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Staphylococcus haemolyticus is one of the most significant coagulase-negative

staphylococci, and it often causes severe infections. Rapid strain typing of pathogenic

S. haemolyticus is indispensable in modern public health infectious disease control,

facilitating the identification of the origin of infections to prevent further infectious

outbreak. Rapid identification enables the effective control of pathogenic infections,

which is tremendously beneficial to critically ill patients. However, the existing strain typing

methods, such as multi-locus sequencing, are of relatively high cost and comparatively

time-consuming. A practical method for the rapid strain typing of pathogens, suitable for

routine use in clinics and hospitals, is still not available. Matrix-assisted laser desorption

ionization-time of flight mass spectrometry combined with machine learning approaches

is a promising method to carry out rapid strain typing. In this study, we developed a

statistical test-based method to determine the reference spectrum when dealing with

alignment of mass spectra datasets, and constructed machine learning-based classifiers

for categorizing different strains of S. haemolyticus. The area under the receiver operating

characteristic curve and accuracy of multi-class predictions were 0.848 and 0.866,

respectively. Additionally, we employed a variety of statistical tests and feature-selection

strategies to identify the discriminative peaks that can substantially contribute to strain

typing. This study not only incorporates statistical test-based methods to manage the

alignment of mass spectra datasets but also provides a practical means to accomplish

rapid strain typing of S. haemolyticus.
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INTRODUCTION

Staphylococcus haemolyticus is one of the most significant
species among the coagulase-negative staphylococci (CoNS),
whose main ecological niches are skin and the human and
animal mucous membranes (Becker et al., 2014). They are
often the causative agents of septicemia, peritonitis, otitis, and
urinary tract infections. In particular, the multidrug resistance,
the early acquisition of resistance to methicillin, and various
glycopeptide antibiotics by this species has troubled patients
for many years (Froggatt et al., 1989; Hiramatsu, 1998). Strain
typing of pathogenic S. haemolyticus forms an important part
of the response to modern public health infectious disease
outbreaks (MacCannell, 2013). For example, an outbreak of
S. haemolyticus had been reported to be the cause of burn
wound infections after a serious explosion event in Taiwan
during June 2015 (van Duin et al., 2016; Chang et al., 2018).
Rapid typing of S. haemolyticus facilitates the identification of
the origin of infection, and allows rapid infection control when
patients are critically ill. Consequently, a cost effective and rapid
identification strategy that targets strain typing issues is essential
and needs to be incorporated in routine clinical microbiology
laboratory practices.

Whole-cell matrix-assisted laser desorption ionization-time
of flight mass spectrometry (MALDI-TOF MS) is widely
used in clinical microbiology laboratories worldwide. This is
because MALDI-TOF MS allows rapid, reliable, and cost-
effective identification of bacterial species (Vrioni et al., 2018;
Wang et al., 2018c). The MALDI-TOF mass spectrum contains
extensive information regarding the matter that constitutes
microorganisms. In addition to the identification of bacterial
species, MALDI-TOF MS has the potential to allow strain
typing and/or antibiotic resistance profiling with high accuracy
when machine learning methods are also implemented (Croxatto
et al., 2012; Mather et al., 2016). Compared to the other
strain typing methods, such as pulse-field gel electrophoresis
and multi-locus sequence typing (MLST), analysis by MALDI-
TOF MS to determine strain type is advantageous owing to its
lower cost and rapid turn-around-time (Wang et al., 2018b).
Strain typing via MALDI-TOF MS is promising; however,
the subtle differences in MALDI-TOF MS spectra of different
strains has hindered the introduction of this type of analysis
in a clinical context in the absence of incorporation of
computational methods (Sandrin et al., 2013; Camoez et al.,
2016). Numerous methods have been developed in recent years
to overcome this drawback in strain typing by MALDI-TOF
spectrum analysis. The visual examination of a MALDI-TOF
pseudo-gel or spectrum to pinpoint strain-specific peaks has
been implemented by some research groups (Wolters et al.,
2011; Josten et al., 2013). Visual examination of the MALDI-
TOF MS is easy in practice, but the analytical accuracy is
highly dependent on the operator. Inter-batch and/or intra-
batch analytical variation is extremely likely. Moreover, visual
examination of a MALDI-TOF MS or pseudo-gel is labor-
intensive. Analyzing complex proteomic data, such as those
obtained by MALDI-TOF MS, by visual examination often does
not attain the appropriate level of precision, adequate objectivity,
and/or a high enough throughput.

With the rapid advancements in artificial intelligence,
machine learning-based methods have been implemented to
identify classifiers when facing such classification problems
(Mather et al., 2016; Wang et al., 2018b). More specifically,
the logistic regression (LR), support vector machine (SVM),
the decision tree (DT), the random forest (RF), and k-nearest
neighbor (KNN) approaches have been widely implemented to
build classifier model systems. In recent years, the application
of machine learning-based methods in the field of medicine
has received considerable attention, and several studies have
demonstrated that the use of artificial intelligence to analyze
complex data in medical practice is apposite and promising
(Shameer et al., 2018; Hannun et al., 2019). Specifically, machine
learning-based classifiers allowing professional diagnosis of
retinopathy (Gulshan et al., 2016), can be used to analyze
electrocardiography data (Hannun et al., 2019), and have been
used to predict the prognoses of diseases (Wang et al., 2016;
Yu et al., 2016; Lin et al., 2018). In addition to image analysis,
applying machine learning-based methods to proteomic studies,
specifically MALDI-TOF MS investigations, has assisted in
attaining high accuracy in strain type prediction and/or strain
antibiotic resistance (Wang et al., 2018a,b,c). Machine learning-
based methods are able to utilize the signal intensities of specific
peaks in their predictions, and this provides additional and more
improved information than those obtained by the traditional
method based on the presence or absence of peaks (Walker
et al., 2002; Wolters et al., 2011; Lasch et al., 2014). In addition
to providing robust prediction accuracy, machine learning-
based methods, when analyzing MALDI-TOF MS, are also able
to generate sets of discriminative peaks that are essential for
accurate prediction. These specific sets of discriminative peaks
can be used to pinpoint the possible combinations of molecules
that are responsible for the various strain types and the variation
in drug resistance profiles (Vrioni et al., 2018).

As mentioned previously, slight differences in MALDI-TOF
MS results among different strains should be considered critical
in preprocessing the spectral data. Specifically, the determination
or extraction of representative features is essential before
constructing the classifiers. Yet, little research is being done
to develop a definitive strategy to solve such issues, not to
mention incorporating statistical tests. In this study, we first
developed a statistical test-based strategy for dealing with the
alignment issue for the MALDI-TOF MS according to the mass-
to-charge ratio (m/z) values, and further considered the signal
intensity to construct the classification models. Various machine
learning algorithms were trained and validated with the aim
of discriminating the ST3, ST42, and various other STs of S.
haemolyticus. We also investigated the discriminative peaks that
are central to strain typing of S. haemolyticus with MALDI-TOF
MS. This approach will not only be beneficial in rapid outbreak
control for S. haemolyticus infection but also provide a definite
strategy for preprocessing the spectral data.

MATERIALS AND METHODS

Bacterial Isolates
A total of 254 unique S. haemolyticus isolates had been collected
at Chang Gung Memorial Hospital, Linkou branch, Taiwan. The
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period of collectionwas between June andNovember 2015, which
was the period when a significant number of burn patients were
admitted to the hospital. The isolates were stored at −70◦C until
use. This was a retrospective study investigating the relation
between MS spectrum and microbial strain typing. No diagnosis
or treatment was involved by the study. Waiver of informed
consent was approved by the Institutional Review Board of
Chang Gung Medical Foundation (No. 201600049B0).

Analytical Measurement of MALDI-TOF MS
To carry out the analysis, we cultivated the isolates on blood
agar plates (Becton Dickinson, MD, USA) initially in a batch
manner. The isolates were cultured in 5% CO2 incubator for
16 h. We then conducted the analytical measurements required
forMALDI-TOFMS followingmanufacturer’s instructions. First,
we picked a single colony from a blood agar plate and spread
it onto a steel target plate as a thin film (Bruker Daltonik
GmbH, Bremen, Germany). One µl of 70% formic acid (Bruker
Daltonik GmbH, Bremen, Germany) was then applied onto the
steel target plate followed by drying in room air. One µl of
matrix solution (Bruker Daltonik GmbH, Bremen, Germany)
was then added. After the sample preprocessing, a MicroFlex LT
mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany)
using a linear positive model was used for data acquisition. For
each batch, a Bruker Daltonics Bacterial test standard (Bruker
Daltonik GmbH, Bremen, Germany) was analyzed to allow
calibration. The sampling setting of the laser shot was 240 shots
(20Hz) for each isolate. The MALDI-TOF MS spectra were
analyzed using Biotyper 3.1 software (Bruker Daltonik GmbH,
Bremen, Germany). The analytical range of each spectrum
was 2,000-20,000 m/z. S. haemolyticus identification was set
at high confidence (score > 2 in the reports of Biotyper
3.1 software). Furthermore, FlexAnalysis 3.3 (Bruker Daltonik
GmbH, Bremen, Germany) was also implemented to acquire
the numerical spectra data which derived from MALDI-TOF
MS. Specifically, the original signals were smoothed by Savitzky-
Golay algorithm and their baselines were subtracted by the top
hat method. Meanwhile, some thresholds that were adopted
to extract reasonable peaks were setup as explained below:
signal-to-noise ratio was 2, relative intensity and minimum
intensity were both 0, maximal number of peaks was 200,
peak width was 6, and height was 80%. On the basis of the
single measurements, we hypothesized that strain typing of S.
haemolyticus is possible when the variability issue is handled
using information engineering technology.

Multilocus Sequence Typing of
S. haemolyticus
We defined the strain typing of S. haemolyticus by sequencing
seven housekeeping genes, namely arc, SH1200, hemH, leuB,
SH1431, cfxE, and RiboseABC (Panda et al., 2016). The
sequencing results of these genes were used to assign the sequence
types of S. haemolyticus throughout the present analysis using the
MLST database (https://pubmlst.org/shaemolyticus/) powered
by the BIGSdb genomics platform (Jolley et al., 2018).

MS Data Preprocessing for Classifiers
Construction
Several computational tools have been developed for the
preprocessing and extraction of features from MS data (Wong
et al., 2005; Mantini et al., 2007; Gibb and Strimmer, 2012).
More specifically, spectral data preprocessing would transform
a set of raw spectra into a numerical table which include
mass-to-charge (m/z) states with associated intensity for each
isolate. Generally, m/z values with adequate intensities are
considered as the fingerprint signatures when using spectral
data, and these can be extracted to build up models for
discriminating different subgroups. Note that a peak has an m/z
value. As a result, a valuable analysis would highly depend on
the appropriate use of preprocessing techniques. The MS data
derived from FlexAnalysis 3.3 were of high quality, but their
resulting peaks were not aligned within the dataset. Meanwhile,
the aforementioned tools lack of specific information about
the reference spectrum when implementing the alignment of
peaks. Therefore, we developed a statistical test-basedmethod for
determining the reference spectrum within a given dataset, then
further realizing the alignment of the peaks.

The reference spectrum should be capable of discriminating
between different subgroups within a dataset. Consequently, we
mainly focused on determining what pattern of peaks in the
reference spectrum can indicate the differences among different
groups in this study. For each spectrum, we first rounded each
m/z value to the nearest whole number, and then all peaks that
occurred were used to form a set of named candidate peaks set
(CPS). The peaks in CPS were then sorted into ascending order.
After a tolerance value is suggested, each adjacent peak in the CPS
is either lower than or is equal to the given tolerance value; in such
circumstances, the one with the higher difference in occurring
ratio is retained. The difference in occurring ratio for m/z= k, in
Dalton (Da), is defined below.

Dk =
1

3
{|
x1

n1
−

x2

n2
| + |

x1

n1
−

x3

n3
| + |

x2

n2
−

x3

n3
|},

where x1, x2, and x3 are the counts that are aligned to m/z
= k, and n1, n2, and n3 are the number of isolates for ST3,
ST42, and other ST types, respectively. For example, suppose
that the tolerance value is 1 Da, and the CPS = (2428 Da, 2429
Da, 2435 Da, 2436 Da, 2437 Da, 2450 Da) with D2428 = 0.053,
D2429 = 0.090, D2435 = 0.080, D2436 = 0.094, D2437 = 0.076,
and D2450 = 0.120, then the final m/z values, 2429 Da, 2436 Da,
and 2450 Da, are then used to create the representative peaks set
(RPS), which has an ascending order. In other words, the RPS
is the reference spectrum and feature set used to construct the
classification models.

To analyze the common peaks across the datasets given
in this study, we employed Fisher’s exact test (Raymond and
Rousset, 1995) to determine a tolerance value for constructing
the RPS due to relatively small sample sizes. For each tolerance
value, there are three p-values determined by comparing ST3
and ST42, ST3 and other ST types, and ST42 and other ST
types. As mentioned previously, the reference spectrum should
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be capable of discriminating between different subgroups within
a dataset, and the tolerance value could be adopted according
to its ability of separating these three groups. Therefore, the
tolerance value was selected based on the obtained reference
spectrum that would produce the largest number of p-values
that were less than 0.001. We then further adopted the repeated
5-fold cross validation to demonstrate the efficiency of the
determined tolerance value. Note that the determination of CPS
and RPS was based on the training data when the repeated 5-fold
cross validation was used. In other words, the repeated 5-fold
cross validation was implemented here to simulate an external
validation for evaluation of the performance in the determination
of the reference spectrum. The flowchart of preprocessing is
shown in Figure 1.

After determining the RPS, the alignment of the m/z with
intensity is another critical part of the process, whereby the
strength of signal at a specific m/z is determined. Therefore, in
these circumstances, it is straightforward tomove the specificm/z
value of an isolate to the closest one in the RPS. As the tolerance
value increases, more than one m/z values might be aligned to
the same specific m/z in the RPS. In this situation, the intensity
with the minimum distance between its own m/z and the specific
m/z, is preserved. Hence, duplication problems can be solved.
For instance, if both m/z = 2530 Da and m/z = 2535 Da in a
spectrum are aligned to 2532 Da, which is a member of the RPS,
the intensity of the m/z = 2530 Da is used for representing the
strength of signal at 2532 Da. Supplementary Figure 1 illustrates
how this alignment takes place.

Development of Machine Learning-Based
Classifiers
In this study, we implemented four machine learning methods;
multiple logistic regression (MLR), support vector machine
(SVM) learning, decision tree (DT) learning, and random forest
(RF) learning, to construct the strain type classifiers for S.
haemolyticus using R software (version 3.5.1, R Foundation
for Statistical Computing, https://www.r-project.org/). MLR is a
basic parametric model used in dealing with the present types of
classification problems. The primary objective of SVM is to find
a hyperplane that is able to segregate different classes of data and
therefore it is commonly used to solve classification problems.
DT and RF are both non-parametric tree-based strategies. Owing
to the small size of data, the unsophisticated structure of DT can
help us interpret the important features of the data more clearly.
On the other hand, RF can provide evaluation metrics for the
features and thus is able to identify the important features used
during the model construction.

The glmnet package (Friedman et al., 2010) of R was applied
during this study to construct the MLR model. More specifically,
the MLR model can be defined as

P(G = k|X = x) =
exp(β0k + βT

k
x)

∑K
j=1 exp(β0j + βT

j x)

where K is the number of levels of the response variable, and G=

(1, 2, . . . , K) is the set of levels. Note that this parameterization
is not estimable due to identical probabilities. However,

regularization is able to deal with this. Hence the MLRmodel can
be obtained by maximizing the penalized log-likelihood

max
{β0j ,βj}K1 ∈RK(p+1)

{
1

N

N∑

i=1

log pgi (xi)− λ

K∑

j=1

Pα(βj)}

where pj(xi) = P(G = j|xi), and gi ǫ (1, 2, . . . , K) is the
ith response. Therefore, MLR-based classifiers are able to be
constructed by adopting this package.

The SVM classifier was built using the e1071 package (Chang
and Lin, 2011). In this package, the multi-class problem is
approached via the “one-against-one” approach (Knerr et al.,
1990). Consequently, there are K(K-1)/2 classifiers that are
needed to be constructed for K classes. In this study, the SVM-
based classifier was required to construct three classifiers due to
the presence of three classes.More precisely, the training data was
used to form the ith and jth classes and was able to deal with the
following two-class classification problem.

max
wij , bij , ξ ij

{
1

2
(wij)

T
wij + C

∑

t

(ξ ij)t}

subject to

(wij)
T
φ(xt)b

ij ≥ 1− ξ ij, if xt in the ith class,

(wij)
T
φ(xt)b

ij ≤ −1+ ξ ij, if xt in the jth class,

ξ ij ≥ 0.

Following this, a voting strategy is adopted, the class with
the maximum number of votes is considered to be the most
probable one.

The DT-based classifier was implemented using the caret
package (Therneau and Atkinson, 2018) of R. Specifically,
the package mainly provides classification and regression trees
(CART). Furthermore, the randomForest package (Liaw and
Wiener, 2002) of R was also employed in this study to construct
a random forest-based classifier. The package mainly provides
an R interface using a Fortran program developed by Breiman
(2001). Ensemble learning and bagging are the two important
concepts used when creating the random forests. Furthermore,
a random forest is a classifier consisting of a collection of tree-
structured classifiers (Breiman, 2001). Therefore, according the
voting results, we should be able to obtain the prediction for
a specific data-set. In addition, RF provided the functions, that
allow the evaluation of the effect of features during model
construction. The mean decrease in accuracy and mean decrease
in node impurity are provided by randomForest package (Liaw
and Wiener, 2002). Note that the impurity is defined as

I(p) = 1−
J∑

i=1

p2i

where pi is the probability of correct classification.
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FIGURE 1 | Flowchart of preprocessing of spectral data given that the tolerance value is 5. The incidence ratio was determined by the number of the isolates among

the CPS. Dk was defined as the total difference between the incidence ratios.

In addition to the aforementioned multiclass classification
approaches, we also adopted these methods when examining
binary classification in order to better distinguish ST3 and
ST42. The same package was implemented for this process,
but in this case using the binary option. For instance,
logistic regression (LR) was used to construct the binary
classification model using the glmnet package (Friedman et al.,
2010). Similarly, for SVM, DT, and RF, the same packages
were adopted.

Statistical Analysis
It is important to note that we were concerned not only
with the frequency of the peaks, but also with the intensity
of a specific peak among the multiple spectra, which is also
a critical in discriminating these three groups. Therefore,

in order to compare differences in intensities of specific
peaks among these three groups, the Kruskal–Wallis test
(Kruskal and Wallis, 1952) and Kendall’s tau coefficient
(Kendall, 1938) were both adopted as part of this study.
Moreover, to obtain the ability of an individual peak to
distinguish between the three groups, the area under the
receiver operating characteristic curve (AUC) was taken into
consideration. Note that to deal with multi-class performance
evaluation, the pROC package (Robin et al., 2011) in R
was implemented in order to obtain an estimation for the
multi-class AUC (Hand and Till, 2001). When comparing the
difference between two independent samples, the Wilcoxon
rank-sum test was employed, and it was also implemented to
compare cross validation performance. To find the optimal
cut-off points for each ROC curve during binary classification,
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the OptimalCutpoints package (López-Ratón et al., 2014)
was applied.

Evaluation Metrics of the Classifiers
To evaluate the performance of the classifiers constructed by
the aforementioned machine learning methods, the stratified
5-fold cross validation technique was implemented. The first
procedure of the stratified 5-fold cross validation splits the
dataset into 5 groups, preserving the percentage of data for
each class. Then, one group is left as the testing dataset,
while the remaining groups form the training dataset. The
classification model was built according to the training dataset
and was evaluated using the testing dataset. Note that each group
was a testing dataset. Consequently, we obtained 5 prediction
performances for these 5 groups. The average accuracy and
the AUC among the five testing sets were determined in order
to compare the performance when constructing the multiclass
classifiers. As a result, the AUC was calculated by using the
pROC package (Robin et al., 2011) in R. By way of contrast, we
used sensitivity, specificity, accuracy, and AUC when evaluating
the binary classification performance. More specifically, suppose
that the class of ST42 is labeled as 1, these metrics are defined
as follows:

SN =
TP

TP + FN

SP =
TN

FP + TN

ACC =
TP + TN

TP + TN+FP + FN
,

where TP means the true positives and refers to the number of
ST42 that were correctly predicted by the classifier, TN means
true negatives and refers to the number of ST3 that were correctly
predicted by the classifier, FP means false positives and refers
to the number of ST42 that were incorrectly predicted by the
classifier, and FN means false negative and refers to the number
of ST3 that were incorrectly predicted by the classifier.

Feature Selection Strategies
In addition to applying the importance evaluation from RF,
we also developed two strategies, the stepwise strategy and the
forward strategy, to find the peaks that needed to be considered
as classifiers. More specifically, these two strategies were adopted
when constructing the multi-class RF-based classifiers in order
to obtain the peaks that are essential when distinguishing these
three groups.

FIGURE 2 | Distribution of the dataset. (A) Pie chart showing the distribution of dataset. (B) Number of identified peaks in each group.
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The stepwise strategy starts initially with a specific peak, such
as the one with the largest AUC, the largest absolute value of
Kendall’s tau coefficient, and so on. Further, the next peak to be
selected must attain the largest AUC or accuracy when combined
with the currently selected peak(s) among those peaks that have
not been selected. The process is then repeated until the AUC or
the accuracy does not increase anymore.

When using the forward strategy, the peaks must be sorted
into a specific order. For example, the peaks can be sorted by their
AUCs in the descending order. Then the forward strategy would
follow this order to adding new peaks if the new one is able to
increase the AUC or accuracy. Otherwise, the peak will not be
regarded as a helpful feature when constructing the classifier, and
thus will be discarded.

FIGURE 3 | Proportion of significance for different tolerance values. Fisher’s exact test was employed to examine the difference between two different ST types. The

p-values were derived by the average of three p-values.

FIGURE 4 | Mass spectra before and after peak alignment. The left panel is the number of spectra appearing the specific peaks under the original signal of the mass

spectra and the right panel is after the alignment strategy with tolerance value 5.
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FIGURE 5 | Boxplot of the accuracy and AUC for the repeated 5-fold cross

validation when the tolerance value is 5.

The sensitivity of both these strategies is dependent on the
selection of the initial peak. In other words, the first selected
peak will affect different peak combinations and thismay produce
different performances. Moreover, different criteria are likely
also to result in different combinations. In this study, both
AUC and the accuracy are two of the major concerns when
building themulti-class classifiers. On the other hand, the balance
between the sensitivity and specificity also needs to be taken into
consideration. Nevertheless, the major aspects of the evaluation
still are dependent on the AUC and the accuracy.

RESULTS

Summary Statistics of Spectra Data
Among the 254 isolates used in the present study, 62 isolates
were ST3, 145 isolates were ST42, and 47 isolates were neither
ST3 nor ST42 and formed a separate group of strains. The
details of the other ST types show in Supplementary Table 1.
Given that we aimed to develop and validate a rapid S.
haemolyticus strain typing tool, we designed the classes based
on the local epidemiology, whereas ST3 and ST42 accounted for
the majority of strains. In clinical practice, the developed tool
would provide preliminary strain typing information, notifying
clinical physicians if the isolate of interest is of the major ST

types. When the isolate of interest is classified by the model as a
major ST type, outbreaks from the origin should be suspected and
further investigation could be initiated immediately. As noted,
this classification was determined by the local epidemiology of S.
haemolyticus in Taiwan. Figure 2 demonstrates the data statistics
and the distribution of number of peaks identified for each group.
On an average, the number of peaks identified in the range 2,000
Da to 17,000 Da was 76.48, with a standard deviation of 13.46.
More specifically, the average number of peaks identified for
ST3 was 77.03, while that of ST42 was 77.68, and the number
of peaks identified for the other ST types was 72.04. Although
the number of peaks identified for the other ST types seemed to
be lower than that for the other two strains, the Kruskal-Wallis
rank sum test did not show a significant difference between the
three groups (p = 0.0586). When spectra signal intensity was
examined, the average (standard deviation) normalized intensity
across the three groups was 0.16 (0.18). The average normalized
intensity of ST3 was 0.13 (0.16), while that of ST42 was 0.17
(0.19), and that of the other group of ST types was 0.18 (0.18).
The normalized intensity of ST3 seemed to be lower than that of
other two groups and the result of the Kruskal-Wallis rank sum
test also showed that there were significant differences between
these three groups (p < 0.0001).

Determination of Tolerance Value
In the previous section, we have described the strategy
for determining the RPS using Fisher’s exact test. Figure 3

demonstrates the proportion of significance for different
tolerance values. More specifically, the proportion of significance
was determined by the number of occurring significance. Note
that the significance here indicates that the p-value of Fisher’s
exact test is <0.0001. When the tolerance value is 5, the
proportion of significance is highest. The spectra with and
without preprocessing is shown in Figure 4. In addition, Figure 5
demonstrates the performance of the 5-fold cross validation
repeated 100 times. Specifically, there were 500 independent
tests of ACCs and AUCs for evaluating whether the tolerance
value was robust enough. These results implied that the tolerance
value was adequate for further analysis. The AUC of different
classifiers under different tolerance values, which are shown
in Figure 6, demonstrated that the AUC was able to attain a
value of 0.8 with a low standard deviation for the tolerance
value of 5. Therefore, we used a tolerance value 5 for the
feature selection because of its robustness. Table 1 shows the
mean ± standard deviation of the accuracy and AUC values for
the 5-fold cross validation using the different machine learning
methods. Wilcoxon rank sum test was then used to compare
their performances. It should be noted that the p-value next to
the accuracy/AUC column is from the Wilcoxon rank sum test
results and this was employed to compare the accuracy/AUC
when using the MLR method on the test data during 5-fold cross
validation. Furthermore, we also found that the RF values tended
to be robust due to the presence of a lower standard deviation
compared to other methods for the different tolerance values
present in Figure 5. Hence the feature selection strategies, when
implemented to find important features, used RF. It should be
noted that the number of peaks in RPS was 583 for a tolerance
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FIGURE 6 | Performance of different classifiers. Mean and standard deviation AUC of the 5-fold cross validations for the different tolerance values using different

machine learning methods.

TABLE 1 | Performance of 5-fold cross validation.

Accuracy p-value AUC p-value

MLR 0.819 ± 0.028 – 0.808 ± 0.074 –

SVM 0.858 ± 0.029 0.0937 0.839 ± 0.060 0.5476

DT 0.840 ± 0.046 0.4005 0.804 ± 0.012 0.6905

RF 0.866 ± 0.014 0.0196 0.848 ± 0.037 0.3095

Mean ± standard deviation accuracy and AUC of the 5-fold cross validations for the

multiclass classifications using different machine learning methods when the tolerance

value is 5. The p-values were derived by comparing with MLR. MLR, multiclass logistic

regression; SVM, support vector machine; DT, decision tree; RF, random forest.

value of 5 and thus it was these 583 features that were used
to construct the multi-class classifiers used to discriminate the
three groups.

Results of Feature Selection Strategies on
RF-Based Classifiers
Table 2 demonstrates the results of the two feature strategies
when RF was used to construct the classification models. The
forward strategy was highly dependent on the order of inclusion
of the features. On the other hand, the starting peak in the
stepwise strategy was critical. Both these strategies demonstrated
that a reduction in the number of features appeared to increase
the accuracy or AUC. In other words, the selected peaks were

found to be highly correlated with S. haemolyticus and were able
to distinguish between the three groups of ST strains.

A total of 10 models were constructed by adopting different
feature selection strategies and selecting different peaks. We
next identified the peaks that were selected in more than five
models and these were regarded as discriminative peaks. Table 3
shows the occurrence and proportions of these discriminative
peaks. From this table it can be seen that the ST42 isolates
almost always present the peaks 4999 and 6496, explicitly they
were present in over 90% of samples. However, neither ST3
nor ST42 ever presented the peak 5635. In addition, Figure 7
presents the whole spectral incidence for the three groups, and
specifically focuses on the area from 4700 to 7100 Da, which
allows closer observation of the behavior of the discriminative
peaks. Specifically, the red bars show the differences between
these three groups that seem to be critical to constructing the
classifiers. When considering the intensity, Table 4 presents the
means and standard deviations of the normalized intensities of
the discriminative peaks. Since the incidence tends to be small,
and the normalized intensity is between 0 and 1, the average
values also tend to be low. Nevertheless, some peaks still showed
strong intensity. For example, peaks 6781, 6496, and 4999 still
have relatively large intensity values. The Kruskal-Wallis test was
employed to test difference among the three groups and when
there was a difference between two groups, the p-value tended
to be lower. Hence the p-values in Table 4 are very small. It
should be noted that these discriminative peaks are the ones that
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TABLE 2 | Performance of feature selection.

RF

Strategy Start up # peaks Accuracy AUC p-value

Stepwise AUC 21 0.918 ± 0.024 0.921 ± 0.025 0.0079

Kendall’s tau 26 0.906 ± 0.008 0.897 ± 0.049 0.2222

KW 20 0.902 ± 0.030 0.917 ± 0.042 0.0952

IMP 27 0.910 ± 0.008 0.926 ± 0.020 0.0079

Forward AUC 18 0.897 ± 0.032 0.896 ± 0.026 0.0952

Kendall’s tau 35 0.901 ± 0.024 0.893 ± 0.047 0.2222

FE 25 0.902 ± 0.023 0.898 ± 0.035 0.0556

KW 26 0.906 ± 0.031 0.902 ± 0.061 0.2222

IMP-ACC 22 0.882 ± 0.032 0.864 ± 0.059 0.7533

IMP-GINI 28 0.874 ± 0.034 0.836 ± 0.037 0.5476

No 583 0.866 ± 0.014 0.848 ± 0.037 -

Mean ± standard deviation accuracy and AUC of the 5-fold cross validation of RF

using different numbers of peaks selected by the forward and stepwise feature selection

strategies using different orders of peaks and the corresponding performance using

RF. AUC, area under the curve; FE, Fisher’s exact test; KW, Kruskal-Wallis test; IMP-

ACC, importance measure calculated by mean decreased accuracy using RF; IMP-GINI,

importance measure calculated by mean decreased impurity using RF.

TABLE 3 | Number of occurrence peaks (proportions) and average p-values using

the Fisher’s exact test for the discriminative peaks.

Peak Type 3 Type 42 Others p-value

4673 40 (0.645) 5 (0.034) 5 (0.106) 0.022

5129 49 (0.790) 25 (0.172) 18 (0.383) 0.001*

4999 62 (1.000) 138 (0.952) 35 (0.745) 0.035

5635 0 (0.000) 0 (0.000) 12 (0.255) 0.333

6466 31 (0.500) 3 (0.021) 23 (0.489) 0.333

2499 52 (0.839) 59 (0.407) 33 (0.702) 0.035

3390 15 (0.242) 107 (0.738) 27 (0.574) 0.015

3411 20 (0.323) 70 (0.483) 1 (0.021) 0.015

5036 43 (0.694) 43 (0.297) 17 (0.362) 0.157

6496 30 (0.484) 136 (0.938) 15 (0.319) 0.039

6781 21 (0.339) 129 (0.890) 26 (0.553) 0.011

*Indicated that the p < 0.01.

are often selected using the various different feature selection
strategies shown in Table 2. Moreover, the boxplots in Figure 8

can be used to demonstrate the distribution of intensities among
the different ST types. According toTable 3, the intensity in event
of a lower incidence tends to be smaller. This can also be seen in
Figure 8 for peaks such as 4674 and 4659.

Classifier for Discriminating ST3 and ST42
Table 5 shows the performance of the classifiers used to
distinguish ST3 and ST42. Since the majority of data available
was for ST42, the specificity of these classifiers tended to be
higher. Even so, the AUCs among the different classifiers also
showed impressive results. In both Figures 7, 8, it can be seen
that the incidence and intensities are evidently different for some
specific peaks.

DISCUSSION

This is a study that focused on the strain typing of S. haemolyticus
based on the MALDI-TOF MS utilizing statistical tests and
machine learning methods simultaneously. Specifically, the
Fisher’s exact test was employed to determine the reasonable
tolerance values on preprocessing the spectra data. We have
not only constructed machine learning-based classifiers that
allow for different feature selection strategies, but have also
employed statistical tests to compare the performance of the
various discriminative peaks related to the different ST types. The
rapid identification of S. haemolyticus strain types will facilitate
the identification of origins of infection and will also provide
critically-ill patients with substantial benefits because it will allow
for rapid infection control. Additionally, further exploration of
the discriminative peaks will allow the identification of each
corresponding peptide. Such findings should provide clinically
valuable information pertaining to the different subtypes of
S. haemolyticus.

Previous studies used “type templates” for each ST type based
on the incidence of specific peaks in their MALDI-TOF MS
spectra in order to handle the issue of peak shifting; furthermore,
log-transformed intensity was used to represent corresponding
signal strength for each peak (Wang et al., 2018a,b). These studies
also used the signals with the highest incidence probability in
a local region (± 5 m/z) as the center of each peak feature.
In other words, determining the local region was based on the
incidence probability without the adoption of any statistical tests.
In this study, we used statistical analysis and also measured
the performance of classifiers. Such an approach involving
measurement of the tolerance value is an excellent approach for
dealing with the peak shift problem present when using spectral
data. As the tolerance value increases, the number of peaks in the
RPS decreases, and vice versa. The reason is that a larger tolerance
value may lead to the alignment of more discriminative peaks
with the same specific peak. In contrast, a lower tolerance value
results in a paucity of data. Specifically, in these circumstances,
much less data can be aligned to the same specific peak, which
produces a reduced amount of training data and eventually
results in poor performance. In such circumstances we used
both Fisher’s exact test, and an evaluation of the variation
in performance of different classifiers with different tolerance
values. In short, the variation among different classifiers and
tolerance values was taken into consideration and this increased
the robustness of our model. When the tolerance value was 5,
the significance value was the largest and the standard deviation
among the 5-fold cross validation analysis tended to be lower.
Therefore, we used 5 as the final tolerance value when creating
the RPS using 583 peaks.

There are a variety of machine learning methods that can
be used for modeling different types of data. In this study,
we adopted a number of relatively uncomplicated models to
construct the classifiers. These uncomplicated methods are
readily interpreted, which makes interpretation of the peak
results easier and allows the initiation of further investigations
into specific peaks simpler. Multinomial logistic regression
is a generalized logistic regression model that is used for
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FIGURE 7 | Overview of processed MS data. Occurrence proportions among the three groups over the range from 2,000 to 17,000 Da and zoomed in for the range

4,900 to 7,100 Da. The red areas include peaks 4548, 4673, 4999, 5036, 5129, 5635, 6466, 6496, and 6781, which are the important peaks when constructing the

RF-based classifiers.

handling multi-class problems and is one of the most common
parametric statistical models. Our major concern in adopting
the multinomial logistic regression model was multicollinearity.
When the dependency among different independent variables
is high, the estimators can be misinterpreted, and this may
increase the prediction bias (Myers and Myers, 1990). Although
the performance of MLR, as shown in Table 1, tended to be
lower than other methods, the estimation of the parameters
does seem to provide some information about the discriminative
peaks. In other words, the estimators of the MLR were able
to reveal which peaks potentially correlated with different ST
types. It should be noted that a consideration of the standard
errors of these estimators is an important reference point that
can be used to avoid the multicollinearity effects. This is because
there are few restrictions on the use of non-parametric methods
such as SVM, DT, and RF. Their primary weakness is the
time required for training the model when they use large scale

datasets. However, this was not an issue in this study due to the
relatively limited amount of data. Consequently, the performance
of the non-parametric methods was better than that of MLR.
Furthermore, the performance of RF was more robust than other
methods. This is possibly due to two of the essential concepts
of RF, namely ensemble learning and bagging. Previous studies
also have reported the various advantages of RF (Boulesteix et al.,
2012). In this study, we have also demonstrated that RF not only
provides the highest accuracy and AUC, but it also retains the
lower standard deviation.

Only a slight variation at the bacterial subspecies level is
observed when they are compared using mass spectra (Lasch
et al., 2014; Wang et al., 2018b). Nevertheless, until now, no
studies have been able to identify the discriminative peaks when
discriminating the different ST types of S. haemolyticus based
on MALDI-TOF MS spectral data. Therefore, we used a variety
of different strategies in order to identify the discriminative
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peaks that are very likely to be highly related to the different
ST types. An exploration of the discriminative peaks is highly
dependent on the feature selection strategy and the machine

TABLE 4 | Means (standard deviation) and p-values using the Kruskal–Wallis test

for the discriminative peaks.

Peak Type 3 Type 42 Others p-value

4673 0.052 (0.049) 0.003 (0.026) 0.011 (0.032) <0.001*

5129 0.209 (0.200) 0.031 (0.094) 0.094 (0.150) <0.001*

4999 0.769 (0.307) 0.350 (0.236) 0.455 (0.427) <0.001*

5635 0.000 (0.000) 0.000 (0.000) 0.126 (0.266) <0.001*

6466 0.145 (0.185) 0.003 (0.025) 0.118 (0.155) <0.001*

2499 0.151 (0.120) 0.057 (0.083) 0.222 (0.207) <0.001*

3390 0.030 (0.062) 0.132 (0.110) 0.103 (0.111) <0.001*

3411 0.024 (0.040) 0.054 (0.065) 0.002 (0.011) <0.001*

5036 0.115 (0.102) 0.032 (0.082) 0.076 (0.109) <0.001*

6496 0.108 (0.151) 0.338 (0.210) 0.089 (0.174) <0.001*

6781 0.065 (0.119) 0.247 (0.162) 0.108 (0.126) <0.001*

*Indicated that the p < 0.01.

learning method. It is important to note that the performance
of RF is relatively robust and that it is also less time-consuming
during training; in these circumstances, we largely adopted
feature selection using RF for this study. The stepwise strategy
is similar to the brute force method when used to find the
best combinations for the classifiers. Consequently, the results
of the stepwise strategy are generally better than those of the
forward strategy. Furthermore, there is only one model that did
not include peak 4673, which strongly supports peak 4673 as a
discriminative peak. In addition, peak 5129 was not selected by
two models, as shown in Figure 8, indicating that the normalized
intensities across the three groups for this peak are apparently
different. In addition, both Figure 8 and Table 3 show that the
occurrence ratio is also significantly different across the three
groups. Specifically, ST42 rarely presented peaks 4673 and 5129,
while ST3 usually presented peaks at m/z 4673 and 5129. Further
experiments are needed to identify the peptides corresponding to
these peaks.

Although the machine learning-based classifiers has
demonstrated impressive performance in this study for
distinguishing different ST types of S. haemolyticus, there are

FIGURE 8 | Boxplots for the normalized intensity for the discriminative peaks.
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TABLE 5 | Performance of binary classifier.

Sensitivity Specificity Accuracy AUC

LR 0.890 ± 0.062 0.968 ± 0.044 0.913 ± 0.045 0.919 ± 0.051

SVM 0.931 ± 0.055 0.983 ± 0.037 0.947 ± 0.032 0.969 ± 0.021

DT 0.938 ± 0.037 0.904 ± 0.032 0.928 ± 0.033 0.919 ± 0.024

RF 0.951 ± 0.031 1.000 ± 0.000 0.966 ± 0.022 0.972 ± 0.020

Mean ± standard deviation sensitivity, specificity, accuracy, and AUC of 5-fold cross

validation for binary class classification using different machine learning methods when

tolerance value is 5. LR, logistic regression; SVM, support vector machine; DT, decision

tree; RF, random forest.

still some limitations. One major concern is that subspecies
composition of the microbial strains may differ in different
bacterial populations or in different regions of the world. In
such circumstances the construction of machine learning-based
classifier-based method might break down because these
groups have different discriminative peaks for these subspecies.
Even so, the machine learning-based classifier approach, in
conjunction with the associated statistical tests, still provides a
novel framework for analyzing MALDI-TOF MS data. Another
critical issue that has been identified in the previous studies
is the reproducibility of the mass spectra when MALDI-TOF
MS is being used in bacterial typing (Walker et al., 2002;
Wolters et al., 2011; Croxatto et al., 2012; Sandrin et al., 2013).
There are a variety of factors involved in the reproducibility
of the mass spectra and these include sample processing
and specimen type (Josten et al., 2013; Sandrin et al., 2013;
Mather et al., 2016). As of yet no standard protocol has been
proposed for strain typing by MALDI-TOF MS. Nevertheless,
a standard protocol should be optimized and specified for
each species in order to achieve a robust performance when
strain typing (Walker et al., 2002; Sandrin et al., 2013).
The College of American Pathologists accreditation and
proficiency test has been conducted for years to ensure the
performance and quality standards of personnel and tests at
Chang Gung Memorial Hospital, Linkou Branch. Therefore,
on the basis of previous qualified MALDI-TOF MS workflow
and data used here, the constructed classification models
used in this study are readily available for S. haemolyticus
strain typing.

Our study has demonstrated a method of developing robust
classifiers for discriminating different ST types of S. haemolyticus
based on MALDI-TOF MS data. The multi-class classifier
demonstrated an AUC of 0.848 and accuracy of 0.886 when

discriminating these three groups. If we only consider binary
classification for ST3 and ST42, the AUC reaches an excellent
discrimination power of 0.972. The constructed classifiers were
able to provide instant information when identifying the origin
of infection, which will allow rapid infection control. As a
result, we believe that we have hereby developed a cost effective
and rapid identification method for the strain typing of S.
haemolyticus. This provides a great opportunity for further
improvement of this new protocol and its introduction into
routine clinical microbiology laboratory practices in order to
attain rapid infection control. Furthermore, the explicit strategy
for the determination of representative peaks before constructing
the classifiers provides some indications for those who are
interested in further analysis of spectra data.
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