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Heart failure with preserved ejection fraction is a growing epidemic and accounts for
half of all patients with heart failure. Increasing prevalence, morbidity, and clinical inertia
have spurred a rethinking of the pathophysiology of heart failure with preserved ejection
fraction. Unlike heart failure with reduced ejection fraction, heart failure with preserved
ejection fraction has distinct clinical phenotypes. The obese-diabetic phenotype is
the most often encountered phenotype in clinical practice and shares the greatest
burden of morbidity and mortality. Left ventricular remodeling plays a major role in
its pathophysiology. Understanding the interplay of obesity, diabetes mellitus, and
inflammation in the pathophysiology of left ventricular remodeling may help in the
discovery of new therapeutic targets to improve clinical outcomes in heart failure
with preserved ejection fraction. Anti-diabetic agents like glucagon-like-peptide 1
analogs and sodium-glucose co-transporter 2 are promising therapeutic modalities
for the obese-diabetic phenotype of heart failure with preserved ejection fraction and
aggressive weight loss via lifestyle or bariatric surgery is still key to reverse adverse
left ventricular remodeling. This review focuses on the obese-diabetic phenotype of
heart failure with preserved ejection fraction highlighting the interaction between obesity,
diabetes, and coronary microvascular dysfunction in the development and progression
of left ventricular remodeling. Recent therapeutic advances are reviewed.

Keywords: obesity, heart failure with preserved ejection fraction, diabetes mellitus, weight loss surgery, visceral
adipose tissue, epicardial adipose tissue

INTRODUCTION

Heart failure with preserved ejection fraction (HFpEF) is a growing epidemic (Owan and Redfield,
2005). Unlike heart failure with reduced ejection fraction (HFrEF), myocardial contractility is
near normal in HFpEF, and impaired left ventricular (LV) relaxation/increased stiffness leads to
pulmonary congestion and thereby dyspnea, pulmonary hypertension, and exercise intolerance
(Becher et al., 2013; Andersson and Vasan, 2014; Borlaug, 2014). Currently, HFpEF is the leading
cause of hospitalizations in patients > 65 years. It will overcome HFrEF as the leading cause of heart
failure (HF) within the next 10 years (Lam et al., 2011; Liu et al., 2013). The increasing prevalence
of HFpEF and lack of guideline-directed therapy, has rekindled interest in its pathophysiology
(Borlaug, 2020; Mishra and Kass, 2021).
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The cornerstone of HF is LV remodeling. In HFrEF, systolic
dysfunction leads to eccentric hypertrophy with LV wall thinning
and replacement fibrosis. In HFpEF, the LV wall thickens leading
to concentric hypertrophy (LVH) (Heinzel et al., 2015) with
impaired myocardial relaxation/increased stiffness leading to
LV diastolic dysfunction (LVDD) (LeWinter and Meyer, 2013)
and ultimately HFpEF. Age (Cheng et al., 2009), hypertension
(Verdecchia et al., 1995), obesity (Woodiwiss et al., 2008),
diabetes (T2D) (Eguchi et al., 2005), and renal dysfunction (Pluta
et al., 2015) contribute to LV concentric remodeling. Distinct
clinical HFpEF phenotypes are increasingly being recognized
(Samson et al., 2016). Phenotyping HFpEF allows tailoring
therapeutic modalities for concentric LV remodeling reversal and
eventually, better outcomes. The obese-diabetic phenotype of
HFpEF is extremely common (Samson et al., 2016) and associated
with poor outcomes (Yusuf et al., 2003).

Obesity is the main driver of T2D with 90–95% of patients
with T2D being obese (Mozaffarian et al., 2015). Obesity and
T2D overlap in the development and progression of HFpEF
(Altara et al., 2017). In the present review, we reviewed articles
related to HFpEF and T2D. We conducted a literature search
using PubMed, Embase, Ovid, and Cochrane databases and
searched terms like “HF,” “T2D,” “HFpEF,” “Obesity,” “LVDD,”
“epicardial adipose tissue (EAT),” and “visceral adipose tissue
(VAT).” Arranged by hierarchy we reviewed randomized clinical
trials, followed by registries and then cohort studies. This review
first addresses how obesity affects LV remodeling and fosters
low-grade systemic inflammation/microvascular dysfunction and
thereby HFpEF (McHugh et al., 2019; Piche et al., 2020). Specific
contributions of T2D to inflammation (Tsalamandris et al., 2019),
coronary microvascular dysfunction (CMD) (Di Carli et al.,
2003), and cardiac myocytes diastolic Ca2+ handling (Eisner
et al., 2020) are then reviewed. Last, we address the clinical
implications of obesity and T2D on HFpEF outcomes before
reviewing emerging therapeutic options.

EFFECTS OF OBESITY ON THE HEART

Obesity and Left Ventricular Concentric
Remodeling
The obesity-LV concentric remodeling association was first
reported in observational studies and later confirmed in several
community-based cohorts (Peterson et al., 2004b; Wong et al.,
2004; Powell et al., 2006; Avelar et al., 2007; Woodiwiss et al.,
2008; Turkbey et al., 2010; Gidding et al., 2013; Kishi et al., 2014;
Reis et al., 2014; Bello et al., 2016; Fliotsos et al., 2018; Razavi
et al., 2020; Yan et al., 2020). The correlation between weight
loss and decrease in LV mass and not between weight loss and
decline in blood pressure (BP) after metabolic surgery is further
evidence of the central role of obesity in the pathogenesis of LV
concentric remodeling (Jhaveri et al., 2009; Rider et al., 2009;
Owan et al., 2011; Kurnicka et al., 2018). However, the loose
correlation between obesity-induced LV concentric remodeling
and LVDD suggests that obesity may impair LV diastolic function
through other mechanisms than obesity heightened cardiac pre-
and afterload (Russo et al., 2011). Obesity-induced increase

in myocardial triglycerides (TGs) content and myocardial
energetics impairment may worsen LVDD (Peterson et al., 2004a;
Rider et al., 2013; Piche and Poirier, 2018; Rayner et al., 2018).

Not unexpectedly, obesity is now a recognized risk factor
for incident HFpEF (Packer and Kitzman, 2018; Pandey et al.,
2018; Savji et al., 2018). Incident HFpEF correlates more closely
with visceral adipose tissue (VAT) mass than body mass index
(BMI) (Neeland et al., 2013; Cordola Hsu et al., 2021). Peak
aerobic capacity is inversely and independently related to intra-
abdominal fat, abdominal adiposity is a strong risk factor for
all-cause mortality, and CT measured VAT predicts incident
hospitalization in patients with HFpEF (Tsujimoto and Kajio,
2017; Haykowsky et al., 2018; Rao et al., 2018). In the Irbesartan in
heart failure with preserved ejection fraction (I-PRESERVE) trial
(Massie et al., 2008) 71% of the patients had a BMI > 26.5 kg/m2

and 55% of the patients in the Phosphodiesterase-5 inhibition
to improve clinical status and exercise capacity in HFpEF
(RELAX) trial had a BMI > 35 kg/m2 (Haass et al., 2011;
Reddy et al., 2019). Women had a relatively greater waist
circumference (an indirect measure of VAT) than men in
the prospective comparison of angiotensin receptor -neprilysin
inhibitor with ARB global outcomes in HFpEF (PARAGON-
HF) trial (McMurray et al., 2020). A table regarding the salient
features of important trials in HFpEF has been listed in Table 1.

Obesity and Sodium Retention
Obesity leads to HFpEF by increasing renal tubular sodium
reabsorption and plasma volume expansion (Bickel et al., 2001;
Kotsis et al., 2010; Obokata et al., 2017). The overproduction
of aldosterone in obesity occurs through 2 pathways: 1- renin-
angiotensin system activation stimulates aldosterone secretion
from the adrenal cortex and the adipocytes (Faulkner et al.,
2018). 2-leptin directly stimulates adrenal cortical cells (Faulkner
et al., 2018). Natriuretic peptides reduce aldosterone levels but
in obesity, there is increased neprilysin activity that curtails their
impact on reducing aldosterone secretion (Wang et al., 2004).

Hyperaldosteronism also stimulates the accumulation and
inflammation of EAT leading to increased loco-regional and
systemic inflammation (Iacobellis et al., 2016; Packer, 2018b).

Obesity and Low-Grade Systemic
Inflammation
White adipose tissue (AT) accumulates in multiple depots. The
subcutaneous depot accounts for around 80% of the total AT
(Chait and den Hartigh, 2020). Visceral and other ectopic AT
depots (EAT, perivascular, hepatic pancreas renal, and skeletal
muscle) accounts for the remaining 20% (Chait and den Hartigh,
2020). Visceral AT refers to the intra-abdominal accumulation of
mesenteric and omental AT that can be measured by single-slice
CT at the level of L4–L5 or the umbilicus and by multiple slice
imaging by MRI (Le Jemtel et al., 2018).

Weight gain leads to AT accumulation through adipocyte
hypertrophy or hyperplasia. While expanding VAT becomes
dysfunctional and inflamed thereby promoting low-grade
systemic inflammation (Lumeng et al., 2007). Increasing BMI
correlates with a circulating level of inflammatory markers like
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TABLE 1 | Major heart failure with preserved ejection fraction trials with role of obesity in outcomes.

Major heart failure with preserved ejection fraction trials

Name Study type N N (BMI > 30 kg/m2) Treatment modality Main outcomes

I-PRESERVE (Haass
et al., 2011)

RCT 4,128 1,409 (34%) Irbesartan • Irbesartan did not improve outcomes
• BMI >35 kg/m2 associated with worse CV outcomes
(HR 1.27, p 0.011)

PARAGON-HF
(McMurray et al., 2020)

RCT 4,796 2,357 (49.1%) Sacubitril-Valsartan Sacubitril-Valsartan did not improve outcomes
• No subgroup analysis in obese population (HR 0.87,
P 0.06)

RELAX (Reddy et al.,
2019)

RCT 216 81 (38%) Sildenafil • Sildenafil did not improve quality of life or exercise
capacity
• BMI >35 kg/m2 associated with greater systemic
inflammation, worse exercise capacity and worse
quality of life

TOPCAT (Huynh et al.,
2019)

RCT 1,751 1,135 (64.8%) Spironolactone • In patients from the Americas with obesity (BMI >30
kg/m2) spironolactone did improve outcomes (HR 0.62
p 0.001)

EMPEROR
PRESERVED (Anker
et al., 2021)

RCT 2,997 1,343 (45%) Empagliflozin • Empagliflozin improved composite of CV death or HF
hospitalization (HR 0.73 p < 0.001)
• Did not improve all cause death
Not as effective in BMI > 30 KG/m2 (HR 0.85 p > 0.05)

HR, Hazard ratio; RCT, Randomized clinical trial.

C-reactive protein (CRP), interleukin (IL) -6, P selectin, vascular
cell adhesion molecule 1, plasminogen activator inhibitor 1, and
tumor necrotic factor-alpha (TNF-α) (Osborn and Olefsky, 2012;
McNelis and Olefsky, 2014). However, circulating inflammatory
markers do not reliably reflect the degree of VAT and systemic
inflammation (Le Jemtel et al., 2018).

After undergoing hypertrophy, VAT shifts from an anti-
inflammatory state that facilitates AT angiogenesis and lipid
storage to a pro-inflammatory state with production of monocyte
chemoattractant protein- (MCP1), C-X-C motif chemokine
12 leukotriene B4, and colony-stimulating factor 1 that
promote proliferation of classically activated macrophages and
macrophages AT infiltration (McLaughlin et al., 2017; Reilly and
Saltiel, 2017).

Adipogenesis modulates the AT remodeling process and
hypoxia is the trigger behind angiogenesis, extracellular matrix
remodeling, and inflammation (Crewe et al., 2017; Vishvanath
and Gupta, 2019). Inflammatory VAT mediates the production
of reactive oxygen species (ROS) and low nitric oxide (NO) that
induce mitochondrial dysfunction and activate Nod-like receptor
protein 3 (NLRP3) inflammasome (Abad-Jimenez et al., 2020)
(Figure 1).

Low-Grade Inflammation and Microvascular
Dysfunction
Low-grade systemic inflammation worsens cardiovascular
diseases (Dhorepatil et al., 2019; Ghoneim et al., 2020a,b). It
triggers/heightens an endothelial inflammatory response in the
coronary microvasculature (Paulus and Tschope, 2013). In turn,
inflammation of the coronary microvascular endothelium alters
cardiomyocyte elasticity/function and increases myocardial
deposition of collagen that impairs myocardial relaxation and
enhances myocardial fibrosis resulting in LVDD and HFpEF
(Franssen et al., 2016). Endothelial adhesion molecules enable
the infiltration of inflammatory cells that generate hydrogen

peroxide (H2O2). High oxidative stress uncouples NO synthase
(eNOS), reduces NO availability, and decreases soluble guanylate
cyclase (sGC) stimulation that lowers the activity of cyclic
guanosine monophosphate (cGMP) and protein kinase G
(PKG). Low PKG activity leads to cardiomyocytes hypertrophy
and decreases titin phosphorylation that increases LV stiffness
(Franssen et al., 2016).

Microvascular inflammation is associated with increased
production of inducible NOS (iNOS that reduces the protein
unfolded response (Paulus, 2020). Suppression of the unfolded
protein response may lead to interstitial accumulation of
destabilized protein (Paulus, 2020). Microvascular inflammation
with macrophages and secretion of transforming growth factor-
beta (TGF) results in LV deposition of high tensile collagen
(Paulus, 2020).

Lastly, microvascular rarefaction and Sirtuin 3 (SIRT 3)
dependent defect in the endothelial cell metabolic programing
and angiogenesis may affect the progression of perivascular and
myocardial fibrosis in HFpEF (Zeng and Chen, 2019) (Figure 1).

Adipocyte Dysfunction and Heart Failure With
Preserved Ejection Fraction
The role of adipocyte dysfunction in the development of obese-
HFpEF is still evolving. Adipocyte homeostasis is maintained
by the modulation of pro-inflammatory and anti-inflammatory
cytokines. Obesity leads to an excess of pro-inflammatory
cytokines and adipokine dysregulation. Adipose tissue exerts an
endocrine effect via adipokines. Adipocyte dysfunction caused
by obesity leads to alteration in adipokine levels that promotes
LV remodeling and ultimately, HfpEF (Berezin et al., 2020).
Elevated leptin levels in obesity are associated with cardiac/renal
fibrosis (Packer, 2018a) and increased aldosterone production
and sodium retention.

Low adiponectin levels in obesity contribute to an increase
in the risk for cardiovascular (CV) disease (Shibata et al., 2009).
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FIGURE 1 | Interplay of obesity and type 2 diabetes with heart failure with preserved ejection fraction. EAT: Epicardial Adipose Tissue; VAT: Visceral Adipose Tissue;
Abd Ms : Abdominal Muscles; SC AT : Subcutaneous Adipose Tissue.

Adiponectin levels are reduced HFpEF and elevated in HFrEF.
In vitro adiponectin has multiple beneficial effects such as
stimulation of AMP-activated protein kinase (AMPK)-dependent
and extracellular-signal-regulated kinase (Barouch et al., 2003)
signaling in cardiac myocytes and endothelial cells. Adiponectin
reduces LVH and fibrosis, activates endothelial nitric oxide
synthase system to and increases NO production (Kobayashi
et al., 2004; Ouchi et al., 2004). These beneficial effects have led
to an increasing interest in adiponectin as a therapeutic target
(Achari and Jain, 2017).

Resistin is an adipocytokine secreted in macrophages by pro-
inflammatory cytokines (Lau et al., 2017). Increased resistin levels
promote microvascular inflammation, endothelial dysfunction,
and vascular smooth muscle proliferation (Acquarone et al.,
2019). In elderly patients without HF, serum levels of resistin
predict incident HFpEF and HFrEF (Butler et al., 2009).
Resistin levels are elevated in patients with HF, but it does not
independently predict an adverse outcome (Brankovic et al.,
2018). The roles of visfatin, omentin, and other adipocytokines
are less well established and an area of active research
(Berezin et al., 2020).

Visceral Adipose Tissue and Heart
Failure With Preserved Ejection Fraction
Accumulation of VAT when obesity worsens plays a major role in
the development and progression of cardiometabolic conditions.
In T2D, VAT is a strong predictor of insulin resistance (Lebovitz
and Banerji, 2005) and increased cardiometabolic risk (Rawshani
et al., 2020). The inability of the body to cope with unrestricted
energy intake leads to VAT expansion that mediates most of the
detrimental impact of obesity on clinical outcomes.

In the Multi-Ethnic Study of Atherosclerosis (MESA) (Rao
et al., 2018), patients with increased VAT had an independently

increased risk of incident HFpEF hospitalization (HR 2.24; 95%
C.I. 1.44–3.49). Subcutaneous AT (Sc AT) was not associated
with HFpEF. Both VAT and EAT were associated with incident
HFpEF hospitalization in the Jackson Heart Study population of
African Americans (Rao et al., 2021). Epicardial AT was the only
significant variable which predicted all-cause mortality and there
was a trend toward increased all-cause mortality seen in VAT
(Rao et al., 2021). There was no significant trend seen with S c.
AT (Rao et al., 2021) (Table 2). These findings point toward the
additive effects of VAT and EAT in the obese-HFpEF phenotype.

In patients with obese-HfpEF, VAT accumulation is associated
with LVDD and positively correlates with increased LV mass
(Abbasi et al., 2015), sphericity, and lower end-diastolic volumes
(Neeland et al., 2013). Effects of VAT are also gender specific, with
women at baseline tending to have higher VAT% and in HFpEF
having worse hemodynamics (Sorimachi et al., 2021). Women
with increased VAT and HFpEF have higher exercise-induced
LV filling pressures compared with their counterparts with lesser
VAT (Sorimachi et al., 2021).

Pericardial/Epicardial Adipose Tissue
and Heart Failure With Preserved
Ejection Fraction
Increased pericardial/EAT is independently associated with both
obesity and T2D (Yafei et al., 2019). EAT is twice as metabolically
active as normal white AT and is involved a great degree of
lipolysis and free fatty acid release (FFA) (Marchington et al.,
1989). Excess circulating FFA levels lead to increased cardiac
TG deposition. As EAT directly lies on the myocardium, FFAs
released by EAT may have a direct effect on the myocytes and
coronaries due to a complete lack of a fibrous fascial layer
between the two. A large release of FFA may lead to cardiac
lipotoxicity (Iacobellis et al., 2011).
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TABLE 2 | Relationship of visceral and epicardial adipose tissue with incident heart failure with preserved ejection fraction.

Name Study design N M F Incident HFpEF Key findings

N HR 95% C.I.

MESAEAT (Kenchaiah et al.,
2021)

Prospective
Cohort Study

6,785 47% 53% 167 1.42 1.25–1.62 • EAT associ ated with increased risk of HFpEF not HFrEF
• Elevated EAT conferred a greater risk of HF in women
when compared to men

MESAVAT (Rao et al., 2018) Prospective
Cohort Study

1,806 48.4% 51.6% 34 2.24 1.44–3.49 • VAT associated with incident HFpEF but not HFrEF
• No gender-specific differences in HFpEF incidence

Jackson heart studyEAT (Rao
et al., 2021)

Prospective
Cohort Study

1,386 34% 66% 77 1.15 1.08–1.22 • In African American patients, EAT and VAT are
independently associated with incident HFpEF

Jackson heart
studyVAT (Rao et al., 2021)

Prospective
Cohort Study

2,844 35% 65% 168 1.12 1.06–1.18 • Increased EAT is independently associated with all-cause
mortality even after adjusting for comorbidities

• Increased VAT is also associated with all-cause mortality,
but the association is not significant after adjusting for
comorbidities

•SC AT is not associated with incident HFpEF or all-cause
mortality

EAT, Epicardial Adipose tissue; VAT, Visceral Adipose tissue; HFpEF, Heart failure with preserved ejection fraction; HFrEF, Heart failure with reduced ejection fraction; SC
AT, Subcutaneous Adipose tissue.

Patients with increased EAT (measured on computed
tomography; CT) have increased LV mass index (LVMI), large
left atrial size (LA), and high E/e’ velocity by echocardiography
(Butler et al., 2009; Brankovic et al., 2018; Acquarone et al.,
2019). The association between EAT and LV parameters persist
upon adjusting for obesity markers (BMI, waist circumference),
and traditional CV risk factors (Kim et al., 2021). Epicardial
AT may increase the myocardial fat content and interstitial
fibrosis that likely affects myocardial contractility as evidenced
by reduced global longitudinal strain (Ng et al., 2018). Elevated
EAT also results in reduced peak VO2 consumption and
peripheral extraction in patients with HfpEF, indicating a worse
hemodynamic profile in these patients (Pugliese et al., 2021b).

Finally, in a recent analysis of MESA, EAT also was associated
with an increased risk of incident HF (Kenchaiah et al., 2021).
High EAT volumes defined as > 70 cm3 for women and > 120
cm3 for men correlated with a twofold increased incidence of
HF in women and 53% higher risk in men. Increased EAT
predominantly enhanced the risk of HFpEF (p < 0.001) and not
HFrEF (p.31) (Table 2).

Role of Chronic Kidney Disease in Heart
Failure With Preserved Ejection Fraction
Nearly 50% of patients with HFpEF have chronic kidney disease
(CKD) (Redfield et al., 2003; Yancy et al., 2006). The etiology
of CKD is multifactorial in HFpEF (van de Wouw et al., 2019).
Comorbidities and HF contribute to microvascular dysfunction
that causes and perpetuates both renal dysfunction and LV
remodeling (van de Wouw et al., 2019). Chronic kidney disease
is associated with premature vascular aging (Laurent et al.,
2006) leading to macrovascular and microvascular dysfunction.
Advanced atherosclerosis and arteriosclerosis worsen HTN
that increases LV workload and exacerbates LVH and LVDD
(Borlaug and Kass, 2011). Arteriosclerosis also leads to pulsatility
(Mitchell, 2008) in the coronary microvascular bed that promotes

microvascular disruption and CMD (Safar et al., 2015; van de
Wouw et al., 2019). At a molecular level, CKD worsens the above
mentioned pro-inflammatory pathways leading to increased ROS
production, reduced local NO availability, and CMD (Rosner
et al., 2012; Paulus and Tschope, 2013).

Obesity itself leads to a glomerulopathy, i.e., obesity-related
glomerulopathy (ORG) that is characterized by maladaptive
glomerular hypertrophy and focal segmental glomerulosclerosis
(D’Agati et al., 2016). Other pathways of obesity-related CKD
involve alteration of adipokines (Briffa et al., 2013), activation
of Renin-Angiotensin-Aldosterone System (RAAS) (Upadhya
et al., 2020), and ectopic lipid accumulation within the kidneys
(Escasany et al., 2019) (Figure 2).

Management of CKD in patients with obesity and HFpEF is
challenging. Targeting the RAAS showed promise in retrospective
studies with a greater reduction of proteinuria seen in obese than
non-obese individuals (Praga et al., 2001; Mallamaci et al., 2011;
Tsuboi et al., 2013). However, there is still resistance in initiating
RAAS inhibitors due to the fear of downstream CKD progression
and hyperkalemia.

Weight loss improves proteinuria and has a favorable effect
on the estimated glomerular filtration rate (Saiki et al., 2005;
Shen et al., 2010; Friedman et al., 2013). Bariatric surgery
markedly reduces proteinuria (Fowler et al., 2009; Huan et al.,
2009). However, bariatric surgery is associated with long-term
renal complications like nephrolithiasis and oxalate nephropathy
(Turgeon et al., 2012; Lieske et al., 2015).

Linking Diabetes Mellitus, Obesity, and Heart Failure
With Preserved Ejection Fraction: A Clinical
Perspective
Besides T2D macrovascular complications, the direct effects of
T2D on the myocardium have received increased attention over
the last decade (Jia et al., 2018).

At a molecular level, patients with T2D-HFpEF have
increased t-tubule density and lower collagen deposition when
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FIGURE 2 | Pathogenesis of obese-DM-HFpEF. RAAS: Renin-Angiotensin-Aldosterone system, CRP: C-Reactive Protein, IL -6: lnterleukin-6, VCAM-1: Vascular cell
adhesion molecule 1, MCP-1: monocycte chemoattractant protein-1,TNF-α: Tumor Necrosis Factor alpha, NLRP-3: Nod-Like receptor protein 3, ROS: Reactive
oxygen species, NO: Nitric Oxide, PKG: Protein Kinase G.

compared with HFrEF. Patients with T2D-HFpEF also have
impaired diastolic calcium homeostasis including reduced
sarco/endoplasmic reticulum Ca2+-ATPase activity indicating a
different pathophysiological process when compared to non-T2D
HFpEF (Frisk et al., 2021).

Though BMI is a poor marker of VAT and EAT (Le Jemtel
et al., 2018), elevated BMI indirectly suggests a high prevalence
of both. MESA, BMI, and VAT was significantly elevated in
patients with incident HFpEF (29.9 vs. 27.8, p 0.01; 230.7
cm3 vs. 162.6 cm3 p < 0.001, respectively) (Rao et al., 2018).
Patients with EAT have elevated BMIs and increased VAT,
further linking BMI as an indirect measure of VAT and EAT
(Kenchaiah et al., 2021).

In HFpEF, patients with T2D commonly have higher
BMIs than their non-diabetic counterparts. In an ancillary
study of the Phosphodiesterase-5 inhibition to improve clinical
status and Exercise capacity in Diastolic HF (RELAX) trial
(Redfield et al., 2013; Reddy et al., 2019), BMI were 37.1 and
30.7 kg/m2 vs. 30.7 kg/m2 in patients with and without T2D.
Unsurprisingly, patients with T2D-HFpEF had more severe
initial presentations and more frequent hospitalizations. They
also had more LVH and higher filling pressures (E/e’) by
echocardiography. Cardiac Magnetic Resonance Imaging (CMR)
reveals a trend toward higher LV Mass and higher levels of fibrosis
in T2D than patients with non-T2D HFpEF (Lejeune et al., 2021).
Patients with diabetes had high BMIs (31 vs. 27 kg/m2, p 0.001)
and had an increased rate of mortality and hospitalization for HF
(HR 1.72 95% C.I. 1.1–2.6, p 0.011).

A common feature of both T2D and HFpEF is exercise
intolerance (EI) (Upadhya et al., 2015a; Pandey et al., 2021).
The cause of exercise training (ET) is multifactorial (Pandey
et al., 2021) in T2D and HFpEF with impairment in cardiac
performance (Pugliese et al., 2021a) and skeletal muscle
metabolism/perfusion (Espino-Gonzalez et al., 2021). Obesity
and T2D significantly contribute to EI in HFpEF. Obesity-
induced sarcopenia exacerbates muscle mass loss due to aging
and worsens EI (Upadhya et al., 2015b). Type 2 diabetes
lowers exercise capacity through impaired cardiac energetics
(Levelt et al., 2016) and skeletal muscle oxygen extraction and
metabolism (Nesti et al., 2020). Clinically, EI leads to poor quality
of life (Salzano et al., 2021), frequent re-hospitalizations, and
early mortality in T2D and HFpEF (Pugliese et al., 2020). Thus,
reversal of EI is an important therapeutic target in patients with
T2D-HFpEF. improves peak VO2 (Demopoulos et al., 1997)
and quality of life in patients with systolic dysfunction (Fleg
et al., 2015). In HFpEF, ET improves peak VO2 and quality of
life independent of improvement in cardiac systolic or diastolic
function (Pandey et al., 2015b). The effects of ET on skeletal
muscle perfusion and metabolism warrant investigation in T2D-
HFpEF.

Patients with T2D HFpEF have an increased risk of mortality
(Yusuf et al., 2003; MacDonald et al., 2008; Massie et al., 2008).
In the I-PRESERVE trial, patients with T2D also had a higher
prevalence of coronary artery disease (CAD) and percutaneous
coronary intervention/ coronary artery bypass graft (PCI/CABG)
indicating an increased risk of macrovascular disease (Massie
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et al., 2008). Of note, patients with and without T2D had similar
LVEFs, and patients with T2D had significantly greater LV Mass
and DD despite having a lower prevalence of hypertension
(HTN) (Kristensen et al., 2017). The greater LV remodeling in
patients with T2D was likely related to greater BMIs (31 + /6 vs.
29± 5 kg/m2, respectively). Moreover, in the T2D cohort, 52% of
the patients had a BMI > 30 kg/m2 vs. 38% of the patients in the
non-T2D cohort (Kristensen et al., 2017).

Lastly, the duration and severity of T2D in HFpEF affect
outcomes. In a sub-analysis of the Treatment Of Preserved
Cardiac function heart failure with an Aldosterone Antagonist
(TOPCAT) trial (Pitt et al., 2014), patients from the Americas
(n = 1765 patients) were analyzed into 3 subgroups, patients
with T2D treated with insulin (ITDM, n = 390 patients), patients
with T2D not on insulin (NITDM, n = 406 patients), and
patients withoutT2D (n = 969 patients) (Huynh et al., 2019).
The ITDM cohort had a longer duration of T2D and higher
BMI when compared with NITDM and non-T2D patients. The
ITDM cohort also had worse LVDD and increased LV Mass.
Unsurprisingly, ITDM patients had the worst outcome profile
with a 50% increase in all-cause and CV mortality that was
elevated when compared to NITDM patients alone. The risk of
adverse outcomes was similar in NITDM and non-T2D. Thus,
obesity and T2D are additive risk factors in patients with T2D-
HFpEF (Huynh et al., 2019). However, obesity directly impacts
the severity of T2D as well as HFpEF. Obesity clearly worsens
outcomes in T2D. Increasing insulin resistance leads to increased
production of insulin from pancreatic β-cells that eventually
cannot meet glycemic demands. The ectopic pancreatic fat
deposition also contributes to β-cell dysfunction and thereby to
T2D (Ishibashi et al., 2020). Thus, treatment of the obese HFpEF
phenotype needs to target obesity and T2D.

THERAPEUTIC ADVANCES FOR
OBESE-T2D-HEART FAILURE WITH
PRESERVED EJECTION FRACTION
PHENOTYPE

Targeting Coronary Microvascular
Dysfunction
Therapy in HfpEF, specifically in the obese-T2D-HfpEF
phenotype is searching for novel therapeutic approaches.
Targeting CMD is an innovative approach but so far results have
not been promising (Redfield et al., 2013, 2015; Borlaug et al.,
2018). Increasing NO availability and enhancing cGMP have been
disappointing. In multiple trials looking at phosphodiesterase
inhibitors and oral nitrates, increasing NO has failed to improve
quality of life or exercise capacity in HfpEF. Most trials recruited
patients with high BMI, severe LV concentric remodeling,
and advanced LVDD at baseline. Hence, extensive collagen
deposition and LV stiffness may account for the neutral findings
(Samson and Le Jemtel, 2021).

Given the neutral findings of the above trials, increasing
NO may not be the most effective way to remedy endothelial
dysfunction. Vericiguat, an sGC stimulator bypasses NO

production and can stimulate the production of cGMP that
as previously mentioned prevents further LV remodeling.
Vericiguat did not improve the primary endpoints of NT-
ProBNP levels and left atrial volumes but did improve quality of
life in a clinical trial (Pieske et al., 2017). A lower BMI than in
prior trials (∼30 kg/m2 in all groups) hints at a low prevalence of
VAT and EAT in this population.

Regardless, despite the high prevalence of CMD in HFpEF
(Shah et al., 2018), targeting CMD does not seem to be
therapeutically fruitful.

Targeting Mineralocorticoid Receptors
Sodium retention secondary to increased aldosterone production
plays a major role in obese-HFpEF. It accounts for the
responsiveness to diuretics but excess natriuresis can accelerate
renal dysfunction (Gupta et al., 2012). Experimentally, MRAs
reduce oxidative stress (Gorini et al., 2019), cardiac inflammation
(Tesch and Young, 2017) and fibrosis (Borlaug and Kass,
2011), and improve diastolic LV filling pressures (Pandey
et al., 2015a). Spironolactone improved LV filling pressures
and exercise capacity in patients with HFpEF. In T2D,
spironolactone improves insulin resistance (Olatunji et al., 2017)
and albuminuria (Makhlough et al., 2014; Selvaraj et al., 2018).
The effects on diabetic nephropathy are mixed with delayed
progression in type 1 (Schjoedt et al., 2005) but not T2D
(Tofte et al., 2020).

In the TOPCAT trial, patients with obesity and T2D benefited
the most from spironolactone (Cohen et al., 2020). Maximum
reduction of the primary endpoint (All-cause death and HF
hospitalization) was noted in patients with a BMI > 33 kg/m2

(Elkholey et al., 2021). A similar benefit was seen in patients
with high waist circumference (HWC) (Men > 102 cm and
women > 88 cm) indicating that spironolactone was more
beneficial in patients with increased VAT. The beneficial effect
of spironolactone in obese and HWC patients is a reduction
in HF hospitalization. Quantification of VAT may help better
risk stratify patients who benefit from MRAs. The promising
pre-clinical favorable metabolic effects of finerenone (Marzolla
et al., 2020) suggest that MRAs may benefit adjunct obese-T2D-
HFpEF phenotype.

Targeting Obesity and Diabetes Mellitus
The pathophysiology of HFrEF highlights worsening LVEF due
to the progression of eccentric LV remodeling which leads
to symptom deterioration and eventual patient decline. The
success of neurohormonal modulation in HFrEF is based on
the ability of pharmacotherapy and device therapy ability to
reserve LV eccentric remodeling. In contrast, neurohormonal
modulation does not reverse LV concentric remodeling in HFpEF
(Lam et al., 2018; Upadhya and Kitzman, 2020). Hence, the
most effective therapies in HFrEF do not lower mortality in
HFpEF (Massie et al., 2008; Pitt et al., 2014; Solomon et al.,
2019). As previously mentioned, obesity, specifically VAT and
EAT, drive LV remodeling (Yan et al., 2020). Obesity leads to
T2D hence aggressive weight management will benefit patients
with HFpEF and T2D.
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Treating obesity is complex and involves lifestyle/behavioral
modifications (LBM) as the first step, then pharmacotherapy
and bariatric surgery as the next step. Newer advances in anti-
diabetic medications have led to a successful strategy of targeting
obesity and HF in patients with T2D changing the management
paradigm for these patients.

Glucagon-Like Peptide-1 Analogs
Glucagon-like peptide-1 (GLP-1) analogs are coming back in
T2D and recent trials demonstrate efficacy in CV disease (Verma
et al., 2018) and weight loss (Wilding et al., 2021). GLP-1
receptors are expressed in various organs like the heart, kidney,
and pancreas. GLP-1 agonists reduce ROS production by the
endothelium and systemic inflammation. It may contribute to
their beneficial effect on LV diastolic function studies (Nguyen
et al., 2018; Bizino et al., 2019).

GLP-1 agonists have also been shown to be effective in
reducing EAT which is a target in HFpEF (Dutour et al., 2016;
Iacobellis et al., 2017). In 95 patients with T2D, liraglutide plus
metformin was associated with a 36% reduction in EAT when
compared with metformin alone (Iacobellis et al., 2017). In 44
patients, exenatide was also associated with a ∼10% reduction
in EAT when compared to 1.2% in the standard of care arm
(Dutour et al., 2016).

Reduction of adiposity is an essential therapeutic aim in obese-
T2D-HFpEF. Before recent semaglutide trials, pharmaceutical
agents approved for weight loss by the Food and Drug
Administration (FDA) at best resulted in 7% weight loss
(Srivastava and Apovian, 2018). GLP-I analogs have been shown
to cause an average weight loss of 2.9 kg 95% C.I. 2.2–3.6 kg in
21 trials and 6,411 patients (Vilsboll et al., 2012). The finding
of the recent Four Semaglutide Treatment Effect in People with
Obesity (STEP 1–4) trials was more promising (Davies et al.,
2021; Rubino et al., 2021; Wadden et al., 2021; Wilding et al.,
2021). Subcutaneous semaglutide was compared with intensive
LBM in successive steps in patients with and without T2D.
Semaglutide reduced body weight by 10% in 75% of patients,
15% in 56% of patients, and 20% in 36% of patients. In contrast

in a veteran’s affairs study (Maciejewski et al., 2016), patients
with gastric bypass (GB) reduced weight by 27.5% (95% C.I.
23.8–31.2%), sleeve gastrectomy (SG) by 17.8% (95% C.I. 9.7–
25.9%) underlining the magnitude of weight loss achieved by
semaglutide. The cardiovascular and outcome effects of GLP-1
analogs need to be investigated in patients with obese-T2D-
HFpEF.

Sodium-Glucose Co-transporter 2 Inhibitors
Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) are
extremely beneficial in HFrEF (McMurray et al., 2019; Packer
et al., 2020). The actions are multiple (Lopaschuk and
Verma, 2020) and include weight loss, increased diuresis,
improved endothelial function, reduced inflammation, and
cardiac remodeling prevention. Weight loss is modest (Mean 1.5–
2 kg) (Liu et al., 2015; Maruthur et al., 2016; Zaccardi et al.,
2016), and slightly greater in patients with T2D than those
non-T2D (Pereira and Eriksson, 2019). Weight-loss lasts up to
4 years (Del Prato et al., 2015) and is dose-dependent (Cai et al.,
2018). However, the weight loss induced by glycosuria leads to
a compensatory increase in appetite and thereby caloric intake
(Ferrannini et al., 2015). Thus, SGLT-2i must be combined with
other medications for a lasting effect on weight (Leibel et al.,
1995). SGLT-2i reduces perivascular AT thereby lowering leptin
release and loco-regional inflammation (Iborra-Egea et al., 2019).
In patients with T2D with CAD, SGLT2i reduces EAT, TNF-α,
and plasminogen activator inhibitor-1 (Sato et al., 2018). SGLT2i
effect on TNF-α leads to the improved endothelial secretion of
NO and reduced CMD (Juni et al., 2019). Several experimental
models have demonstrated the benefits of SGLT-2i on cardiac
remodeling (Lambers Heerspink et al., 2013; Verma et al., 2016;
Connelly et al., 2019). In a randomized clinical trial, patients
treated with empagliflozin had a significantly lower LV mass
index when compared with placebo at 6 months (Connelly et al.,
2019). Reduced cardiac fibrosis and inhibition of the mammalian
target of rapamycin pathway may alleviate LV remodeling (Lee
et al., 2019; Kang et al., 2020).

TABLE 3 | Major studies addressing role of bariatric surgery in heart failure.

Bariatric surgery

Study name Study type Treatment modality N Median follow
up

Main outcomes

GB LBM

Sundstrom
et al. (2017)

Nationwide
Registry

GB vs. LBM 25,804 13,701 4.1 years • Patients undergoing GB lost 18.8 kg more weight at year 1 and 22.6
kg more weight at year 2
• HR for incident HF was 0.54 (C.I. 0.36–0.82) in GB patients
• 10 kg weight loss was associated with a 23% reduction in incidence
of HF (HR 0.77 C.I. 0.6–0.97) in both arms

Utah obesity
study (Adams
et al., 2005)

Prospective
Cohort Study

GB vs. LBM 423 733 2 years • Patients undergoing GB had marked weight loss (reduction in BMI
with GB 15 kg/m2 vs. 0.03 kg/m2 in LBM)
• The GBS group had reductions in LV mass index
and RV cavity area
• GBS group also had increased LV midwall fractional shortening and
RV fractional area change

GB, Gastric Bypass; LBM, Lifestyle and behavioral modifications; HR, Hazard ratio; HF, Heart Failure; LV, Left ventricle; RV, Right Ventricle.
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Recently, in the empagliflozin in HFpEF (EMPEROR-
PRESERVED) trial (Anker et al., 2021), empagliflozin did reduce
the combined endpoint of CV death or hospitalization but did
not reduce significantly reduce CV death alone. The results were
underwhelming for patients with typical HFpEF as the benefits
were mostly noted in patients with LVEF < 50% compared
to LVEF > 60% i.e., HF mid-range-EF. Of note, patients with
BMI > 30 kg/m2 (HR 0.85 C.I 0.7–1.03) did not derive as much
benefit as those with BMI < 30 kg/m2 (HR.7 C.I 0.62–0.88). The
findings of the awaited dapagliflozin trials (Solomon et al., 2021)
may strengthen EMPEROR-HF (Packer et al., 2020).

Role of Metabolic Surgery
Metabolic surgery, specifically GB, is the most effective
intervention for weight loss. It prevents the occurrence of HFpEF
in patients with severe obesity. However metabolic surgery has
complications and requires careful and long-term monitoring.
Compared with LBM, metabolic surgery results in a greater
weight loss and a 23% risk reduction in HF (Sundstrom et al.,
2017). Exercise-induced weight loss, an integral part of LBM,
reduces EAT and thereby, the incidence of HF (Kim et al., 2009).

Weight loss has not been so far a therapeutic target in
the management of HFpEF. Of note, regular aerobic exercise
training is an arduous undertaking for severely or morbidly obese
patients. Weight loss improved LV mass index (LVMI) in MESA
with every 5% weight loss being associated with a 1.3% decrease
in LVMI and LV mass-to volume ratio (p < 0.0001) measured
by cardiac MRI (Shah et al., 2015). The Utah obesity study
examined patients undergoing metabolic surgery and compared
them with control patients with morbid obesity who did not
undergo surgery. All patients underwent 2D echocardiography,
and close monitoring (Adams et al., 2005). Mean baseline BMI
was 48 and 44 kg/m2 in metabolic surgery and control patients.
At 2 years, BMI was 32 and 44 kg/m2 in metabolic surgery and
control patients. Patients who underwent metabolic surgery had
significant reductions in LVMI and increases in right ventricular
(RV) fractional area change at 2 years (Owan et al., 2011). Smaller
studies reported similar findings (Karason et al., 1997; Ippisch
et al., 2008; Aggarwal et al., 2016). The effects of caloric restriction
and/or exercise were reported in older patients with obesity and
HFpEF. After 20 weeks, body weight decreased by 4 kg (3%) in
the exercise group, 7 kg (7%) in the caloric restriction group, and
11 kg (10%) in the combined group while it increased by 1 kg

(1%) in the control group. Both caloric restriction and exercise
independently improved exercise capacity [as measured by peak
oxygen consumption (VO2)] and the effects of caloric restriction
and exercise were additive. However, there was no difference in
the quality of life (as reported on the Minnesota Living with Heart
Failure Questionnaire) or LVMI in either group. High intensity
and moderate continuous exercise regimens do not significantly
improve in peak VO2 compared with guideline-directed exercise
regimens (Mueller et al., 2021) (Table 3).

Adherence to LBM is strongly recommended for patients with
obesity, T2D, and HFpEF and physicians need to be pro-active
to effectively help patients lose weight. Metabolic surgery though
beneficial is marred by strict indications (Ayinapudi et al., 2020)
and multiple complications (Ma and Madura, 2015; Surve et al.,
2018). Randomized controlled trials of metabolic surgery and
LVM are clearly needed in patients with severe and morbid
obesity with HFpEF.

CONCLUSION

Heart failure with preserved ejection fraction remains a
therapeutic conundrum. The obese-T2D phenotype has distinct
pathophysiology encompassing inflammation, CMD, and LV
remodeling. Obesity is at the crux of the pathophysiology
and weight reduction must be prioritized in these patients.
Quantification of VAT and EAT may better help risk-stratify
patients at greatest risk of HFpEF and further studies are
needed to assess their impact on management. Mineralocorticoid
receptor antagonists and anti-diabetic agents like semaglutide
and SGLT-2 inhibitors hold promise as useful adjunct agents for
obese-T2D-HFpEF and should be studied in randomized clinical
trials. Lifestyle and behavioral modifications should be offered to
all patients and metabolic surgery may be considered in patients
with BMI > 35 kg/m2.
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