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Integrating Hi-C and FISH data for modeling of
the 3D organization of chromosomes
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Michael Q. Zhang5,2,4 & Jianyang Zeng1,4

The new advances in various experimental techniques that provide complementary infor-

mation about the spatial conformations of chromosomes have inspired researchers to

develop computational methods to fully exploit the merits of individual data sources and

combine them to improve the modeling of chromosome structure. Here we propose GEM-

FISH, a method for reconstructing the 3D models of chromosomes through systematically

integrating both Hi-C and FISH data with the prior biophysical knowledge of a polymer model.

Comprehensive tests on a set of chromosomes, for which both Hi-C and FISH data are

available, demonstrate that GEM-FISH can outperform previous chromosome structure

modeling methods and accurately capture the higher order spatial features of chromosome

conformations. Moreover, our reconstructed 3D models of chromosomes revealed inter-

esting patterns of spatial distributions of super-enhancers which can provide useful insights

into understanding the functional roles of these super-enhancers in gene regulation.
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Determining the three-dimensional (3D) structure of a
chromosome can provide important mechanistic insights
into understanding the underlying mechanisms of the 3D

folding of the genome and the functional roles of high-order
chromatin compaction in gene regulation. For instance, the 3D
organization of a chromosome and the spatial proximity of
genomic loci can reveal essential relationships between functional
elements and their distal targets along the genome sequence,
which can shed light on their regulatory functions in controlling
gene activities. Recently, the chromosome conformation capture
(3C) technique1, which measures the interaction frequencies
between pairs of genomic loci through a proximity ligation
strategy, has significantly advanced the studies of higher-order
chromatin structure. The extended 3C techniques, such as Hi-C2

and ChIA-PET3, have enabled one to study the genome-wide
landscape of 3D genome structure at different resolutions (i.e.,
ranging from Mbps to Kbps) and in various cell types, organisms,
and conditions.

Based on their proposed Hi-C technique, Liberman-Aiden
et al.2 discovered that chromosomes are generally partitioned into
two compartments, i.e., A and B, which are enriched with active
and inactive chromatin marks, respectively. Using Hi-C maps
with a resolution in the order of tens of Kbps, several research
groups introduced the concept of topologically associated
domains (TADs)4–7, which are defined as the regions that have
higher contact frequencies within a domain than across different
domains in the Hi-C maps. With Hi-C maps of a relatively high
resolution (in a range of 1–5 Kbps), Rao et al.8 were able to study
a finer scale of chromatin structure and investigate the formation
of chromatin loops.

Despite the recent significant progress in the studies of higher-
order architecture of the genome using the 3C-based techniques,
our current understanding on the 3D packing of chromosomes
still remains largely incomplete. For example, there still exists a
gap in understanding the spatial organizations of the A/B com-
partments relative to each other in individual chromosomes. Also,
if two genomic loci have relatively low contact frequency, it is
usually difficult to infer their relative spatial positions only from
the Hi-C maps. On the other hand, the fluorescent in situ
hybridization (FISH) technique, which measures the spatial dis-
tances between a pair of distal genomic loci over a number of cells
through a direct imaging strategy, can provide a complementary
tool to investigate the 3D organizations of chromosomes.

Wang et al.9 applied a multiplexed FISH method to study the
spatial organizations of TADs and compartments in Chromo-
somes 20, 21, 22, and X of human diploid (XX) IMR90 cells. They
observed that the relation between spatial and genomic distances
might deviate from the 1/3 power law expected from the ideal
fractal globule model10, especially when the genomic distance
exceeds 7Mbps. In addition, they found that the A/B compart-
ments are usually arranged in a spatially polarized manner rela-
tive to each other with different compartmentalization schemes
for the active (ChrXa) and inactive (ChrXi) states of X-
Chromosomes. In particular, for ChrXi, the A/B compartments
are separated by the DXZ4 macrosatellite, while for ChrXa, these
two compartments correspond to the p and q arms.

A large number of computational methods have been devel-
oped in the past few years to determine the 3D structures of
chromosomes from Hi-C maps1,11–35. Many of these methods
estimate the pairwise spatial distances between genomic loci using
the formula f ∝ 1/dα, where f and d stand for the contact fre-
quency and the estimated spatial distance between a pair of loci,
respectively, and α is a constant. Recently, our group has devel-
oped a new manifold learning based approach, called GEM36,
which combines both Hi-C data and conformational energy
derived from our current available biophysical knowledge about a

3D polymer model to calculate the 3D structure of a chromo-
some. GEM does not depend on any specific assumption about
the relation between the Hi-C contact frequencies and the cor-
responding spatial distances, and directly embeds the neighboring
proximity from Hi-C space to 3D Euclidean space. Comprehen-
sive comparison tests have demonstrated that GEM can achieve
better performance in modeling the 3D structures of chromo-
somes than other state-of-the-art methods36.

Despite the recent new advances in FISH techniques37–40,
obtaining a high-resolution pairwise distance map similar to a Hi-
C contact map in the same high-throughput manner is still out of
reach41. On the other hand, the large amount of available FISH
data provide an important source of complementary constraints
to Hi-C maps for modeling the 3D architectures of chromosomes.
However, integrating both Hi-C and FISH data into a unified
framework for modeling 3D chromosome structures is not a
trivial task, and requires the development of a systematic data
integration approach to fully exploit the strengths of individual
data types to improve the modeling accuracy. To our best
knowledge, no computational approach has been proposed pre-
viously to integrate both Hi-C and FISH data for reconstructing
the 3D models of chromosomes.

In this paper, we propose a divide-and-conquer based method,
called GEM-FISH, which is an extended version of GEM36 and an
attempt to systematically integrate FISH data with both Hi-C data
and the prior biophysical knowledge of a polymer model to
reconstruct the 3D organizations of chromosomes. GEM-FISH
fully exploits the complementary nature of FISH and Hi-C data
constraints to improve the modeling process and reveal the finer
details of the chromosome packing. In particular, it first uses both
Hi-C and FISH data to calculate a TAD-level resolution 3D
model of a chromosome and reconstruct the 3D conformations of
individual TADs using the intra-TAD interaction frequencies
from Hi-C maps and the radii of gyration derived from FISH
data. After that, an assembly algorithm is used to integrate the
intra-TAD conformations with the TAD-level resolution model
to derive the final 3D model of the chromosome. We have
demonstrated that GEM-FISH can obtain better 3D models than
using Hi-C data only, with more accurate spatial organizations of
TADs and compartments in the 3D space. In addition, we have
shown that the final 3D models reconstructed by GEM-FISH can
also accurately capture the spatial proximity of loop loci, the
colocalization of loci belonging to the same subcompartments,
and the tendency of expressed genes and interaction sites of the
nuclear pore complex (NPC) component Nup153 to lie closer to
the chromosome surface. Based on our modeled 3D organizations
of chromosomes, we have also found interesting patterns of the
spatial distributions of super-enhancers on the three autosomes
investigated (i.e., Chrs 20, 21, and 22). This finding can provide
useful mechanistic insights into understanding the regulatory
roles of super-enhancers in controlling gene activities.

Results
Integrating Hi-C and FISH data for 3D chromosome model-
ing. We propose a divide-and-conquer based method, called
GEM-FISH, to determine the 3D spatial organization of a chro-
mosome through systematically integrating both Hi-C and FISH
data. Our framework consists of the following three main steps
(Fig. 1). First, we determine the 3D spatial arrangements of
individual TADs at TAD-level resolution using both Hi-C and
FISH data. Second, we compute the 3D coordinates of genomic
loci within individual TADs using a sufficient number of geo-
metric constraints derived from Hi-C data. During the elucida-
tion of both intra-TAD and inter-TAD structures in the previous
two steps, we also consider the prior biophysical knowledge of 3D
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polymer models to compute biophysically feasible and structu-
rally stable chromosome structure. In the last step, the modeling
results from the previous two steps are assembled through a series
of translation, rotation, and reflection operations on individual
TAD conformations. More details of the GEM-FISH framework
can be found in the “Methods” section.

GEM-FISH yields more accurate 3D chromosome models. To
evaluate the modeling performance of GEM-FISH, we used it to
compute the 3D models of Chromosomes 20, 21, 22, and X of
human diploid IMR90 cells for which both Hi-C8 and FISH9 data
are available. We used 5 Kbp resolution to model the intra-TAD
3D models of chromosomes. For Chromosome X, we calculated
both its active and inactive states 3D models, denoted by ChrXa
and ChrXi, respectively. We assessed the accuracy of our recon-
structed models by measuring the relative error (denoted by RE)
in the distance between each pair of TADs, which is defined as,

REij ¼
dij � Fij

��� ���
Fij

; ð1Þ

where the term Fij stands for the average distance between TADs i
and j obtained from FISH imaging data, and the term dij denotes
the distance between the centers of two TADs i and j in case of
the low-resolution (i.e., TAD-level resolution) chromosome
model or the average pairwise distance over all pairs of genomic
loci between TADs i and j in case of the final complete model.

Figure 2a, b shows the TAD-level resolution model and the
corresponding final model of an example chromosome (i.e.,
Chr21). We calculated the relative errors of both TAD-level
resolution and final models resulting from GEM-FISH using both
Hi-C and FISH data (Fig. 2c, e). For comparison, we also
calculated the relative errors of both TAD-level resolution and
final models reconstructed by GEM36 using only Hi-C data
(Fig. 2d, f). We found that the integration of FISH constraints
with Hi-C data significantly decreased the relative errors in the
spatial distances especially between TADs far away along the

genome that usually have relatively low Hi-C contact frequencies
(Fig. 2c, d). In addition, when compared to the TAD-level
resolution models, the relative errors in the spatial distances
between adjacent TADs along the genome slightly decreased in
the final model (see the diagonal elements in Fig. 2e, f), which
basically indicated that our method was able to compute the
correct relative orientations of adjacent TADs. Table 1 sum-
marizes the relative errors obtained for all five tested chromo-
somes, and Supplementary Figs. 1–4 show the corresponding
modeling results for Chrs 20, 22, Xa, and Xi, respectively. All
these results indicated that incorporating FISH data can
significantly improve the accuracy of modeling the 3D organiza-
tions of chromosomes.

In addition, we conducted more validation tests to further
evaluate the reasonableness of the 3D models calculated by GEM-
FISH. More specifically, we compared the curves of the spatial vs.
genomic distances between TADs for the 3D models recon-
structed by both GEM-FISH and GEM with the corresponding
curves derived from the FISH experimental data9, conducted an
additional 10-fold cross-validation procedure, measured the

0

+

FISH distances Hi-C map

Hi-C map

Assembly

Inter-TAD reconstruction

Intra-TAD reconstruction

0

0

0

0

d12

d23 d24 d25

d34 d35

d45

d13
d14 d15

a

b

c

Fig. 1 The schematic overview of GEM-FISH, which applies a divide-and-conquer strategy to reconstruct the 3D organization of a chromosome by
systematically integrating both Hi-C and FISH data. a The 3D chromosome model at TAD-level resolution is calculated by integrating Hi-C and FISH data as
well as prior biophysical knowledge of a 3D polymer model. b The 3D conformations of individual TADs are determined using the intra-TAD geometric
restraints derived from the input Hi-C map and prior biophysical knowledge of polymer models. c The final complete 3D structure of the chromosome is
obtained by assembling the modeling results from the previous two steps, i.e., placing the previously determined intra-TAD conformations into the TAD-
level resolution model through translation, rotation, and reflection operations. More details can be found in the main text

Table 1 The average relative errors of the TAD-level
resolution and final models reconstructed by GEM-FISH
using both Hi-C and FISH data, and by GEM using Hi-C data
only for Chrs 20, 21, 22, Xa, and Xi

TAD-level
model (GEM-
FISH)

Final model
(GEM-FISH)

TAD-level
model (GEM)

Final
model (GEM)

Chr20 0.18 0.16 0.31 0.30
Chr21 0.16 0.14 0.31 0.30
Chr22 0.17 0.16 0.22 0.20
ChrXa 0.17 0.16 1.36 1.37
ChrXi 0.22 0.21 1.92 1.93

In GEM, due to the availability of only the non-allele-specific Hi-C maps (which do not
distinguish between ChrXa and ChrXi) for the IMR90 cell line8, we only considered one 3D
model for ChrX
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deviation of the reconstructed 3D models from being spherical
(hereafter referred to as asphericity values), and inspected the
radial distributions of the expressed genes and interaction sites of
the NPC component Nup153 in the final 3D models recon-
structed by GEM-FISH (see Supplementary Note 1 for details).
Moreover, we demonstrated the necessity of incorporating the
Hi-C data constraints in GEM-FISH to ensure the consistency
between the reconstructed 3D models with both Hi-C and FISH
data (see Supplementary Note 2). The results of all these
additional validation tests further supported the superiority of
our modeling approach.

GEM-FISH yields accurate compartment partitioning. It has
been widely observed that chromosomes are partitioned into two

compartments (i.e., A and B) based on Hi-C maps2. TADs within
the same compartment are generally spatially closer to each other
and have higher contact frequencies than those belonging to
different compartments. Using FISH experiments, Wang et al.9

observed that the two compartments are typically spatially
arranged in a polarized fashion relative to each other. In addition,
they showed that individual compartments are relatively enriched
with different epigenetic marks.

Following the same strategy as in ref. 9, we assigned TADs to
A/B compartments for the 3D chromosome models calculated by
GEM-FISH (using both Hi-C and FISH data) and GEM36 (using
only Hi-C data). For the examined autosomes (i.e., Chrs 20, 21,
and 22), the average accuracy of assigning TADs of the 3D
models reconstructed by GEM-FISH to A/B compartments was
89.6% vs. 81.0% for those models calculated by GEM (Table 2,
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Fig. 2 The modeling results of human Chromosome 21 (Chr21). a The TAD-level resolution 3D structure of Chr21 calculated by GEM-FISH, where each dot
represents the center of a TAD. b The final 3D structure of Chr21 reconstructed by GEM-FISH. The visualization in (a) and (b) was performed using UCSF
Chimera61. c, d The relative error matrices of the TAD-level resolution models computed by GEM-FISH using both Hi-C and FISH data, and by GEM using
only Hi-C data, respectively. e, f The relative error matrices of the final models computed by GEM-FISH using both Hi-C and FISH data, and GEM using only
Hi-C data, respectively
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Fig. 3). We found that the 3D models computed by GEM-FISH
displayed approximately similar relative enrichment patterns of
different epigenetic marks in A/B compartments for the three
autosomes, which were close to those derived from experimental
FISH data (Supplementary Fig. 5). This observation indicated that
the few TADs that were wrongly assigned to the A and B
compartments in the models reconstructed by GEM-FISH
probably had more noisy epigenetic properties of one compart-
ment over the other. On the other hand, the difference was

relatively more obvious for the 3D model of Chr20 calculated by
GEM (Supplementary Fig. 5a). This was likely due to the
relatively low accuracy in assigning TADs to A/B compartments
on this model when using only Hi-C data to reconstruct its 3D
chromosome structure (73.3%, Table 2).

The final 3D models calculated by GEM-FISH for ChrXa and
ChrXi were clearly different and can be easily distinguished
through visual inspection (Fig. 4a, b). The 3D model of ChrXi was
notably more compact compared to that of ChrXa, which was
consistent with its inactive nature. The quantitative comparison
of the compactness of the 3D models of ChrXi and ChrXa showed
that the densities of the TADs of ChrXi were significantly higher
than those of ChrXa (Fig. 4c).

Although Wang et al.9 observed that the X-Chromosome can
be partitioned into two compartments, they found that the
compartmentalization scheme was different for its active state
ChrXa and inactive state ChrXi. The two compartments of ChrXa
corresponded to its p and q arms. For ChrXi, there were two
continuous compartments separated along the genomic sequence
by the DXZ4 macrosatellite. Here, the 3D models calculated by
GEM-FISH (Fig. 4a, b) resulted in 97.5% and 92.5% accuracy in
assigning TADs to the two compartments for ChrXa and ChrXi,
respectively (Table 2). More importantly, in the 3D models
derived from GEM-FISH, the separation position between the
two compartments was correctly captured for both ChrXa and
ChrXi (Fig. 4d, e). On the other hand, since so far only the non-

Table 2 The accuracy of assigning TADs of the 3D
chromosome models calculated by GEM-FISH (which uses
both Hi-C and FISH data) and GEM (which uses only Hi-C
data) to the two different compartments

GEM-FISH GEM

Chr20 28/30 22/30
Chr21 32/34 30/34
Chr22 22/27 22/27
ChrXa 39/40 35/40
ChrXi 37/40 24/40

The table entries are filled with the format of “number of correctly assigned TADs/total number
of TADs”. In GEM, due to the availability of only the non-allele-specific Hi-C maps (which do not
distinguish between ChrXa and ChrXi) for the IMR90 cell line8, we only considered one 3D
model for ChrX
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Fig. 3 Assignment of TADs to A/B compartments for Chrs 20, 21, and 22. a–c Assignment of TADs for Chrs 20 (a), 21 (b), and 22 (c) using the
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allele-specific Hi-C maps (which do not distinguish between
ChrXa and ChrXi) were available for the IMR90 cell line8 (to our
best knowledge), the 3D models calculated by GEM (which only
takes Hi-C data as input) resulted in lower accuracy in assigning
their TADs to the two compartments (87.5% and 60.0% for
ChrXa and ChrXi, respectively). The significant improvement in
the accuracy of compartmentalization after integrating both Hi-C
and FISH data into the modeling process especially for the X-
Chromosomes demonstrated the main advantage of GEM-FISH
in fully exploiting the available FISH data to derive more accurate
higher-order arrangements of sub-chromosomal regions.

We also examined how the two compartments of the
X-Chromosomes were spatially arranged relative to each other.
Our modeling results from GEM-FISH showed that the two

compartments of all the obtained 3D chromosome models were
placed in a polarized fashion relative to each other, with the
degree of polarization in ChrXi less than that in ChrXa, which
was consistent with the previous finding in the previous study9

(Fig. 4f, g, and Supplementary Fig. 6). In addition, we found that
the pairwise spatial distances between TADs within the same
compartment were significantly smaller than those between
TADs across different compartments for all five tested chromo-
somes (Supplementary Fig. 7), which was also consistent with the
previous result2.

GEM-FISH outperforms the state-of-the-art methods. We fur-
ther benchmarked GEM-FISH against several state-of-the-art
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Fig. 4 The modeling results of GEM-FISH for the human X-Chromosome (including both active state ChrXa and inactive state ChrXi). a, b Visualization of
the final 3D models of ChrXa (a) and ChrXi (b) in UCSF Chimera61. (c) Comparison of the compactness of TADs between the 3D models of active (ChrXa)
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methods in chromosome structure modeling. We first calculated
the 3D models of the five chromosomes using classical multi-
dimensional scaling (MDS)42 with the average FISH distances as
input. In addition, we reconstructed the 3D models of Chrs 20,
21, 22, and X using Shrec3D18, chromosome3D35, and
ChromSDE43 with the TAD-level resolution Hi-C maps as input.
We then compared the quality of the reconstructed 3D models
using these four methods vs. that of the 3D models reconstructed
by GEM-FISH with respect to the accuracy in assigning TADs to
the A/B compartments. For the 3D models reconstructed by
classical MDS, we also compared them with those reconstructed
by GEM-FISH in terms of the average relative errors with respect
to the pairwise FISH distances. For the sake of fair comparison,
we did not calculate this metric (i.e., average relative error) for
those 3D models reconstructed by Shrec3D, chromosome3D, and
ChromSDE. We found that GEM-FISH outperformed these four
baseline methods, in terms of the accuracy of TAD assignment to
A/B compartments, and surpassed classical MDS with respect to
the average relative errors (Supplementary Table 1). We also
calculated the asphericity values for the 3D models reconstructed
by these baseline methods and compared them to the results
derived from GEM-FISH. The high asphericity values for the 3D
models obtained by Shrec3D, chromosome3D, and ChromSDE
indicated that these conformations generally had an extended
shape rather than a spherical one (Supplementary Table 1),
probably due to the relatively weak Hi-C contact signals between
those TADs far away along the genomic distances.

Analyses of subcompartments. It has been observed that there
are at least six nuclear subcompartments defined based on their
long-range interaction patterns8. Two subcompartments associate
with compartment A, hence called A1 and A2, and the other four
subcompartments associate with compartment B, hence called B1,
B2, B3, and B4. The genomic loci belonging to different sub-
compartments tend to exhibit distinct genomic and epigenomic
properties. For instance, those loci belonging to subcompartments
A1 and A2 are enriched with activating chromatin marks, such as
H3K27ac, H3K36me3, H3K4me1, and H3K79me28. On the other
hand, the loci belonging to subcompartment B1 correlate posi-
tively with the repressive mark H3K27me3 and negatively with
the activating mark H3K36me3, while the loci belonging to
subcompartment B2 lack all the marks mentioned above8.

Here we annotated the loci that carry the epigenomic content
of subcompartments B1 or B2 and investigated their folding
properties in the 3D models reconstructed by GEM-FISH (see
Supplementary Note 3). We mainly considered the subcompart-
ment types B1 and B2, particularly because they are expected to
have different folding properties due to their distinct epigenomic
content. For instance, the genomic regions belonging to
subcompartment B1 with a repressive nature are expected to be
more densely packed than those belonging to subcompartment
B2 with an inactive nature38. We found that the genomic loci
belonging to a certain subcompartment (B1 or B2) tend to
colocalize in the 3D models reconstructed by GEM-FISH even if
they are far away along the genomic distances (Fig. 5a, c, e, and
Supplementary Figs. 8–13), which agreed well with the previous
finding8. We also calculated the densities of regions belonging to
the two subcompartments in the reconstructed 3D models and
found that the densities of the regions from subcompartment B1
were significantly higher than those of the regions from
subcompartment B2 (Fig. 5b, d, f). Such a finding was also
consistent with the previous result38.

In addition, we conducted a new FISH experiment to validate
the relative spatial distances between a triplet of genomic loci and
showed that loci belonging to the same subcompartment tend to

lie spatially closer to each other than those loci belonging to
different subcompartments even at a larger genomic distance. In
particular, we designed probes for three genomic loci, denoted by
L1, L2, and L3, respectively, where the genomic distance between
L1 and L2 is larger than that between L1 and L3 (Fig. 6a). The two
loci L1 and L2 are depleted from the marks H3K27me3,
H3K36me3, H3K27ac, H3K4me1, and H3K79me2, and hence
considered belonging to subcompartment B28. On the other
hand, the locus L3 is enriched with H3K27me3 and depleted from
H3K36me3, and hence considered belonging to subcompartment
B18 (Fig. 6a). We examined the spatial distances between L1 and
L2 and between L1 and L3 derived from this new FISH
experiment, and found that the spatial distance between the
two loci L1 and L2 is consistently smaller than that between L1
and L3 (Fig. 6b, c). This observation was consistent with the
modeling results obtained by GEM-FISH, and also provided an
experimental evidence to show that the loci belonging to the same
subcompartment tend to locate spatially closer to each other.

Analyses of the final 3D models derived from GEM-FISH. Next,
we further analyzed the details of the final 3D models derived
from GEM-FISH. We first compared the packing densities of the
regions between loop anchor loci with those between control loci,
i.e., loci that do not form anchor points of a loop (see Supple-
mentary Note 4). We found that the DNA packing densities of
the regions between loop anchor loci were significantly higher
than those of the regions between control loci for all five tested
chromosomes (Supplementary Fig. 14), which provided another
evidence to support the reasonableness of the 3D models recon-
structed by GEM-FISH.

In addition, we investigated the 3D conformations of
individual TADs that strongly carry the epigenetic nature of A
or B compartments (see Supplementary Note 5). We found that
the TADs that carry the inactive nature of compartment B tend to
have compact 3D models, while the 3D models of TADs that
strongly have the active nature of compartment A tend to be
more open (Supplementary Fig. 15), which was consistent with
previous findings38.

We also examined the amount of overlapping between adjacent
TADs in the final 3D models reconstructed by GEM-FISH (see
Supplementary Note 6). We observed that adjacent TADs along
the genomic distance that belong to the same compartment tend
to display higher overlapping than those that belong to different
compartments (Supplementary Table 2), which was also con-
sistent with the previous findings38.

Analysis of the spatial distributions of super-enhancers. Super-
enhancers are a group of enhancers that are in close genomic
proximity and span a genomic interval in a range of tens of
kilobase pairs. A key feature that distinguishes super-enhancers
from common enhancer is the relatively high enrichment of
specific transcription coactivators such as mediator Med1 or
activating histone marks such as H3K27ac. They are usually
found close to the cell-type-specific genes that define the cell
identity and regulate their expression44,45.

We first obtained the positions of super-enhancers of Chrs 20,
21, and 22 from the super-enhancer database dbSUPER44, and
then examined their locations in the final 3D models calculated
by GEM-FISH. We found that super-enhancers tend to lie on the
surfaces of the reconstructed 3D chromosome models (Fig. 7 and
Supplementary Fig. 16), which was consistent with the previous
finding that active gene regions tend to lie on the surface of the
chromosome territory46,47.

In addition, for Chr21, we found that four of its five super-
enhancers lie in the G-band q22.3. After closely examining this
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Fig. 5 Regions belonging to the same subcompartment tend to colocalize in the 3D space. a, c, e Visualization of the regions belonging to
subcompartments B1 (cyan) and B2 (magenta) in the 5 Kbps-resolution 3D models reconstructed by GEM-FISH for Chr20, Chr21, and Chr22, respectively.
Only regions that belong to either B1 or B2 are shown. The visualization was performed using UCSF Chimera61. b, d, f Boxplots on the densities of regions
belonging to subcompartments B1 and B2 for Chr20, Chr21, and Chr22, respectively. NB1= 39, 20, 44 genomic segments belonging to subcompartment B1
for Chrs 20, 21, and 22, respectively. NB2= 23, 25, 9 genomic segments belonging to subcompartment B2 for Chrs 20, 21, and 22, respectively. *p-value <
0.007, **p-value < 10−4, ***p-value < 10−4. All tests were performed using the one-tailed Wilcoxon rank-sum test. For the boxplots, the top and bottom
lines of each box represent the 75th and 25th percentiles of the samples, respectively. The line inside each box represents the median of the samples. The
upper and lower lines above and below the boxes are the whiskers. Red points marked by ‘+’ represent outliers, which represent the observations beyond
1.5 times interquartile range away from the top or the bottom of the box
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band, we found that it covers about 40% of the currently known
protein-coding genes in Chr21 [http://www.uniprot.org/docs/
humchr21], although it forms only <12% of the size of the
chromosome. We also found the expression values of the genes in
the G-band q22.3 are significantly higher than those of the genes
in the other regions of the same chromosome in the IMR90 cell
line (Supplementary Fig. 17). If we set the FPKM value ‘20’ as a

threshold to classify genes into ‘ON’ and ‘OFF’ (as in the previous
work48), we found that 12 genes in the band q22.3 are ‘ON’,
forming 38.7% of all the active genes in Chr21 in the IMR90 cell
line. In other words, we found that the density of expressed genes
in the q22.3 region is 2.17 expressed genes/Mbp vs. 0.59 expressed
genes/Mbp in the other regions of Chr21 in the IMR90 cell line.
Moreover, from the visualization of this band in the final 3D
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Fig. 6 An experimental evidence that genomic loci from the same subcompartment tend to colocalize. a The ChIP-Seq profiles of different histone marks
for the three loci L1, L2, and L3 examined in the FISH experiment. Locus L3 is relatively enriched with the mark H3K27me3 and depleted from the mark
H3K36me3, and hence considered belonging to subcompartment B1. On the other hand, the two loci L1 and L2 are depleted from the marks H3K27me3,
H3K27ac, H3K36me3, H3K4me1, and H3K79me2, and hence considered belonging to subcompartment B2. b One example of the experimental FISH
images for the two loci L1 and L2 (top), and for the two loci L1 and L3 (bottom). c The cumulative distribution function (CDF) curves of the distances
between L1 and L2 and between L1 and L3, indicating the tendency of the two loci L1 and L2 (belonging to the same subcompartment B2) to lie spatially
closer to each other than the other two loci L1 and L3 (belonging to subcompartments B2 and B1, respectively), in spite of the smaller genomic distance
between L1 and L3 than between L1 and L2. Data from 35 individual imaged copies of Chr21 were used to generate (c)
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model reconstructed by GEM-FISH, we found that the G-band
q22.3 region formed an arm-like structure extending out from the
chromosome body, and appeared to be accessible from all
directions (Fig. 7b), which was consistent with the active nature of
the whole band. By contrast, the discrimination of this gene-rich
band was not that obvious in the final model reconstructed by
GEM using Hi-C data alone (Supplementary Fig. 18), in which
other parts of the chromosome also formed arm-like structures
accessible from all directions. Thus, our modeling results may
provide useful insights into understanding the regulatory roles of
super-enhancers and the functional roles of the G-band q22.3
region in controlling the gene activities for Chr21.

Moreover, we also investigated whether our findings are
specific to super-enhancers by comparing the spatial distributions
of super-enhancers vs. regular enhancers (see Supplementary
Note 7). As shown in Supplementary Fig. 19, the analysis on our
reconstructed 3D models demonstrated that super-enhancers
tend to lie closer to the chromosome surface than regular
enhancers. Since super-enhancers are usually associated with cell-
type-specific genes, their tendency to lie closer to the chromo-
some surface, and hence their higher accessibility relative to
regular enhancers, supported the hypothesis that local interac-
tions between genomic loci are the driving forces that lead to
particular chromosome conformations46,48,49.

Discussion
Both Hi-C and FISH techniques have been widely used to study
the 3D genome structure. Hi-C data provide the contact fre-
quencies between genomic loci and can be interpreted as a
measure of how frequently a pair of two genomic loci come close
to each other in the 3D spatial space, while FISH directly mea-
sures the spatial distances between genomic loci through the
imaging techniques. Usually, both Hi-C and FISH provide con-
sistent measures, i.e., the Hi-C contact frequency between a pair
of genomic loci is normally negatively correlated to their spatial
distance measured by FISH. In some cases, however, the results
from these two methods may seem to contradict each other. This
apparent contradiction has brought up an interesting research
problem, driving scientists to read the results of these two tech-
niques in an attempt to reconcile them41,50.

Inspired by Fudenberg and Imakaev41, we also tried to inves-
tigate the consistency between Hi-C and FISH data used in our
computational experiments (Supplementary Note 8). As shown in
Supplementary Table 3, the average consistency between Hi-C
and FISH data for Chr20, Chr21, and Chr22 was 82.03%, much
higher than that of the control maps. Thus, we can conclude that
both Hi-C and FISH data used in our study were reasonably
consistent with each other.

Due to dynamic nature of chromosome structures and
uncertainty in experimental data, it would be generally better for
a chromosome structure modeling approach to compute an
ensemble of chromosome conformations rather than just a single
solution. In principle, in this study, we could also derive an
ensemble of 3D models for both TAD-level resolution and intra-
TAD conformations, using the same strategy as in GEM36, in
which an ensemble of multiple conformations with mixing pro-
portions are computed. However, since GEM-FISH involves an
assembly step to combine the intra-TAD conformations with the
TAD-level resolution structure, the original optimization tech-
nique for computing multiple conformations with mixing pro-
portions cannot be directly used to compute the final complete
structures.

Nevertheless, to further evaluate the stability or uncertainty of
the reconstructed 3D models, we first applied a strategy that has
been widely used in computing an ensemble of conformations in
current popular protein structure modeling methods, such as
Xplor-NIH51 and Rosetta52. More specifically, we ran GEM-FISH
and the baseline method GEM 100 times, and evaluated both the
average relative errors with respect to experimental FISH dis-
tances and the number of TADs correctly assigned to A/B
compartments. This additional test demonstrated the good sta-
bility of the 3D models calculated by GEM-FISH (Supplementary
Tables 4 and 5). In addition, we computed an ensemble of TAD-
level resolution models in GEM-FISH using the same optimiza-
tion technique as in GEM36. We found that computing such an
ensemble of 3D conformations can lead to a slight improvement
in the modeling performance (Supplementary Table 6). For more
discussions about the dynamics of chromosome conformations,
see “Supplementary Discussion”.

In addition, we argue that GEM-FISH is not sensitive to the
TAD calling method. The TAD-level resolution model recon-
structed by GEM-FISH in the first step acts as the backbone for
the final chromosome model, in which each 3D point corre-
sponds to an imaged TAD. Thus, as long as the genomic locations
of the TADs identified by the new TAD calling method are
imaged, GEM-FISH should be able to build an accurate backbone
model. In addition, the TADs identified by any calling method
generally contain a sufficient number of Hi-C contact frequencies
for GEM-FISH to reconstruct the high-resolution 3D models of
individual TADs. Therefore, we believe that the modeling per-
formance of GEM-FISH is robust to different TAD calling
methods.

In this study, we presented a divide-and-conquer based method
for modeling the 3D organizations of chromosomes. Our
approach integrates both Hi-C and FISH data, as well as
our current biophysical knowledge about a 3D polymer model.
These different sources of information provide complementary

Chr20a b cChr21 Chr22

Fig. 7 Super-enhancers tend to lie on the surface of the 3D models of chromosomes. a–c Super-enhancers (cyan) lie on the surfaces of the 3D models
reconstructed by GEM-FISH for Chrs 20, 21, and 22, respectively. For Chr21 (b), four of the five super-enhancers were found in the gene-rich G-band q22.3
region, which is shown in red. The visualization was performed using UCSF Chimera61
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constraints that allow the reconstruction of more accurate 3D
models that can capture both global and local geometric features
of chromosomes. On the one hand, the global features were
validated through the highly accurate assignment of TADs to A/B
compartments, the reasonable placement of compartments in a
polarized fashion relative to each other, the clear proximity of
TADs within the same compartment, and the reasonable sphe-
rical shapes of the reconstructed chromosome conformations. On
the other hand, the local features were validated through the
proximity of loop loci, the colocalization and different epige-
nomic properties of the genomic segments belonging to the same
subcompartment, and the tendency of expressed genes and
interaction sites of the NPC component Nup153 to lie closer to
the chromosome surface. In addition, the 3D models of chro-
mosomes reconstructed by our method revealed interesting pat-
terns of the spatial distributions of super-enhancers. Such an
interesting finding will provide important hints for further
investigating the functional roles of super-enhancers in control-
ling gene activities.

In general, every source of available data has its own merits and
limitations. Integrating multiple sources of data constraints can
help fully exploit their benefits and overcome their weaknesses
during the 3D chromosome structure modeling process. On the
way to calculate the whole 3D genome model, more data sources
will be needed to further increase the accuracy of the recon-
structed structure, and also compensate the limited availability
and modeling power of existing input data. For instance, the
geometric constraints derived from lamina-DamID experiments
can also be used to infer the proximity of a chromatin region to
the nuclear envelope53. In addition, the epigenomic profiles
derived from ChIP-Seq can provide additional useful information
to reconstruct the 3D architectures of chromosomes54. In prin-
ciple, our framework can be easily extended to integrate all these
different types of data constraints for modeling the 3D structures
of chromosomes, which will thus further improve our current
understanding of the underlying functional roles of 3D genome
folding in gene regulation.

Methods
Determining the 3D chromosome models at TAD-level resolution. We first
calculate a relatively low-resolution (i.e., at TAD-level resolution) model of the
chromosome of interest that is consistent with both input Hi-C and FISH data and
also biophysically stable. Although a Hi-C map generally provides a relatively less
number of geometric constraints between TADs than within individual TADs,
these inter-TAD interaction frequencies can still provide useful restraints for
pinning down the spatial arrangements of individual TADs at TAD-level resolu-
tion. On the other hand, FISH techniques directly image the 3D coordinates of
different TADs from a number of cells, based on which we can also derive the
average spatial distance between a pair of TADs over all cells. Overall, Hi-C and
FISH data can provide useful and complementary restraints to determine the 3D
organization of a chromosome at TAD-level resolution.

More specifically, to calculate the global chromosome structure at TAD-level
resolution, we optimize a cost function that simultaneously incorporates the
constraints derived from Hi-C data, FISH data, and prior biophysical knowledge
about a 3D polymer model. In particular, the cost function Cg is defined as,

Cg ¼ C1 þ λEC2 þ λFC3; ð2Þ

where C1,C2, and C3 stand for the cost terms corresponding to the restraints
derived based on Hi-C data, prior biophysical knowledge, and FISH data,
respectively, and λE and λF represent the corresponding coefficients that weigh the
relative importance of individual terms.

The term C1 is defined using the same strategy as in the previous work36, that is,

C1 ¼
X
i

KLðPijjQiÞ ¼
X
i

X
j

pijlog
pij
qij

; ð3Þ

where KL(.) represents for the Kullback-Leibler (KL) divergence between two
distributions, pij represents the neighboring affinity between two genomic loci li
and lj in Hi-C space and qij represents the probability that two 3D points si and sj
(corresponding to loci li and lj, respectively) are close to each other in the
reconstructed 3D chromosome model. Here, the neighboring affinity is derived

according to the normalized interaction frequencies, that is,

pij ¼
fijP
i≠j fij

; ð4Þ

where fij stands for the interaction frequency between the two genomic loci li and lj.
In addition, qij is defined as follows,

qij ¼
ð1þ jjsi � sjjjÞ�1P
k≠l ð1þ jjsk � sl jjÞ�1 ; ð5Þ

where ||.|| stands for the Euclidean distance between two 3D points.
In the cost function defined in Eq. (2), the term C2 represents the conformation

energy of a 3D polymer model, which is defined using the same strategy as in the
previous studies20,36. The term C3 is a new term that we add to incorporate the
average spatial distance constraints derived from FISH imaging data. Let Fij denote
the average spatial distance between two TADs ti and tj measured from FISH
experiments. Then C3 is defined as,

C3 ¼
X
i

X
j

ðjjsi � sjjj � FijÞ2; ð6Þ

where si and sj stand for the coordinates of the centers of TADs ti and tj,
respectively.

More technical details about optimizing the cost function Cg and selecting the
optimal parameters λE and λF can be found below.

Determining the 3D conformations of individual TADs. Since FISH data only
provide the geometric restraints on the 3D chromosome models at TAD-level
resolution, and do not provide high-resolution information about the internal
structure of each TAD, we cannot use them as pairwise distance restraints to
determine the 3D coordinates of genomic loci within individual TADs. Never-
theless, we can still use FISH data to obtain a rough estimate of the radius of
gyration (denoted by R̂g ) of every TAD (more details can be found in Supple-

mentary Note 10). In principle, incorporating R̂g as an additional constraint to
determine the 3D structures of intra-TAD chromosome fragments can further
improve the modeling accuracy. Note that a similar scheme has also been used to
incorporate FISH data to model the 3D genome structures from single-cell Hi-C
data55. To incorporate the estimated radius of gyration into our modeling process,
we define a new term C4,

C4 ¼ jR2
g � R̂2

g j; ð7Þ
where |.| stands for the L1 norm and Rg stands for the radius of gyration of the
reconstructed 3D model of the corresponding TAD and is calculated as follows,

R2
g ¼

1
N

XN
i¼1

jjyi � �yjj2; ð8Þ

where N stands for the number of genomic loci in the 3D model, yi is the 3D
coordinates of individual loci, �y ¼ 1

N

P
i yi, and ||.|| stands for the Euclidean dis-

tance between two loci in the reconstructed 3D model.
Then the cost function for calculating the local 3D chromosome structures

within individual TADs is defined as,

Ct ¼ C1 þ λEC2 þ λRC4; ð9Þ
where C1 and C2 stand for the terms representing the constraints from Hi-C data
and prior biophysical knowledge, respectively, and λE and λR stand for the
coefficients that weigh the relative importance of the corresponding terms. More
details about selecting the optimal parameters λE and λR can be found below.

Obtaining the final 3D model of the chromosome. The TAD-level resolution 3D
model of a chromosome is composed of a list of 3D points, each corresponding to a
TAD. To integrate individual 3D models of TADs with this TAD-level resolution
model of the chromosome, we first translate every TAD model such that its center
coincides with the corresponding point in the TAD-level resolution model. Then,
we adjust the orientation of every TAD model relative to its adjacent TADs while
preserving the location of its center. This task can be achieved by rotating every
TAD around its center to minimize the distance gaps between the current TAD
and its adjacent ones. Reflection of a TAD model through a mirror plane passing
by its center is also considered during this optimization process.

A rough estimate of the spatial distance between two adjacent TADs i and i + 1
along the genome can be derived either from the contact frequency between the last
genomic locus of TADi and the first genomic locus of TADi+1, or from the relation
between genomic and spatial distances in that particular chromosome if the contact
frequency between these two loci is equal to zero. That is,

di;iþ1 ¼
f αi;iþ1 fi;iþ1 ≠ 0

c ´ gβi;iþ1 fi;iþ1 ¼ 0

(
; ð10Þ

where di,i+1 stands for the estimated spatial distance between the last locus of TADi

and the first locus of TADi + 1, fi,i+1 and gi,i+1 stand for the contact frequency and
genomic distance between those two loci, respectively. According to the relation
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between spatial distance and contact frequency for a pair of TADs derived in ref. 9,
α is set to −0.25. The proportionality constant c and the scaling exponent β are
derived from the FISH data9 for each inspected chromosome.

The problem of placing the intra-TAD structures to the TAD-level resolution
model can be formulated as an optimization problem, with the goal to minimize
the following cost function Cintegration,

Cintegration ¼
Xn
i¼1

ðjjysiþ1
� yei jj � di;iþ1Þ2; ð11Þ

where ysi and yei are the first and last points in the model of TADi, respectively.
We use gradient descent to optimize Cintegration. In particular, the gradient of

Cintegration with respect to ysiþ1
can be given by,

∂Cintegration

∂ysiþ1

¼ 2 Δyi;iþ1

�� ��� di;iþ1

� �
´

Δyi;iþ1

Δyi;iþ1

�� �� ; ð12Þ

where Δyi;iþ1 ¼ ysiþ1
� yei .

In each iteration, until convergence of Cintegration is reached, ysiþ1
should be

updated by adding a value proportional to the negative of
∂Cintegration

∂ysiþ1
. Thus, the new

value of ysiþ1
, denoted by y′siþ1

, can be given by,

y′siþ1
¼ ysiþ1

� α
∂Cintegration

∂ysiþ1

; ð13Þ

where α is the learning rate. However, the points associated with TADi+1 are only
allowed to rotate around its center. Based on the positions of ysiþ1

, y′siþ1
, and the

center of TADi+1, we can force the angle and axis of rotation of the point ysiþ1
to fit

into the direction towards point y′siþ1
. We then rotate all the points within the TADi

+1 model around its center using the same rotation angle.

Optimization of the cost function. We use gradient descent to minimize the cost
functions Cg and Ct defined in Eqs. (2) and (9), respectively. The gradient of Cg

with respect to the coordinate si is calculated as follows,

∂Cg

∂si
¼ ∂C1

∂si
þ λE

∂C2

∂si
þ λF

∂C3

∂si
: ð14Þ

More details about the calculation of ∂C1
∂si

and ∂C2
∂si

can be found in ref. 36. In

addition, ∂C3
∂si

is calculated as follows,

∂C3

∂si
¼ 2

X
j

ðjjsi � sjjj � dFijÞ
jjsi � sjjj

ðsi � sjÞ: ð15Þ

Similarly, the gradient of Ct with respect to the coordinate yi is calculated as
follows,

∂Ct

∂yi
¼ ∂C1

∂yi
þ λE

∂C2

∂yi
þ λR

∂C4

∂yi
; ð16Þ

where ∂C4
∂yi

is calculated as follows,

∂C4

∂yi
¼ 2

N
signðR2

g � R2
gest
Þðyi � �yÞ: ð17Þ

Parameter selection. In GEM-FISH, we optimize the cost function Cg in Eq. (2) to
calculate the TAD-level resolution 3D model of the whole chromosome, and the
cost function Ct in Eq. (9) to calculate the models of individual TADs. Each of these
two cost functions has two parameters (λE and λF in Eq. 2, and λE and λR in Eq. 9).
These parameters need to be chosen in a principled way that the calculated models
best interpret the input Hi-C and FISH data, and the prior knowledge of a 3D
polymer model. From the available FISH data, we can obtain rough estimates of the
volumes of the whole chromosome and individual TADs (see Supplementary
Note 10). Following the same strategy as in the previous work36, we can select a
pair of parameter values that maximize the following scoring function,

S ¼ ð1� C1Þ´
v

jv � v′j ; ð18Þ

where C1 (defined in Eq. 3) ranges between 0 and 1 and measures the degree of
mismatch between the calculated 3D model and the input Hi-C data, v is the
estimated volume of the chromosome (or TAD) obtained from the prior knowl-
edge, and v′ is the corresponding volume of the reconstructed model.

We use grid search to find the best pair of parameter values that yield high
scores of S for both Chr21 and Chr22. We found that the values λE= 5 × 1012 and
λF= 10−8 lead to the highest score for Chr22 and a reasonably high score for
Chr21. Thus, we choose them as the default values for these two parameters when
computing the TAD-level resolution 3D models of chromosomes (more analyses
are provided in Supplementary Note 11).

Similarly, we found that the values λE= 5 × 1011 and λR= 10−7 yield
reasonably high scores of S for individual TADs. Thus, we choose them as the
default values for these two parameters when computing the 3D conformations of
individual TADs.

The computational efficiency of GEM-FISH. We first analyzed the running time
needed by GEM-FISH to reconstruct a 3D model for each of Chrs 20, 21, 22, Xa,
and Xi at the TAD-level resolution. As shown in Supplementary Table 7, the
running time for GEM-FISH to reconstruct TAD-level resolution models was in a
range of minutes.

For reconstructing the intra-TAD models, the time taken by GEM-FISH
depends on the resolution of the intra-TAD Hi-C maps used. Since the 3D
structures of all TADs of a given chromosome can be calculated in parallel, the
time taken to calculate all the intra-TAD models is the maximum running time for
reconstructing the intra-TAD structures of that chromosome. As shown in
Supplementary Table 8, the time needed by GEM-FISH to calculate the most time-
demanding intra-TAD models at 5 Kbp resolution for Chrs 20, 21, 22, Xa, and Xi
was approximately 26 h. Supplementary Table 8 also summarizes the time needed
to calculate the most time-demanding intra-TAD models at 10 Kbp, 25 Kbp, and
50 Kbp resolutions, respectively.

As for the memory usage, for the TAD-level resolution modeling, the size of the
largest matrix that needs to be stored in memory for the five tested chromosomes
was 40 × 40 (Chrs Xa and Xi). For the intra-TAD modeling, the size of the Hi-C
map depends mainly on the resolution used. In our computational experiments,
with 5 Kbp resolution, the size of the Hi-C map corresponding to the largest TAD
had 1576 × 1576 entries. In other words, the largest matrix needed around 20Mb of
memory.

According to the above analysis, GEM-FISH does not need extensive memory
resource, and the final 3D models of the chromosomes at 5 Kbp resolution can be
calculated within one day.

FISH protocol based on in situ nick translation. Human IMR90 fibroblast cells
(ATCC, CCL-186) were purchased from ATCC and cultured in Dulbecco’s
Modified Eagle’s medium (DMEM) (high glucose, Gibco cell culture medium,
Fisher Scientific Company) with 1% penicillin-streptomycin solution (Gibco), 1%
non-essential amino acids (Gibco) and 10% foetal bovine serum (FBS, Gibco), and
then attached on slides before DNA FISH.

DNA probe libraries were generated with bacterial artificial chromosome (BAC)
(L3 covered by CTD-2053M15, Chr21:31,187,325-31,298,669; L1 covered by RP11-
1133B5, Chr21:31,641,247-31,776,629; and L2 covered by CTD-3175I1, Chr21:
32,203,928-32,361,056) using nick translation.

The 3D FISH method was adapted from the previous work56 with slight
modification. More specifically, the cells were fixed with 4% paraformaldehyde,
washed twice with PBS, and then treated with 0.1 M pH 7.4 Tris-HCl. Next, the
cells were treated with 0.1% saponin and 0.1% Triton X-100 in PBS for 10 min and
washed twice with PBS. Then the cells were incubated with 20% glycerin at room
temperature for 20 min, and freeze-thawed in liquid nitrogen three times. After
being washed with PBS, the cells were treated with 0.1 M HCl solution at room
temperature for 30 min, and then washed with PBS. After that, 0.5% saponin and
0.5% Triton X-100 solution were employed for membrane penetration. After being
cleaned with PBS, the cells were balanced in 50% formamide and 2× SSC solution
for at least 10 min. Probes and cells were incubated on the hybrid instrument
(Thermobrite, IRIS) after being mixed, and then were incubated at 75 °C for 5 min,
37 °C for 12–18 h. After hybridization, the cells were washed three times with
washing buffer which included 0.2% CA-630 and 2× SSC, and sealed with
mounting medium containing DAPI (2 μg/ml).

The nick translation reaction system contained 10 x DNA polymerase buffer,
10 x DNase I buffer, 1 mM dATP/dCTP/dGTP mixture, 1 mM 2:1 ratio dTTP/
Fluorescent dUTP (Alexa Fluor 488-dUTP, Alexa Fluor 594-dUTP, Alexa Fluor
647-dUTP, Invitrogen, U.S.A.), 200U DNase I (NEB), 10U DNA polymerase I
(NEB), 1 ~ 2 μg BAC plasmid DNA (Thermofisher) and ddH2O. The mixture was
incubated at 15 °C for 1.5 ~ 2.5 h. Then 2 μl 0.5 M EDTA was added, incubated at
65 °C for 5 min. After that, 50 μg salmon sperm DNA, 5 μg human Cot-1 DNA, 3
M sodium acetate, and anhydrous ethanol were added and mixed, stored at −80 °C
overnight. After centrifuging at 4 °C, the probes were dissolved with hybridization
buffer.

The slides were imaged with 100× oil immersion objective on LSM780 (Zeiss
Company, Jena, Germany) and 100× oil immersion objective on Nikon A1 (Nikon
Instruments Inc., Japan). The spatial distances between every two signals and the
volumes of nuclei were measured accordingly.

Quantification of FISH images. Surface rendering, 3D reconstruction, measure-
ment of the nucleus volume, and the distance measurement between every two
signals in every cell were performed with the help of the commercial software
Imaris (version 9.2.1, Bitplane AG, Switzerland). Every distance was normalized by
the corresponding nuclear volume, which was derived based on the quantification
by Imaris through 3D reconstruction and quantification.

Datasets used. The Hi-C and FISH data of the human IMR90 cell line can be
downloaded from NCBI GEO GSE635258 and [https://www.sciencemag.org/
content/353/6299/598/suppl/DC1]9, respectively. The ChIP-Seq data for the
IMR90 cell line can be downloaded from NCBI GEO: GSE38442 (H3K9me3)57,
GSM469966 (H3K27ac)58,59, GSM469970 (H3K4me3)58,59, GSM521895
(H3K4me1)58,59, GSM521890 (H3K36me3)58,59, GSM469968 (H3K27me3)58,59,
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GSM521911 (H3K79me2)58,59, GSM521895 (H3K4me1)58,59, GSM521900
(H3K4me2)58,59, and GSM521933 (Control)58,59. The RNA-Seq data and the
DamID-Seq data of Nup153 for the IMR90 cell line can be downloaded from
GSE8783160.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding author upon
reasonable request. The source data underlying Supplementary Tables 2, 4–7, 10–13 and
Supplementary Figures 17, 42, 43, 44, 45, 46, 47, 48, and 49 are provided as a Source Data
file. A reporting summary for this article is available as a Supplementary Information file.

Code availability
GEM-FISH was implemented using Matlab 2014b, and its source code can be
downloaded from https://github.com/ahmedabbas81/GEM-FISH.
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