustered across all CD8+ T lymphocyte populations. Each column 

represents a single cell. Naïve cells (gray), Div1TE (red), Div1MEM (blue), Day 4 (orange), 

Day 7 (yellow), central memory (TCM) (green), and effector memory (TEM) cells. (d) 

Temporal expression patterns of selected genes across inferred paths of differentiation for 

effector (orange), TCM (purple), and TEM cells (green). Shaded areas indicate around the 

lines indicate the 95% confidence interval bootstrapped from all possible single-cell 

expression trajectories.
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Figure 5. 
Ezh2 regulates effector CD8+ T lymphocyte differentiation. (a) Expression of PRC2 

complex genes Ezh2, Eed, Suz12, and Set, in single CD8+ T lymphocytes in naïve (gray), 

Div1MEM (blue), Div1TE (red), Day 4 (orange), Day 7 (yellow), TCM (purple), and TEM 

(green) populations, presented as violin plots. (b) Ezh2 protein expression in gated CD8+ T 

lymphocytes that have undergone their first cell division in vivo. (c) Ezh2 protein expression 

in gated Division 1 CD8+ IL-2RαhiCD62Llo (red) and IL-2RαloCD62Lhi (blue) cells. (d) 

Ezh2 expression in naïve, Division 1 (gated on IL-2Rαlo or IL-2Rαhi cells), Day 4, Day 7, 

TCM, and TEM CD8+ T lymphocytes, presented as flow cytometry plots (left) or bar graphs 

(right). Numbers in FACS plots indicate mean fluorescence intensity of Ezh2+ events. (e) 

Absolute numbers of gated Ezh2fl/flCd4+/+ (‘WT’) and Ezh2fl/flCd4Cre (‘KO’) P14 cells 

adoptively transferred into recipient mice subsequently infected with LCMV and analyzed in 

the spleen 7 d post-infection. Data are pooled from two independent experiments. (f, g) Flow 

cytometry analysis (left) and mean fluorescence intensity (right) of intracellular IFNγ (f) 
and TNF (g) in cells at 7 d post-infection. (h) 7-AAD and Annexin V expression in gated 

P14 CD8+CD45.1+ WT and KO cells, analyzed at 3 or 5 d post-infection, presented as flow 

cytometry analysis (left) and dot plots (right). (i) Analysis of 7-AAD and Annexin V 

expression in gated IL-2RαhiCD62Llo and IL-2RαloCD62Lhi WT or KO cells at 3 d 

following in vitro culture with IL-2 (top) or IL-15 (bottom), respectively, presented as flow 

cytometry analysis (left) and dot plots (right). (j) Analysis of CD62L expression by Division 

1, Day 4, and Day 7 WT and KO CD8+ T cells responding to LCMV infection, presented as 
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flow cytometry analysis (left) and dot plots (right). (k) Proportion of IL-2RαhiCD62Llo and 

IL-2RαloCD62Lhi WT or KO cells at 3 d following in vitro culture with IL-2 (top) or IL-15 

(bottom), respectively, presented as flow cytometry analysis (left) and dot plots (right). ** p 

< 0.01, *** p < 0.001, N.S. not significant (Student’s two-tailed t-test). Data are 

representative of 2 independent experiments with 3 (d) or 4 (b, c) WT mice each; 2 

independent experiments with 4 individual WT and KO mice each (e–g); 3 individual WT 

and KO mice (h, i); 6 individual WT and KO mice (j). Mean and S.E.M. are indicated (d–k).
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Figure 6. 
Increased epigenetic repression in genes expressed during terminal effector differentiation. 

(a) Change in H3K27me3 coverage from naïve to effector (left) and naïve to memory 

(right). Red: H3K27me3 coverage gains; Blue: H3K27me3 coverage losses. (b) H3K27me3 

peak coverage around TSS for the 6000 genes detected in single-cell RNA-seq dataset. (c) 

Analysis of H3K27me3 coverage in genes exhibiting reduced expression in effector or 

memory cells relative to naive cells. Comparing naïve to effector cells, 1234 genes have 

decreased expression with 97 genes marked by H3K27me3 (7.86%); comparing naïve to 

memory cells, 627 genes have decreased expression with 11 genes marked by H3K27me3 

(1.75%). (d) ChIP analysis of Ezh2 (red) and Pol2 (blue) binding at proximal promoter 

regions (−1 and +1 kb of the TSS) of the 6000 genes detected by single-cell RNA-seq. (e) 

Presence or absence of Ezh2 binding to genes whose expression was reduced (left, total 

1492 genes) or increased (right, total 219 genes) in Day 4 cells relative to Div1TE cells. 

Genes with reduced expression had 448 Ezh2-bound targets while genes with increased 
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expression had 34 Ezh2-bound targets. ** p < 0.01, *** p < 0.001, N.S. not significant 

(Fisher’s Exact Test) (c, e).
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Figure 7. 
Ezh2 mediates CD8+ T lymphocyte effector differentiation through epigenetic repression. 

(a) Averaged normalized expression in the three inferred differentiation paths (effector, TCM, 

TEM) for genes marked or unmarked by H3K27me3. (b) ChIP-seq analysis of the binding of 

Ezh2 and H3K27me3 histone modifications at Eomes, Foxo1, Klf2, and Tcf7. Gray 

indicates input. Red (Ezh2) and blue (H3K27me3) arrows indicate binding peaks. (c, d) 

Temporal expression patterns of selected genes previously implicated in CD8+ T cell 

differentiation, grouped alphabetically, across inferred paths of differentiation for effector 

(orange), TCM (purple), and TEM cells (green). Memory-associated genes targeted by Ezh2 

(c) or not targeted by Ezh2 (d) are shown. Shaded areas around the lines indicate the 95% 

confidence interval bootstrapped from all possible single-cell expression trajectories. (e) 

Density dot plot representing H3K27me3 coverage for individual genes in wild-type (‘WT’) 

vs. Ezh2-deficient (‘KO’) cells. (f) H3K27me3 coverage, represented by peak numbers (top) 
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or regions (bottom) in KO compared to WT cells. Two biologic replicates were performed. 

(g) Heatmap showing changes in H3K27me3 coverage of Ezh2-targeted memory-associated 

genes in WT vs. KO CD8+ T cells. (h) Dot plot showing relationship between H3K27me3 

coverage changes (KO/WT) and gene expression changes (KO/WT) for individual genes in 

WT vs. KO CD8+ T cells. (i) Temporal expression patterns, as in c, of selected genes 

associated with effector differentiation.
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