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Cellular dynamics of neuronal
migration in the hippocampus
Kanehiro Hayashi, Ken-ichiro Kubo, Ayako Kitazawa and Kazunori Nakajima*

Department of Anatomy, Keio University School of Medicine, Tokyo, Japan

A fine structure of the hippocampus is required for proper functions, and disruption of

this formation by neuronal migration defects during development may play a role in some

psychiatric illnesses. During hippocampal development in rodents, pyramidal neurons in

the Ammon’s horn are mostly generated in the ventricular zone (VZ), spent as multipolar

cells just above the VZ, and then migrate radially toward the pial surface, ultimately

settling into the hippocampal plate. Although this process is similar to that of neocortical

projection neurons, these are not identical. In addition to numerous histological studies,

the development of novel techniques gives a clear picture of the cellular dynamics of

hippocampal neurons, as well as neocortical neurons. In this article, we provide an

overview of the cellular mechanisms of rodent hippocampal neuronal migration including

those of dentate granule cells, especially focusing on the differences of migration modes

between hippocampal neurons and neocortical neurons. The unique migration mode of

hippocampal pyramidal neurons might enable clonally related cells in the Ammon’s horn

to distribute in a horizontal fashion.

Keywords: hippocampus, migration, climbing mode, Ammon’s horn, dentate gyrus, layer pattern

Introduction

The hippocampal formation is a unique structure comprising the Ammon’s horn (the hippocampus
proper), dentate gyrus, entorhinal cortex, parasubiculum, presubiculum, and subicular complex. In
the rodent brain, this architecture is located on and around the convexly curved medial lobule of
the lateral cortex and is dorsally continuous with the neocortex. The hippocampus is a part of the
limbic circuit and is functionally associated with spatial learning, as well as short- and long-term
memory. In addition, functional magnetic resonance imaging (fMRI) analyses of some neuropsy-
chiatric disorders have indicated its involvement in various types of mental activities; for exam-
ple, decreased hippocampal volume was reported in patients with depression or post-traumatic
stress disorder (PTSD) (Campbell et al., 2004; Woon et al., 2010). Anatomical abnormalities in
the hippocampus are also observed in pathological conditions of some neuropsychiatric disorders,
such as epilepsy, lissencephaly, and schizophrenia (Baulac et al., 1998; Harrison, 2004; Donmez
et al., 2009). Some of these symptoms are thought to be associated with the migration deficit of
hippocampal neurons during development (Barkovich et al., 1991; Dobyns et al., 1996; Montene-
gro et al., 2006). Neuronal migration in the neocortex is well-studied, and the cellular dynamics
and molecular mechanisms involved in neuronal migration are also well-understood. Because the
hippocampus and neocortex are included in the cerebral cortex, their neuronal migration was
thought to be similar. However, differences in neuronal migratory behavior between these regions
exist. Studies on cellular behavior of hippocampal neurons are broadly classified into two cate-
gories in terms of their methods, classical cellular labeling and molecular biological approaches.
Classical techniques, such as Golgi staining and [3H] thymidine autoradiography labeling, were
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used to discover neuronal origins, cellular arrangements, neu-
ronal migration paths, and neuronal morphologies in the hip-
pocampus (Bayer, 1980; Nowakowski and Rakic, 1981; Rakic
and Nowakowski, 1981; Altman and Bayer, 1990a,b,c). Further-
more, the development of molecular biological approaches, such
as in utero electroporation, in utero virus transfer, and genera-
tion of transgenic mice, has shed light on the cellular dynamics of
migrating neurons, successive behavior of neurons, neuronal lin-
eages, and molecular mechanisms of hippocampal development
(Nakahira and Yuasa, 2005; Li et al., 2009; Kitazawa et al., 2014;
Seki et al., 2014; Xu et al., 2014).

In this review, we describe cellular dynamics and molec-
ular mechanisms of migration of pyramidal neurons in the
Ammon’s horn and granule cells in the dentate gyrus during
hippocampal development. There are three distinct hippocampal
neuroepitheliums—the Ammonic neuroepithelium, the primary
dentate neuroepithelium, and the fimbrial glioepithelium (Alt-
man and Bayer, 1990a). Pyramidal neurons in the Ammon’s horn
are mainly generated from the Ammonic neuroepithelium and
undergo radial migration to reach their final destination (Alt-
man and Bayer, 1990b; Nakahira and Yuasa, 2005; Kitazawa et al.,
2014), whereas cells comprising the dentate gyrus are originally
produced from the primary dentate neuroepithelium (dentate
notch), move in a migratory stream, and then migrate radially to
form the dentate granule cell layer (Altman and Bayer, 1990a,c;
Nakahira and Yuasa, 2005; Li et al., 2009; Seki, 2011; Li and Plea-
sure, 2014; Seki et al., 2014). We also compare neuronal migra-
tion between the neocortex and the hippocampus proper during
development.

Migration of Neocortical Pyramidal
Neurons

Before describing migration of hippocampal neurons, we briefly
outline migration of pyramidal neurons during rodent neocor-
tical development (Figure 1A) to compare the migration mode
between hippocampal pyramidal neurons and neocortical neu-
rons (for a detailed illustration of neocortical neuronal migration,
see reviews by Tabata et al., 2012; Evsyukova et al., 2013; Tan and
Shi, 2013; Sekine et al., 2014). Pyramidal neurons generated in the
neocortical ventricular zone (VZ) undergo morphological trans-
formation before migrating up beneath the marginal zone (MZ),
as summarized below.

Neocortical pyramidal neurons are generated from radial glial
cells in the VZ (Miyata et al., 2001; Noctor et al., 2001) or from
basal progenitors or basal radial glia in or around the subven-
tricular zone (SVZ) (Noctor et al., 2004; Shitamukai et al., 2011;
Wang et al., 2011). Neurons produced in the VZ remain there for
at least 10 h with an apical process reaching the ventricular sur-
face. The cells then move to just above the VZ (multipolar cell
accumulation zone, MAZ), where they assume multipolar mor-
phology and stay for about 1 day (Tabata and Nakajima, 2003;
Tabata et al., 2009). Multipolar neurons in the MAZ repeatedly
extend and retract multiple thin processes, and slowly wander
and move toward the cortical plate (CP) (Tabata and Nakajima,
2003; Tabata et al., 2009). This unique behavior of multipolar
neurons is called “multipolarmigration.” Themultipolar neurons
then transform into bipolar cells with a leading process extending

FIGURE 1 | Schematic diagrams of migration and layer arrangement

on the neocortex and hippocampal CA1 during cortical development.

(A) Neocortical neurons born between E10 and E12 radially migrate using the

somal translocation mode. In contrast, late-born neurons transform their

migration mode sequentially to multipolar migration, locomotion mode, and

terminal translocation mode during their radial migration. These neurons

form neocortical layers in a birthdate-dependent inside-out manner.

(B) Hippocampal CA1 neurons born at late developmental stages change the

migration mode to multipolar migration and then to the climbing mode. The

migration mode used by early-born CA1 neurons remains unknown (somal

translocation mode is a candidate). The layer arrangement in the Ammon’s

horn is thought to occur roughly in a birth-date dependent inside-out manner

(another claim was also reported; see text for details). PP, preplate; VZ,

ventricular zone; MZ, marginal zone; CP, cortical plate; IZ, intermediated zone;

MAZ, multipolar cell accumulation zone; WM, white matter; HP, hippocampal

plate; SLM, stratum lacunosum-moleculare; SR, stratum radiatum; SP, stratum

pyramidale; SO, stratum oriens.

from a spindle-shaped cell body. These bipolar neurons migrate
radially through the intermediated zone (IZ) and the CP along
with a radial glial fiber. This migration mode is called “locomo-
tion” (Rakic, 1972; Nadarajah et al., 2001). When the leading
process of migratory neurons reaches the MZ, the neurons are
thought to anchor the tip of the leading process in the MZ and
leave from the radial glial fiber. Then, the neuronal cell body
is pulled up while shortening the leading process and the cells
stop just beneath the MZ (Nadarajah et al., 2001; Sekine et al.,
2011). This final migration mode is termed “terminal translo-
cation.” Neurons born in the mouse VZ at E14, for example,
take about 4–5 days to complete their migration (Ajioka and
Nakajima, 2005). Because newly generated pyramidal neurons
pass through earlier-born neurons before reaching beneath the
MZ, pyramidal neurons are arranged in a birth-date-dependent
inside-out manner, in which earlier-born neurons are positioned
in the deep layers and later-born neurons are located in the more
superficial layers in the CP (Angevine and Sidman, 1961).

Migration of Hippocampal CA1 Pyramidal
Neurons

The Ammon’s horn is compartmentalized into the CA1, CA2,
and CA3 along with the transverse axis, and horizontally divided
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into several ordered layers—stratum oriens, stratum pyrami-
dale (SP or the pyramidal cell layer), stratum radiatum (SR),
and stratum lacunosum-moleculare (in only the CA3 region, the
stratum lucidum exists between the SP and the SR). Pyramidal
neurons in the hippocampal CA1 region are generated in the
Ammonic neuroepithelium mainly from E16 to E20 with the
peak around E18–19 in rats (Bayer, 1980; Altman and Bayer,
1990a,b), and from E12 to E18 with the peak between E14 and
E16 in mice (Angevine, 1965; Caviness and Sidman, 1973; Smart,
1982; Kitazawa et al., 2014). Because the generation of pyramidal
neurons and neuronal behaviors during development are differ-
ent between the hippocampal CA1 and the CA3, we describe
migratory behaviors of CA1 pyramidal neurons first and then
those of CA3 neurons later (details of CA2 pyramidal neuronal
migration are not well-known). Pyramidal neurons in the hip-
pocampal CA1 region are mostly generated in the VZ, while a
small population is produced from basal progenitors in the SVZ
(Kitazawa et al., 2014). The newly born neurons leave the VZ and
stay just above the VZ. These post-mitotic cells transform into
multipolar cells with multiple thin processes and slowly move
toward the IZ with repeated extension and retraction of these
processes (Nakahira and Yuasa, 2005; Kitazawa et al., 2014). Exis-
tence of these multipolar neurons in the Ammon’s horn has also
been identified in the rabbit (Stensaas, 1967a,b) and the mon-
key (Nowakowski and Rakic, 1979). The time length of assuming
multipolar morphology above the VZ (or in the hippocampal
MAZ) differs depending on birthdates; neurons born at E12 or
E13 stay as multipolar cells within 1 day, whereas those gener-
ated at E15 or E16 densely accumulate in the MAZ as multi-
polar cells for 3–4 days (Kitazawa et al., 2014). When late-born
CA1 pyramidal neurons (generated from E14 to E16) move into
the IZ, they transform into a bipolar spindle-shaped morphol-
ogy, with one major leading process and multiple thin processes
extending toward various directions (Nakahira and Yuasa, 2005;
Kitazawa et al., 2014). These spindle-shaped neurons migrate
through the IZ toward the hippocampal plate (HP, future stra-
tum pyramidale), but sometimes transform their morphology
back to a multipolar morphology. Upon observation of fixed tis-
sue sections, the neurons seem to migrate along with radial glial
fibers in the IZ, even when the fibers bend and curve (Nakahira
and Yuasa, 2005). Recent time-lapse imaging has revealed that
neurons in the IZ move obliquely at first and gradually migrate
radially (Kitazawa et al., 2014), which coincides with the track
of radial fibers. Nowakowski and Rakic also identified the appo-
sition of neurons with radial glial fibers in the IZ of the monkey
hippocampus in electronmicroscopic analyses (Nowakowski and
Rakic, 1979). Just before neurons enter the HP, they extend one or
two major branched leading process(es) with multiple thin pro-
cesses (Nowakowski and Rakic, 1979; Kitazawa et al., 2014) and
touch multiple radial glial fibers at the tip or the middle of the
branched processes (Kitazawa et al., 2014). When they migrate
through the HP, they dynamically extend and retract branched
leading processes as if they were searching for the radial glial
fibers. On the other hand, the cell soma of the migrating neuron
moves up to the first branching point of the leading process. Sub-
sequently, one of the branches grows and becomes a new leading
process, followed by the movement of the cell soma again to the

first branching point of the new leading process. In the HP of
the CA1, migratory neurons repeat this process, thereby chang-
ing their migration scaffold (radial glial fiber) one after another
until they reach the top of the HP. Consequently, hippocampal
pyramidal neurons move in a zigzag manner, in contrast to the
almost straight path of neocortical migrating neurons. Because
this hippocampal migration mode is different from the well-
known modes of migration, it was termed a “climbing mode”
(Kitazawa et al., 2014) (Figure 1B).

The Difference between Migration of
Hippocampal CA1 Pyramidal Neurons and
that of Neocortical Neurons

There are a couple of similarities in the mode of neuronal migra-
tion between the hippocampal CA1 and the neocortex. One is the
place of neuronal production, which is located in the VZ and SVZ
in both structures. Neurons are generated near the ventricle and
principally migrate toward the pial surface. The second similarity
is the transformation into multipolar morphology when neurons
migrate out of the VZ. The neurons reside in the MAZ for some
time, and then transform into a bipolar morphology. However,
there are also several major differences between the regions, such
as migration mode, length of time required for completion of
migration, and alignment pattern of the pyramidal neurons.

During development, neocortical neurons migrate in locomo-
tion and terminal translocation modes through the CP (Nadara-
jah et al., 2001; Sekine et al., 2011; Evsyukova et al., 2013),
while pyramidal neurons in the hippocampal CA1 region adopt
a climbing migration mode, at least during the late stages of hip-
pocampal development. Neocortical neurons in the locomotion
mode migrate almost straight along individual radial glial fibers
in the CP. In the outermost region of the CP [primitive cortical
zone, PCZ (Sekine et al., 2011)], they take the terminal translo-
cation mode before stopping beneath the MZ. In contrast, hip-
pocampal neurons in the climbing migration mode migrate in
a zigzag manner using several scaffold radial glial fibers in the
HP (Kitazawa et al., 2014). The migratory speed for each migra-
tion mode is also different. The average migrating speeds of hip-
pocampal CA1 neurons in the climbing mode and neocortical
neurons in the locomotion mode are 7.1 and 20.5µm/h, respec-
tively (Kitazawa et al., 2014). The speed of neocortical neurons in
the terminal translocation mode is much faster, up to 50µm/1–
2 h (Sekine et al., 2011). Neocortical migrating neurons in a loco-
motionmode basically use a single radial glial fiber as the scaffold,
whereas hippocampal neurons proceed using multiple radial glial
fibers. The difference in these processes may bring about the dif-
ference in migration speed. Because cell density in the HP in
late developmental stages is much greater than in the CP, with
exception of the PCZ, it may be difficult for hippocampal CA1
neurons to migrate straight, unlike locomoting neurons in the
neocortical CP. Because the Ammon’s horn is widely extended
during development (Altman and Bayer, 1990b), it is thought
that pyramidal neurons born near the ventricle may need tomove
obliquely using the climbing mode of migration to fill up layers
without gaps.
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The second difference is the time spent migrating. Hippocam-
pal CA1 pyramidal neurons generated at E15 or E16 spend
7–9 days to reach their final destinations (Tomita et al., 2011;
Kitazawa et al., 2014), whereas it takes only 4–5 days for the neo-
cortical late-born neurons to migrate beneath the MZ, although
the migratory distance is much longer in the neocortex. This
difference is observed not only in mice, but also in rats (Alt-
man and Bayer, 1990b) and monkeys (Nowakowski and Rakic,
1981). Two factors apparently cause this difference. One is the
difference in neuronal migration speed as mentioned above. The
other is the time period when neurons remain in the MAZ as
multipolar cells, termed “sojourning” cells by Altman and Bayer
(1990b). Neocortical neurons spend about 1 day in the MAZ
(Tabata et al., 2009). In contrast, the hippocampal CA1 neu-
rons generated in late embryonic days spend almost 3 days in
the MAZ, while this period varies depending on their birth-
dates (Nakahira and Yuasa, 2005; Kitazawa et al., 2014). Why
do hippocampal neurons generated during late stages stay in the
MAZ so long? There are at least two possibilities. One is the
existence of alveolar channels, which are cell-free transient extra-
cellular matrices dispersed in the IZ, just above the MAZ (Alt-
man and Bayer, 1990b). Altman and Bayer displayed that this
matrix becomes filled with axonal fibers of an unknown origin,
and suggested that multipolar cells in the CA1 region might wait
for the appearance of this matrix because of the connection to
these axons (Altman and Bayer, 1990b). In addition, Deguchi
et al. exhibited that neurons born with the same birthdate in
the CA1, CA3, and dentate gyrus had similar gene expression
patterns and preferentially connected with each other (Deguchi
et al., 2011). Multipolar cells in the CA1 region may leave from
the MAZ after CA3 neurons extend their axons and connect
with them. In contrast, we showed that axon bundles appeared
just above the MAZ at E15 and E16. These axon bundles origi-
nated from earlier-born neurons in the hippocampal CA1 region,
and when they were transfected with GFP at E13.5, for exam-
ple, the labeled axon bundles were located just above the mul-
tipolar cells at E18.5 (Kitazawa et al., 2014). The appearance of
these axonal bundles coincided with the accumulation of mul-
tipolar cells in the hippocampal MAZ. CA1 neurons born on
earlier days spend a much shorter time in a multipolar mor-
phology and reach the pial surface in a short time, whereas axon
bundles are not observed above multipolar cells in these earlier
days (Kitazawa et al., 2014). Axonal bundles from earlier-born
neurons may interfere with the migration of late-born pyrami-
dal neurons. Future studies are needed to better understand the
behavior of multipolar cells.

Finally, the pattern of neuronal alignment in the hippocam-
pus may be different from the neocortex. Labeling experiments
using [3H] thymidine indicate that hippocampal laminar forma-
tion occurs in a birthdate-dependent inside-out pattern in which
earlier-born neurons comprise the deep SP region and later-born
neurons join the superficial region, which is similar to the neo-
cortical layer formation (Bayer, 1980; Rakic and Nowakowski,
1981; Altman and Bayer, 1990b). Recently, Xu et al. reported
that hippocampal clonally related neurons in the CA1 region
are distributed in a horizontal manner, not in a vertical col-
umn as neocortical neurons, shown using retroviral labeling and

transgenic mice to label clonally related cells (Xu et al., 2014).
The authors claimed that hippocampal layer formation did not
occur in a birthdate-dependent inside-out pattern, contrary to
previous reports. In addition to differences in their analytical
method, this disparity might be explained as follows. Because
neurons born on a certain day are distributed rather widely in
the SP with a birthdate-dependent peak position, neurons with
different birthdates are mixed with each other, obscuring the
inside-out pattern. In addition to the birthdate-dependent posi-
tioning in the vertical/radial axis, however, it is also reason-
able that the clonally related neurons are horizontally aligned.
Because the SP (or HP) in the Ammon’s horn region is hor-
izontally expanded during development and is not as thick as
the CP in the neocortex, this suggests the difficulty of clonally
related neurons in the hippocampus proper to be aligned in a
vertical manner like neocortical clonal neurons. Even if neurons
in the HP of the Ammon’s horn tend to align in an inside-
out pattern, they would also move to cover spaces in the layer
yielded by the structural expansion, resulting in lateral/horizontal
expansion of clonally related neurons. The climbing mode of
migration is thought to be suitable to fill up gaps in the layer,
because neurons in this mode can move to various directions,
enabling clonal sister neurons to distribute broadly within the
layer. Bending of radial glial fibers near the HP/SP would also
be partly related to horizontal distribution of sister neurons (Xu
et al., 2014), but similar bending of radial glial fibers beneath
the CP/subplate is also observed in the neocortex, especially
in the lateral part (Tabata and Nakajima, 2001), indicating that
the bending morphology of radial fibers cannot fully explain
the horizontal distribution of sister neurons in the hippocam-
pus. Schematic models of neuronal behaviors in the neocortex
and the Ammon’s horn during development are illustrated in
Figure 1.

Migration of Hippocampal CA3 Pyramidal
Neurons

The SP in the CA3 region has a unique U-shaped curve that
reaches the dentate hilus. In rats, the HP appears from E18 and
expands curvilinearly until E21, at which time the layer begins to
medially expand and forms a U-shaped structure by E22 (Alt-
man and Bayer, 1990b). The CA3 pyramidal neurons have a
neurogenic gradient such that pyramidal neurons near the CA1
region are generated earlier than those near the dentate gyrus
(Bayer, 1980). The neurogenesis gradient from ventral to dor-
sal is also observed in the CA3 region. The neurogenesis of CA3
pyramidal neurons takes place in the VZ between E16 and E20,
with a peak between E17 and E18 in rats, which is earlier than
the generation of hippocampal CA1 neurons that peak around
E18 and E19 in rats (Bayer, 1980; Altman and Bayer, 1990a,b).
The generated neurons move to just above the VZ and trans-
form into a multipolar morphology, similar to CA1 pyramidal
neurons (Nakahira and Yuasa, 2005). However, CA3 neurons
remain longer in the MAZ than CA1 neurons. In mice, neu-
rons generated in the CA3 region at E14 exhibit multipolar mor-
phology even at E18, while CA1 pyramidal neurons born at the
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same time have already migrated into the HP (Nakahira and
Yuasa, 2005). This phenomenon is also observed in rats using
administration of [3H] thymidine (Altman and Bayer, 1990b).
Reports have shown that the sojourning period for CA3 pyrami-
dal neurons assuming a multipolar morphology is 1 day longer
than for CA1 neurons (Altman and Bayer, 1990b; Nakahira and
Yuasa, 2005). Altman and Bayer hypothesized that multipolar
cells in the CA3 region might wait for a connection with gran-
ule cells of the dentate gyrus, resulting in a longer sojourning
time (Altman and Bayer, 1990b). Again, the report by Deguchi
et al. showed that neurons generated at the same time in differ-
ent sub-regions connect preferentially with each other (Deguchi
et al., 2011), which may also explain a longer sojourn to wait for
a connection with dentate gyrus cells. The CA3 pyramidal neu-
rons accumulate in the MAZ for 4 days then migrate upward.
The migration modes of CA3 pyramidal neurons are thought
to be similar to CA1 pyramidal neurons, though only a limited
number of studies have been reported on the behavior of hip-
pocampal CA3 pyramidal neurons (Nakahira and Yuasa, 2005).
Interestingly, Nakahira and Yuasa also found that neurons gen-
erated at E16 in the mouse CA3VZ migrate tangentially toward
the subpial area, and that some neurons then detach from the
stream and migrate radially, with a unipolar shape, along with
radial glial fibers directed to the HP of the CA3 region (Nakahira
and Yuasa, 2005). This neuronal behavior is different from CA3
neurons generated at E14. Although the CA3 neurons born at
E16 account for only a small portion (Bayer, 1980), multiple
migration modes may exist for CA3 neurons depending on their
birthdates.

The major difference between the CA1 and the CA3 dur-
ing hippocampal development is the layer shape. The HP in the
CA1 is mildly curved and in parallel with its ventricular surface,
whereas the CA3 HP has a U-shape with one end invading the
dentate hilus. This end is apart from the VZ. Considering that
neurons at this end of the HP are also generated from the VZ in
the CA3, the long journey for the migrating cells is thought to
be one of the causes of delayed HP formation in the CA3, which
occurs 1 day later than HP formation in the CA1 (Altman and
Bayer, 1990b).

Although the CA1 and the CA3 are continuous architectures
via the CA2, pyramidal cells in each region express specific mark-
ers; for example, SCIP, a POU domain transcriptional factor, in
CA1 pyramidal neurons (Frantz et al., 1994; Tole et al., 1997),
and KA1, a glutamate receptor subunit, in CA3 neurons (Wisden
and Seeburg, 1993; Tole et al., 1997). Interestingly, these mark-
ers are already expressed in each cell group at E15.5 in mice,
when the cells are still localized in the IZ (Tole et al., 1997).
Explant culture experiments performed by Tole et al. revealed
that this marker is expressed in a cell-autonomous manner (Tole
and Grove, 2001). Therefore, the destination of cells comprising
the HP in the CA3 is thought to already be determined at, or soon
after, the multipolar cell stage. For future CA3 pyramidal cells,
especially those in the HP end of the dentate hilus, the climb-
ing migration mode may be adequate for migration and detours
to reach their final positions. Eventually, CA3 pyramidal neu-
rons might migrate more horizontally through the HP than CA1
pyramidal neurons.

Migration of Cells Comprising the Dentate
Gyrus

Since Altman found postnatal neurogenesis in the subgranular
zone (SGZ) of the dentate gyrus (Altman, 1963), it is well-
established that the dentate gyrus is one of the two regions where
adult neurogenesis occurs. Compared with studies on adult neu-
rogenesis, the development of the dentate gyrus and migratory
dynamics of granule cells have been less extensively studied. The
generation and migration of dentate cells during development
are complex and quite different from pyramidal neurons in the
Ammon’s horn (Figure 2). Dentate cells are generated in the pri-
mary dentate neuroepithelium located around the dentate notch,
which is ventral to the Ammonic VZ and dorsal to the fimbria at
E16 and E17 of rats (Altman and Bayer, 1990c) and at E13.5 and
E14 in mice (Li et al., 2009; Seki et al., 2014). By E15.5 in mice
(E18 in rats), some cells that are generated in the primary den-
tate VZ (Altman and Bayer, 1990c; Seki et al., 2014) migrate out
to the subpial region through the suprafimbrial region, which is

FIGURE 2 | Schema of migration of dentate cells during hippocampal

development. Newborn granule cells from the dentate notch migrate to the

secondary dentate matrix (SDM) (indicated by a brown arrow). The cells then

migrate to the subpial surface to form the outer part of the dentate granule cell

layer (light blue arrow 1), followed by the dentate hilus (light blue arrow 2),

which is called the tertiary dentate matrix (TDM) at this stage, to later form the

inner part of the layer. Cells in the TDM exhibit proliferative activities into

adulthood, although the proliferative region becomes restricted to the

subgranular zone. In contrast, pyramidal neurons in the hippocampal CA1 and

neocortex are generated in the Ammonic ventricular zone and the neocortical

ventricular zone, respectively, and migrate in a radial direction (indicated by

magenta and black arrows, respectively).
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designated as “dentate migration.” During this migration, these
cells still exhibit proliferative activity and form the secondary
dentate matrix (SDM in Figure 2) on the migratory route (Alt-
man and Bayer, 1990c; Pleasure et al., 2000). On the migrating
stream, the cells extend many processes to various directions
(Nakahira and Yuasa, 2005), and the migration route of gran-
ule cells and progenitors are separated into two routes. One is
the “first dentate migration” in which early-born cells migrate to
the crest of the dentate gyrus through the subpial route (route 1
in Figure 2) (Altman and Bayer, 1990c). The dentate cells in the
subpial region also exhibit highly proliferative activity (Li et al.,
2009). Themorphologies of cells in the subpial region are diverse;
for example, bipolar morphology and multipolar cell morphol-
ogy (Nakahira and Yuasa, 2005). This diversity is probably owing
to the variety of cellular maturation. The cells reaching the sub-
pial region radially migrate toward the supra-granular blade of
the dentate gyrus apposed to the radial glial fibers (Nakahira and
Yuasa, 2005). At this stage, these cells form a unipolar or bipo-
lar shape with one or two branches (Nakahira and Yuasa, 2005).
The dentate granule cells in the subpial region first form the outer
shell of the supra-granular blade of the dentate gyrus, and then
gradually shift to form the outer shell of the infra-granular blade
of the dentate gyrus. Around E17.5 and 18.5 in mice, a proto-
type of the dentate gyrus can be observed (Seki et al., 2014).
In late embryonic and early postnatal days, the “second den-
tate migration” appears in which the cells migrate toward and
reach the future dentate hilus (route 2 in Figure 2). Because these
cells still exhibit proliferative activity even in the hilus, the zone
where these cells exist is called the tertiary dentate matrix (TDM
in Figure 2). Dentate neurons generated from the TDM form
the inner part of the dentate gyrus. As a result, dentate granule
cells in the dentate granule cell layer adopt a birthdate-dependent
outside-in pattern, in which earlier-born neurons locate to the
outer part of this layer and later-born neurons position to the
inner region (Rakic and Nowakowski, 1981; Altman and Bayer,
1990c). Although neurogenesis in the TDM continues into adult-
hood, this zone becomes gradually restricted to the boundary
between the dentate granule cell layer and the hilus, called the
SGZ (Altman and Bayer, 1990c). Bayer suggests that granule cells
in the dentate gyrus are generated from E15 to adulthood in rats,
and about 80–85% of total granule cells are generated after birth
(Bayer, 1980).

Seki et al. traced the granule cells using a glial fibrillary acidic
protein (GFAP)-GFP transgenic mouse line (Seki et al., 2014).
GFAP was not thought to be a marker for “embryonic” progen-
itors of dentate granule cells, although GFAP is a well-known
marker for “adult” progenitors. Seki et al. found that migrating
progenitors of dentate granule cells, unlike those of neocortical
pyramidal neurons, express GFAP from the beginning of dentate
development, and these cells could be traced using a GFAP-GFP
transgenic mouse line. Immunohistochemical analyses using this
transgenic mouse line showed maturation of granule cells during
migration. For example, neurogenin-positive proneural cells are
mainly localized in the VZ, whereas Tbr2-positive early neural
progenitors are principally located in the migratory stream and
the developing dentate gyrus. NeuroD-positive immature neu-
rons are mostly located in the migratory stream, the developing

dentate gyrus, and the hilus, whereas prox1-positive granule cells
are positioned in the developing dentate gyrus and the hilus.
Sox2-positive progenitor cells are distributed all over the dentate
gyrus at E18 in mice. Accordingly, while these granule cells grad-
ually mature during migration, cells in each region are heteroge-
neous as to their degree of maturation. How this heterogeneous
group could migrate along the same route is not yet known.

Molecular Mechanism of Neuronal
Migration in the Hippocampus

A number of mutant mouse lines or the introduction of shRNA-
expression vectors for various genes into neurons in utero have
been used to show abnormal layer formation andmis-positioning
of neurons in the Ammon’s horn and the dentate gyrus during
hippocampal development. Some of the examples are summa-
rized below.

Reelin (and Related Molecules, ApoER2, VLDLR,
and Dab1)
Reelin is a giant glycoprotein secreted from Cajal–Retzius cells in
the MZ during development (D’Arcangelo et al., 1995; Hirotsune
et al., 1995; Ogawa et al., 1995). Reelin is known to be essential for
neuronal positioning in the brain and spinal cord (Yip et al., 2000,
2011; Honda et al., 2011; Sekine et al., 2014). For example, in the
neocortex, the reelin-deficient autosomal recessive mouse, reeler,
displays disrupted layer formation, including overall approxi-
mate inversion of the birthdate-dependent layering (Caviness,
1973). Anatomical analyses, such as [3H] thymidine injection and
in situ hybridization, disclosed that hippocampal layer formation
is also inverted in the reelermouse (Caviness, 1973; Stanfield and
Cowan, 1979a,b; Stanfield et al., 1979; Niu et al., 2004; Boyle et al.,
2011). Injection of CR-50, a function-blocking antibody against
Reelin protein, into the ventricle of mouse embryos also resulted
in a similar layer pattern to that of reelermice in the hippocampal
Ammon’s horn (Nakajima et al., 1997). Additionally, reeler mice
exhibit a divided SP in the CA1, ameandered SP in the CA3, a less
densely packed dentate gyrus, and a reduced number of granule
cells (Caviness, 1973; Stanfield and Cowan, 1979a,b; Boyle et al.,
2011).

Reelin binds to Apolipoprotein E receptor 2 (ApoER2) and
very low-density lipoprotein receptor (VLDLR) (D’Arcangelo
et al., 1999; Hiesberger et al., 1999; Trommsdorff et al., 1999),
subsequently induces phosphorylation of Disabled-1 (Dab1) by
Fyn or Src kinases, and then transduces the signal to several
downstream pathways to regulate neuronal migration and cellu-
lar positioning (Honda et al., 2011; Sekine et al., 2014). Double
KO mice of apoer2 and vldlr show similar phenotypes to those
of reeler mice. Additionally, KO mice of apoer2 show slightly
more severe SP splitting than the vldlr KO mice, while the phe-
notypes of these single KO mice are milder than those of double
KO mice (Trommsdorff et al., 1999; Drakew et al., 2002; Weiss
et al., 2003). The dab1 KO mice also exhibit the same hippocam-
pal abnormality as the reeler mice (Howell et al., 1997; Weiss
et al., 2003).

Analysis of the migratory stream of dentate cells using nestin-
GFP transgenic mice mated with reeler mice suggests that Reelin
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is not necessary for the migration of dentate precursors (Nestin-
GFP positive cells) from the dentate notch to the subpial zone, but
is indispensable for later migration of these cells from the sub-
pial zone to the granule cell layer (Li et al., 2009). Prox1-positive
granule cells in these mice are arranged abnormally in the den-
tate area, suggesting the involvement of Reelin in the final radial
migration of dentate granule cells. Forster et al. reported that
Reelin and Dab1 affect radial glial cell differentiation and branch-
ing in the hippocampus and the loss of these genes causes abnor-
mal radial fiber formation, resulting in failed neuronal migration
in the hippocampus (Förster et al., 2002). Zhao et al. rescued
reeler malformation in the orientation of radial glial fibers and
dentate cell migration in vitro during dentate gyrus development
when they adjacently co-cultured reeler dentate gyrus with rat
wild-type dentate gyrus (Zhao et al., 2004, 2006). These results
collectively imply that Reelin controls neuronal migration in
the hippocampus in cell-autonomous and non-cell-autonomous
manners.

Cyclin-dependent Kinase 5 (Cdk5)/p35
Cdk5 is a serine/threonine kinase and is activated by binding
with its regulatory co-factor p35 or p39. Cdk5 activity is rich
in brains during development, and p35 or p39 expressions are
restricted to the brain. Cdk5 regulates various aspects of neu-
ronal functions such as cell migration, cytoskeletal remodeling,
and adult neurogenesis via phosphorylation of various types of
molecules (Su and Tsai, 2011). The cdk5 KO mice are lethal by
birth and display disrupted laminar formation in the neocortex
and hippocampus (Ohshima et al., 1996). The p35 KO mice also
exhibit mis-positioning of neuronal cells in the Ammon’s horn
(partly distinct SP is observed in the CA3, but not in the CA1)
and the dentate gyrus, though the phenotypes are moderate com-
pared with cdk5 KO mice (Wenzel et al., 2001; Ohshima et al.,
2005). Cdk5 regulates multipolar-to-bipolar transition of migra-
tory neurons in the neocortex via RapGEF2 phosphorylation
(Ohshima et al., 2007; Ye et al., 2014). Because hippocampal pyra-
midal neurons also perform this transition, a similar mechanism
may also play a role during Ammon’s horn development.

Doublecortin (Dcx)
DCX is a microtubule-associated protein involved in neu-
ronal migration and a causative gene for X-linked lissencephaly
(des Portes et al., 1998; Gleeson et al., 1998). Patients with
lissencephaly with DCX mutations exhibit defects in neocortical
and hippocampal lamination (Barkovich et al., 1991). Hemizy-
gous male dcx mutant mice are lethal by early postnatal days
and display disrupted hippocampal formation, that is, abnormal
neuronal positioning/migration in the Ammon’s horn and partial
dividing of the SP in the CA3, while neocortical laminar forma-
tion and the dentate gyrus are quite normal (Corbo et al., 2002).
The dcx heterozygous female mice display milder malformation
in the hippocampus and deficits in learning and memory (Corbo
et al., 2002). KO mice of dclk1 or dclk2, doublecortin-like kinase
1 or 2, respectively, are anatomically normal in the hippocam-
pus (Deuel et al., 2006; Tanaka et al., 2006; Kerjan et al., 2009),
but the double KO mice of dcx and dclk1 show severe abnormal-
ities in hippocampal laminar formation in the Ammon’s horn

and the dentate gyrus (Deuel et al., 2006; Tanaka et al., 2006).
In contrast, double KO mice of dcx and dclk2 exhibit disrupted
laminar formation in CA1 and CA3 region and a less-packed
dentate granule layer (Kerjan et al., 2009). Considering themajor-
ity of mutant mice mentioned in this review also show abnor-
malities in the neocortex, the hippocampus and neocortex are
likely to share molecular pathways during development. Mutant
mice that exhibit malformations specifically in the hippocampal
region, such as dcx KO mice, may become a key tool to bet-
ter understand the molecular mechanisms underlying the unique
process of hippocampal development, such as the climbing mode
of migration. Analyses of dcx KO mice and double KO mice of
dcx and dclk1 or dclk2 may also provide insight into differences
between hippocampal CA1 and CA3 regions.

Pafah1b1 (formerly Lis1)
PAFAH1B1 is another causative gene for lissencephaly (Reiner
et al., 1993; Hattori et al., 1994; Lo Nigro et al., 1997). Pafah1b1
regulates microtubule-based transport by binding with Dynein
motor proteins and Ndel1 (formerly Nudel) (Sasaki et al., 2000).
Heterozygous Pafah1b1 KO mice exhibit malformations of the
hippocampal cytoarchitecture, which results from delayed neu-
ronal migration and abnormal cellular positioning (Hirotsune
et al., 1998; Fleck et al., 2000). Consequently, hippocampal lay-
ers in the Ammon’s horn become discontinuous and multiple in
this mouse, whereas granule cells in the dentate gyrus are less
concentrated and loosely packed (Fleck et al., 2000). Another
lissencephaly-associated protein, tubulin alpha 1A (Tuba1a), is
also involved in hippocampal layer formation (Keays et al.,
2007). The tuba1a S140G mutant mice induced by injection of
N-ethyl-N-nitrosourea (ENU) exhibit deficits in neuronal migra-
tion, resulting in a double layer of the hippocampal CA1 and CA3
regions, as well as abnormal laminar formation in the neocortex
(Keays et al., 2007).

Cxcl12 (SDF-1)/Cxcr4
SDF-1 is another secreted protein that regulates cellular migra-
tion (Bleul et al., 1996; Ma et al., 1998; Klein et al., 2001).
In the dentate gyrus, SDF-1 is expressed in the meninges and
Cajal–Retzius cells, whereas its receptor Cxcr4 is expressed in
migratory granule cells in the second dentate matrix and the
migratory stream (Bagri et al., 2002). Disruption of the normal
SDF-1 gradient by the ectopic SDF-1 expression to the hippocam-
pal field using electroporation into slice culture causes a deficit
in granule cell migration, suggesting SDF-1 is a chemoattrac-
tant factor for dentate migration (Bagri et al., 2002). The cxcr4
KO mice exhibit a disrupted dentate gyrus, caused by migra-
tion defects of granule cells along the subpial stream and subse-
quent radial migration (Bagri et al., 2002; Lu et al., 2002; Li et al.,
2009).

Nuclear Factor Ib (Nfib)
Nfib is a member of nuclear factors I (Nfia, b, c, and d) and func-
tions as a transcriptional factor. The nfib KOmice display abnor-
mal hippocampal formation, including the CA3, dentate gyrus,
and fimbria, which may be due to aberrant maturation of radial
glial fibers in the Ammon’s horn (Steele-Perkins et al., 2005; Barry
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et al., 2008). Although the deficient mouse exhibits normal cell
proliferation, the dentate cells accumulate in the subpial region
during dentate migration. Barry et al. suggest that this abnormal
positioning of dentate cells is attributed to failed radial migration
(Barry et al., 2008).

Disrupted-in-Schizophrenia-1 (Disc1)
DISC1 is a risk gene for major psychiatric disorders, including
schizophrenia. We have previously reported that Disc1 knock-
down by in utero electroporation causes abnormal migration of
hippocampal CA1 neurons; knockdown cells fail to enter the
pyramidal layer (Tomita et al., 2011). Disc1 is also related to
migration and positioning/integration of dentate granule cells
during development and adulthood (Duan et al., 2007; Kim et al.,
2009; Meyer and Morris, 2009). KO mice of girdin, a Disc1 inter-
acting molecule, show dispersion of granule cells in the dentate
gyrus, mis-positioning of pyramidal neurons in the CA1 and
the CA3, and split layer in the CA2 (Enomoto et al., 2009).
Knockdown of girdin in dentate granule cells results in over-
migration, as observed for the Disc1 knockdown cells. Because
other genes implicated in neuropsychiatric diseases, such asCNT-
NAP2 (Peñagarikano et al., 2011) and FMRP (La Fata et al., 2014),
are reported to be involved in neuronal migration during neo-
cortical development, it will be interesting to determine whether
these genes also affect hippocampal neuronal migration.

Hippocampal neuronal migration is controlled by extracellu-
lar factors, such as Reelin, SDF-1, and radial glial fibers, as well
as intracellular molecules as mentioned above. Both the reeler
mouse and the nfib KOmouse exhibit abnormal radial glial fibers
and disrupted dentate gyrus formation. However, both KO mice
exhibit normal dentate cell migration and cells accumulate in the
subpial region; the final migration toward the dentate layer is
conducted along radial fibers, whereas dentate migration to the
subpial region may be independent of these molecules.

Pafah1b1, Dcx, and Tuba1A regulate microtubule dynamics.
Dab1 is reported to bind to Lis1 downstream of Reelin signaling
(Assadi et al., 2003). Dcx is phosphorylated by Cdk5 at Ser297,
resulting in reduced microtubule polymerization and binding
affinity to microtubules (Tanaka et al., 2004). Cdk5 also regu-
lates the Pafah1b1-Ndel1-Dynein complex via Ndel1 phosphory-
lation (Niethammer et al., 2000; Sasaki et al., 2000). Furthermore,
Cdk5 and Reelin signaling synergistically contribute to neuronal
positioning (Ohshima et al., 2001, 2007; Beffert et al., 2004).
Therefore, microtubule dynamics is critical for migration of the
hippocampal cells, similar to neocortical neurons.

A number of mutant mice exhibiting abnormal hippocam-
pal formation also display splitting of the SP in the Ammon’s
horn, although the extent of splitting is not uniform. This may
suggest the existence of multiple migration modes for hippocam-
pal pyramidal neurons. In the rodent hippocampus, deep and
superficial sublayers are visibly distinguished by cellular density
and morphology in the ventral two-thirds of CA1 (Slomianka
et al., 2011). Slomianka et al. also reviewed the distinction of his-
tological, molecular, and connective features between deep and
superficial sublayers in the hippocampal Ammon’s horn (Slomi-
anka et al., 2011). For example, superficial pyramidal cells express

Satb2 during development, Nov and Nr3c2 in the hippocampal
CA1 in adulthood, and Kcnq5 in the CA3 (Thompson et al., 2008;
Dong et al., 2009). In contrast, deep pyramidal neurons express
Sox5 during development, Ndst4 and Astn2 in the CA1 in adult-
hood, and St18 in the CA3 (Thompson et al., 2008; Dong et al.,
2009). Furthermore, Mizuseki et al. showed physiological differ-
ences between deep and superficial sublayers in the hippocam-
pal CA1 region of rats, such as theta phase preference during
REM sleep and gamma phase preference during behavioral task
(Mizuseki et al., 2011). In the hippocampal CA1, the climbing
mode of migration is observed for late-born neurons (Kitazawa
et al., 2014). In contrast, Morest reported that hippocampal cells
extended their leading process through the HP and kept it until
they reach the pial surface during the early developmental stages
of opossum (Morest, 1970). Rodent hippocampal cells may also
use this somal-translocation-like mode, especially during early
stages of development. If this is the case, early-born neurons
and late-born neurons might use different modes of migration
and ultimately settle in their respective positions in the SP. The
distinct populations between superficial and deep layers may be
reflected by specific gene expressions and functions.

Conclusion

This review discusses the migration of pyramidal neurons in the
Ammon’s horn and granule cells in the dentate gyrus during
hippocampal development. The structure of the hippocampus is
dynamically expanded and becomes complicated during devel-
opment. Because the climbing mode of migration is a flexible
migration mode, it may be necessary for hippocampal neurons
to accommodate to this hippocampal formation. The migra-
tion of dentate cells is well-organized, while cellular maturation
is diverse along the migratory stream. Integration of molecu-
lar biological studies with histological studies has led to novel
discoveries focused on cellular and molecular mechanisms of
hippocampal development. Further studies on behaviors of hip-
pocampal neurons are expected in the future to fully understand
hippocampal development and functions.
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