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ABSTRACT Genomic selection (GS) has successfully been used in plant breeding to improve selection
efficiency and reduce breeding time and cost. However, there has not been a study to evaluate GS prediction
models that may be used for predicting cotton breeding lines across multiple environments. In this study, we
evaluated the performance of Bayes Ridge Regression, BayesA, BayesB, BayesC and Reproducing Kernel
Hilbert Spaces regression models. We then extended the single-site GS model to accommodate genotype ·
environment interaction (G·E) in order to assess the merits of multi- over single-environment models in a
practical breeding and selection context in cotton, a crop for which this has not previously been evaluated.
Our study was based on a population of 215 upland cotton (Gossypium hirsutum) breeding lines which were
evaluated for fiber length and strength at multiple locations in Australia and genotyped with 13,330 single
nucleotide polymorphic (SNP) markers. BayesB, which assumes unique variance for each marker and a pro-
portion of markers to have large effects, while most other markers have zero effect, was the preferred model.
GS accuracy for fiber length based on a single-site model varied across sites, ranging from 0.27 to 0.77 (mean
= 0.38), while that of fiber strength ranged from 0.19 to 0.58 (mean = 0.35) using randomly selected sub-
populations as the training population. Prediction accuracies from the M·E model were higher than those for
single-site and across-site models, with an average accuracy of 0.71 and 0.59 for fiber length and strength,
respectively. The use of the M·E model could therefore identify which breeding lines have effects that are
stable across environments and which ones are responsible for G·E and so reduce the amount of phenotypic
screening required in cotton breeding programs to identify adaptable genotypes.
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The main goal of commercial crop breeding programs is to identify the
best performing individuals (or genotypes) as potential cultivars, with
the secondary goal to identify genotypes that can be used as parents in

future crosses to advance specific breeding objectives. However, the
principal limitation in most crop breeding programs is the long time-
frames required for the completion of one cycle of breeding, testing and
selection, often in the orderof 10years.Genomic selection (GS) emerged
from the need to improve prediction of complex traits and to reduce
selection cycles and phenotyping (Meuwissen et al. 2001). In GS, a
training population is phenotyped and genotyped to train a model,
which can be used to predict genomic estimated breeding values
(GEBV) of another set of individuals that has only been genotyped
but not phenotyped (Meuwissen et al. 2001). Under a GS model, pre-
cision-phenotyping is most important when evaluating a training pop-
ulation because that dataset provides the basis for developing the
statistical model that is then used to predict phenotypic performance
in related members of a breeding population (Cobb et al. 2013). Like-
wise, a proper phenotypic analysis and appropriate modeling are
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crucial prerequisites for accurate calibration of genomic prediction
procedures (Bernal-Vasquez et al. 2014; 2017).

The potential utility of GS in crop improvement is currently being
intensively studied in different types of plant populations and traits
(Heffner et al. 2011; Heslot et al. 2015), but has been most successfully
used in dairy cattle breeding (Goddard and Hayes 2009; Hayes et al.
2009). Initial studies in plants have included data on several important
traits for major crops such as grain amylase activity in barley
(Lorenzana and Bernardo 2009), grain moisture and grain yield in
maize (Zhao et al. 2012), grain yield and plant height in rice (Spindel
et al. 2015), grain yield, resistance to Fusarium head blight and stem
rust resistance in wheat (Crossa et al. 2014; Rutkoski et al. 2014; Huang
et al. 2016) and stem diameter, pulp yield, and rust resistance in euca-
lypts (Grattapaglia and Resende 2011). The body of plant GS research
has grown substantially since the first early descriptions of using geno-
mic selection to predict unmeasured phenotypes. However, we still lack
sufficient understanding of the potential value of GS in an operational
breeding program, particularly for polygenic traits of agronomic sig-
nificance, and the factors that might determine its success in specific
crop species.

The accuracy of GS is crucial for its successful application in a
practical breeding scheme. An increasing number of studies have pro-
vided an empirical estimation of genomic prediction accuracies for
different traits and crops such as, barley, maize, andwheat and trees like
eucalypts (Lin et al. 2014), and shown that they can vary greatly
depending on whether the crops is inbred or outbred. In fact, deter-
mining in advance the prediction accuracy for a specific population and
a specific trait is difficult, because accuracy is influenced by many
factors (Desta and Ortiz 2014) such as the marker density relative to
the effective population size, the linkage disequilibrium between
markers and quantitative trait loci (QTL), the suitability of the pre-
diction model with regards to the population genetics (relationship
between individuals in the population, genetic structure), and the ar-
chitecture of the trait of interest (e.g., heritability, underlying gene
actions) (Goddard 2009; Heslot et al. 2013b; Jarquín et al. 2014;
Isidro et al. 2015).

Since Meuwissen et al. (2001) first proposed this concept of GS
along with several models, numerous statistical methods, including
parametric and nonparametric methods, have been used to predict
quantitative traits. Parametric methods include best linear unbiased
prediction (BLUP; Henderson 1975), least absolute shrinkage and se-
lection operator (LASSO; Tibshirani 1996), partial least squares (PLS;
Geladi and Kowalski 1986) and Bayesian based methods such as Bayes
Ridge Regression (BRR), BayesA, BayesB and Bayesian LASSO (Yi and
Xu 2008); nonparametric methods include random forests (Svetnik
et al. 2003) and Reproducing Kernel Hilbert Spaces regression (RKHS)
(de los Campos et al. 2009; de los Campos et al. 2010). Recently, many
investigators have evaluated the performance of various statistical
methods used in GS. de los Campos et al. (2013) gave an overview of
the parametric methods and concluded that BLUP performs well for
most traits and BayesB yields slightly higher predictive accuracy for
traits with large-effect quantitative trait loci (QTL). Riedelsheimer et al.
(2012a,b) compared the predictive performance of five different GS
methods for traits measured in maize inbred lines, and found that these
methods differ slightly in their predictive abilities. Howard et al. (2014)
compared the predictive abilities of parametric methods with nonpara-
metric models using simulation data, and observed that parametric
methods performed slightly better than nonparametric methods for
predicting traits withmore additive genetic components in their genetic
architectures. However, nonparametric methods perform better than

parametric methods when epistatic effects exists in a population
(Howard et al. 2014).

Recently, several GS studies have paid closer attention to the fact
that crop breeding lines are often assessed inmulti environment trials
(METs), i.e., in different geographic locations, seasons, or years, in
order to determine performance stability across environments (i.e.,
G·E effects) (Pérez and de los Campos 2014; Crossa et al. 2016; Velu
et al. 2016; Sukumaran et al. 2017). METs in a GS context are
therefore an important extension as they allow the examination of
marker by environment (M·E) interactions, and, in particular, the
identification of markers whose effects are stable across environ-
ments, as well as those that are environment-specific (Crossa et al.
2016; Oakey et al. 2016). For example, López-Cruz et al. (2015)
extended the single-trait, single-environment genomic estimated
best linear unbiased prediction (GBLUP) model to a multi-environ-
ment context, and reported important gains in prediction accuracy
with the multi-environment model relative to single-environment
analysis in wheat. Cuevas et al. (2017) considered modeling G·E
using both genetic markers and environmental covariates. These
studies showed that modeling M·E interactions can give substantial
gains in the prediction accuracy of GS.

The development of a new training population for GS requires
considerable monetary and time inputs. Therefore, within a breeding
program, well phenotyped historical populations, such as advanced
breeding lines tested under numerous METs, may be suitable for
implementation of GS in a commercial breeding setting. For example,
Rutkoski et al. (2015) empirically demonstrated the utility of using
historical wheat lines from several MET as a training population, al-
though a training population of closer relatives increased predictive
ability. Edriss et al. (2017) investigated GS accuracy using historical
maize yield data from 2022 breeding lines tested across 156 trials in
18 different locations in Kenya, Tanzania, Ethiopia and Uganda.

TheCommonwealthScientificandIndustrialResearchOrganization
(CSIRO) cotton (Gossypium hirsutum) breeding program in Australia
has been developing accessions targeting lint yield and fiber quality
traits for the past 50 years. Most of these traits are complex and behave
as quantitatively inherited traits (Campbell andMyers 2015). The poly-
genic architecture of themajority of these economically important traits
make them extremely difficult tomanipulate and improve. GS Bayesian
models have proven to be advantageous for complex traits in other
crops, such as grain yield where many loci of small effects control the
trait (e.g., Crossa et al. 2017). These traits are also expensive to measure
and require relatively large amounts of seeds. For example, to obtain an
accurate measurement of the most important trait, yield, requires sig-
nificant replication both within a field, across geographical regions and
over multiple seasons (Stiller andWilson 2014). As a result, a complete
breeding cycle, from initial crossing to commercial release, takes
a minimum of eight to ten years.

In this context, we have compared the accuracies of different GS
prediction models on two important end-use quality traits (fiber length
and strength) that are regularly assessed by CSIRO’s cotton breeding
program. The specific objectives of this study were (1) to evaluate the
accuracy of GS for fiber length and strength, and (2) assess themerits of
multi- over single-environment GS models in a practical breeding and
selection context in cotton, a crop for which this has not previously
been evaluated. GS models for cotton lint yield and lint percent, both
much more genetically complex traits than fiber quality traits, are the
subject of a future study. The long-term goal of this research is to
optimize GS approaches and use it in cotton breeding to fast track
the release of improved cotton varieties.
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MATERIALS AND METHODS

Traits measured and structure of phenotypic data
In order to assemble a trainingpopulation, weminedhistorical breeding
lines that had both phenotype data (trait means) and remnant seeds for
DNA extraction. These lines represented a mix of released cultivars,
breeding lines and other external breeding lines developed and collected
in an Australian cotton germplasm repository for the CSIRO cotton
breeding program. The phenotype data used in this study were from
breeding trials conducted from1993 to2010 at 7 sites (Table 1) andwere
not completely orthogonal (see Supplemental material File S2). The
number of breeding lines that had seed available per site ranged from
80 to 215 (Table 1). Of the 7 sites, only four had an average of 116 breed-
ing lines overlapping between sites and were used to test for marker
stability across sites. The traits analyzed for the study were fiber length
and strength. These traits were phenotyped using the Uster High Vol-
ume Instrument (HVI 900) as described in Liu et al. (2011) and
Clement et al. (2012).

The trialswereestablished in theAustraliancottonbeltwhich follows
inland rivers of New South Wales and Queensland (http://cottonaus-
tralia.com.au/uploads/publications/POCKET_GUIDE_MAP.pdf). The
cotton belt is divided into three regions, i.e., hot, central and cool based
on day-degrees as described by McMahon and Low (1972). Day-de-
grees decline from North to South in the cotton cropping season
(September to March) (Constable et al. 2001). Rainfall tends to be
summer-dominant in the North and Central but winter-dominant in
the South. On average, there are 248, 206 and 186 mm of in-crop
rainfall for the central, hot and cool region, respectively (Liu et al.
2013) and more than 4700 MJ/m2 in radiation during the crop season
(Rosenthal and Gerik 1991).

Phenotypic data analysis
Phenotypic data were analyzed in a two-stagemodel. First, a within trial
single site analysis was carried out using ASReml (Gilmour et al. 2009).
The final adjustedmeans over site, trials, years and row-columndesigns
were estimated with a mixed model applied to the alpha-lattice design
of each trial using ASReml R (Butler et al. 2009; Gilmour et al. 2009). In
order tominimize information loss when adjustedmeans are passed on
from the first to the second stage analysis, the adjusted means were
weighted by the inverse of their squared standard errors (e.g., Cullis
et al. 1996). The adjustedmeans for the breeding lines were then used in
the second stage to predict GEBVs based on markers and correspond-
ing marker effects.

DNA extraction, SNP genotyping and calling
SNPgenotypingwas doneusingDNA isolated fromcotyledons of 10-12
young seedlings with two true leaves of each accession. DNA extraction
was performed using the DNeasy Plant Mini Kit (Qiagen) according to

the manufacturer’s instructions. All DNA samples were quantified us-
ing a NanoDrop 1000 (Thermo Scientific) and normalized to the same
concentration (Zhu et al. 2016).

DNA at 50 ng/mL for each of the breeding lines was processed
according to Illumina protocols and hybridized to the CottonSNP63K
array at CSIRO Agriculture and Food (Brisbane, Australia) according
to the manufacturer’s instructions. Single-base extension was per-
formed and the chips were scanned using the Illumina iScan. Image
files were saved and analyzed using the GenomeStudio Genotyping
Module (v 1.9.4, Illumina). Genotype calls for each SNP were per-
formed based on the cluster file generated specifically for the Cot-
tonSNP63K array (Hulse-Kemp et al. 2015). The SNP calling module
was developed for diploids, so for each locus there are three possible
genotypes - AA, AB, and BB. Filtering was performed to return poly-
morphic SNPs with call rate above 80% and minor allele frequency.
5%.Missing data (4.8% of data points) were replaced by themean value
of the non-missing data for the loci, using the “mean” option imple-
mented in the ridge regression best linear unbiased predictions
(rrBLUP) package in R (Endelman 2011). A set of 13,330 polymorphic
SNPs were used for model training and genomic predictions (see Sup-
plemental material File S1). These SNPs were distributed across all the
26 chromosomes of cotton with a density of �5.3 SNPs/Mbp.

Genomic relationship and population
structure assessment
A random set of 5,000 SNPs were used to estimate the genomic relation-
ship matrix (G) of the breeding lines, following VanRaden (2008). To
explore genetic population structure in the breeding lines, principal
component analysis (PCA) was performed onG using the R function
‘prcomp’ (R Development Core Team 2014) with 5000 SNPs chosen at
random. This resulted in a matrix of eigenvectors (with dimensions
equal to the number of breeding lines) ordered by descending eigen-
values with the largest eigenvalue for PC1. We refer to these eigenvec-
tors of G as principal component (PC), where the PC1 had the largest
eigenvalue. The PCs were plotted and annotated with population
composition of the breeding lines to investigate where PCA was able
to cluster the various accession composition together. We tested the
significance of population structure following Patterson et al. (2006).

Genomic prediction models at single-site level
We compared five Bayesian regression models (BRR, BayesA, BayesB,
BayesC and RKHS) in order to identify the best model for genomic
selection for implementation in cotton breeding. All prediction models
were tested using the R (R Development Core Team 2014) “BGLR”
package (Pérez-Rodríguez and de los Campos 2014).

All Bayesian models used in this study can be written as

g ¼ mþ Xbþ e [1]

n Table 1 Details of test sites for fiber quality traits over several years and estimates of genomic heritability (h2g) 6 SEs

Site Regionx Latitude Longitude Years No. lines h2g 6 SE. Fiber length h2g 6 SE. Fiber strength
�Myall Vale (MV) Central 30� 14’S 149� 38’E 1998-2004 215 0.62 6 0.11 0.21 6 0.10
Collarenebri (CO) Central 29� 30’S 148� 44’E 1994-2002 88 0.33 6 0.12 0.29 6 0.11
�Bourke (BK) Hot 30� 02’S 145� 57’E 1995-2010 125 0.51 6 0.10 0.25 6 0.13
�Emerald (EM) Hot 23� 31’S 148� 10’E 1993-2005 124 0.52 6 0.15 0.47 6 0.08
�St. George (SG) Hot 28� 08’S 148� 41’E 1993-2010 128 0.32 6 0.14 0.29 6 0.11
Breeza (BR) Cool 31� 06’S 150� 31’E 1993-2005 80 0.42 6 0.19 0.33 6 0.13
Darling Downs (DD) Cool 27� 22’S 150� 31’E 1993-2005 99 0.37 6 0.13 0.42 6 0.17
� Trials with 116 breeding lines in common and used for across-site and marker-by-environment (M·E) interaction GS models.x
Region refers to Australian cotton belt which is divided into three regions, i.e., hot, central and cool based on day-degrees (McMahon and Low 1972).
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where g is the trait value, m is the population mean, X matrix of
marker-centered and standardized genotypes (i.e., each marker was
centered by subtracting the mean and standardized by dividing by the
sample standard deviation), b is the vector of marker effects, and e is
the vector of model residuals. Marker effects and model residuals
were assumed to be independent of each other and both normally
distributed. The sum of all allele effects is the GEBV of the breeding
line. Centering implies that variances and covariances between genet-
ic values are measured as deviations with respect to a center defined
by the average genotype.

Estimating genomic heritability of the traits
The genomic heritability (h2g) (the proportion of variance of a trait that
can be explained (in the population) by a linear regression on a set of
markers (de los Campos et al. 2015b)) of each trait at each site was
estimated from the genomic data. The genomic relationship matrix
showed that our population is highly related and presumably comes
from a very small effective population size as is typical of most cotton
breeding lines (e.g., Hinze et al. 2015; Gapare et al. 2017). Under these
conditions a likelihood, constructed based on proportions of allele
sharing at markers, is unlikely to be misspecified and consistency
may hold, leading to very small bias in genomic heritability estimate.
h2g was estimated as the ratio of the genomic over the phenotypic
variance, where the genomic variance is obtained with a REML analysis
using the genomic relationship matrix (de los Campos et al. 2015b).

Statistical models in genomic prediction at multi-
site level
To assess the merits of multi- over single-environment GS models in
cotton, we used phenotype data (adjusted means) from four sites that
had 116 breeding lines in common (Table 1) and 13,316 SNPs. For
comparison purposes, we performed a combined analysis based on an
M·E model from which within-site analysis (single-site model) and
across-site analysis can be derived and computed. All models were
fitted using BGLR software – release 1.0.4; (de los Campos and
Pérez-Rodríguez, 2015a) which support heterogeneous variances in
the model residuals. We also applied BayesB that allows for incorpo-
rating priors that can induce variable selection and shrinkage simulta-
neously (Meuwissen et al. 2001) and also allows for environment-
specific error variances (Crossa et al. 2016). The model is an extension
of the López-Cruz et al. (2015) model that assumes homogeneity of
within-site error variance.

A single-site regression model in matrix notation (Equation [2]) is
similar toEquation [1] but can be obtainedby removing themain effects
of the markers, b0 = 0, such that

2
664
y1
y2
y3
y4

3
775 ¼

2
664
1m1
1u2
1u3
1m4

3
775þ

2
664
X1 0 0 0
0 X2 0 0
0 0 X3 0
0 0 0 X4

3
775

2
664
b1
b2
b3
b4

3
775þ

2
664
e1
e2
e3
e4

3
775 [2]

All assumptions as specified in Equation [1].
The across-site model (Equation [3]) based on a GS model where

marker effects are assumed to be constant across sites (i.e., ignoring
M·E). The model assumes heterogeneous error variances but assumes
that marker effects are the same across sites such that b1 = b2 = b3 = b4;
and because all 116 breeding lines are tested at each site, x1 = x2 = x3 =
x4: The regression equation becomes a multi-variate model with the
following notation:

2
664
y1
y2
y3
y4

3
775 ¼

2
664
1m1
1u2
1u3
1m4

3
775þ

2
664
x1
x2
x3
x4

3
775b þ

2
664
e1
e2
e3
e4

3
775 [3]

A marker·environment model (M·E) (Equation [4]) allows analyz-
ing data from all sites jointly and accounts for G·E. In M·E model,
the effect of the kth marker in the jth environment is modeled as the
sum of a main effect (b0k) plus an interaction term bjk representing
deviations from the main effect resulting from M·E. The marker
effect model for the kth marker in the jth environment is bjk = b0k
+ bjk. The model can be expressed in matrix notation and for four
environments as:

2
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3
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2
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1m1
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1u3
1m4

3
7775þ

2
6664

x1
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3
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2
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3
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2
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b2
b3
b4

3
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þ

2
6664

e1
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e3
e4

3
7775

[4]

where the vectors of the main and interaction effects and model
residuals were all assumed to be normally distributed, specifically b0
�N(0,Is2

b0), bj�N(0,Is2
bj) and e�N(0,D5 In), whereD = diag (s2

e1,

s2
e2, s2

e3, s2
e4.) denoting the residual variance for each site, and In is an

n-dimensional identity matrix.
All models were adjusted via Bayesian approach, using Gibbs

Sampler MCMC (Markov chain Monte Carlo) method. Thus, we
obtained marginal posterior distributions equal to the restricted max-
imum likelihood (REML) procedure, to obtain variance and covariance
components, and to compute theGBLUPvalues. In the implementation
of theGibbs Sampler, we considered 210,000 samples collected from the
posterior distribution after discarding 10,000 for burn-in, and consid-
ering 20 as thinning.

Estimating accuracy of genomic predictions
To assess GS prediction accuracy at each site, we generated multiple
TRN–TST partitions with random assignment of breeding lines to
either TRN (training) or TST (testing) subsets of the whole dataset.
This approach was favored because with a replicated TRN-TST design,
one can obtain as many partitions as one needs and this allows esti-
mating standard errors of prediction accuracymore precisely than with
a cross-validation approach (e.g., López-Cruz et al. 2015). For assess-
ment of prediction accuracy across-sites, we adapted cross-validation
(CV) schemes of Burgueño et al. (2012): first CV1 that mimics the
prediction problem faced by breeders when breeding lines have not
been evaluated in any field trials (López-Cruz et al. 2015); second CV2
that evaluates the prediction ability of models when some breeding
lines have been evaluated in some sites, but not in others (López-Cruz
et al. 2015). We used an R code provided in López-Cruz et al. (2015)
supporting information to generate TRN-TST partitions in CV2. This
validation mimics the prediction challenge faced by breeders where
breeding lines are evaluated in some, but not all target environments
across an industry (López-Cruz et al. 2015). In such an evaluation,
information from related breeding lines and the correlated sites is used,
and prediction assessment benefits from borrowing information
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between breeding lines within a site, between breeding lines across sites,
and among correlated sites (Burgueño et al. 2012).

For both single-site and across-sites predictions, the data were
divided randomly into 50 partitions, with 70% of the breeding lines
assigned to the TRN set used to derive the models and 30% assigned to
the TST set to test thosemodels. The adjustedmeans of breeding lines at
each site were used as observed phenotypic records in the GS model.
Each partition yielded a point estimate of prediction accuracy (e.g.,
correlation coefficient between predictions and adjusted phenotypes).
The variability of the point estimate across partitions (replicates) re-
flects uncertainty due to sampling of TRN and TST sets, and a precise
estimate of prediction accuracywas obtained by averaging the estimates
of accuracy obtained in each partition. In selection theory, the accuracy
is defined as the correlation between the selection criterion and the true
breeding value (TBV). As calculated here, this correlation is reduced by
deviations of the phenotype from the TBV. The average correlation for
each trait was divided by the square root of the heritability of the
respective trait (e.g., Lorenzana and Bernardo 2009; Daetwyler et al.
2013). For each model-trait combination, we also evaluated the bias
associated with the prediction. The slope coefficient (b) for the linear
regression of GEBVs of the validation set on their EBVs was defined as
a measurement of the degree of bias of a model. In this case, b $

1 indicates no bias, whereas b , 1 indicates a biased overestimation
of GEBVs.

DATA AVAILABILITY
Genotype data and Phenotype data are included in Supplemental
materials File S1 and File S2, respectively. The authors confirm that
all data necessary for confirming the conclusions are presented fully in
this article.

RESULTS

Phenotype data
Genotype by year interaction accounted for only 1.14% and, 0.5% of the
total phenotypic variation for fiber length and strength, respectively. Box-
plots of standardized cotton fiber length and strength showed that the
overall empirical distribution of each trait was approximately normal (data
not shown), allowing the use of Gaussian distribution models. Genomic
heritability estimates at each site for each traits are presented in Table 1
(see materials and methods section). Individual site estimates were varied
for both traits, ranging from 0.21 to 0.62. The estimates across-sites aver-
aged 0.44 and 0.32 for fiber length and strength, respectively.

Genomic relationship and population structure
Figure 1 depicts the heatmap of the genomic (G) matrix for 215 breed-
ing lines. The 215 breeding lines comprise three groups, one small
group (top left) with two subgroups unrelated to one either of the
two and two other large groups, each with a number of subgroups
closely related to each other. Principal component analysis was per-
formed to gain insight into population structure that may affect pre-
diction accuracy (Figure 2). The first axis (PC1), which explained
�24.1% of the variability present in the genomic data, showed no
obvious clustering but evidence of strong admixture of breeding lines
from pre-2000 crosses and post-2000 crosses. There was also evidence
of wide dispersion of a limited number of breeding lines especially
defined by PC1. We accepted the hypothesis of absence of significant
population structure using P = 0.01. Thus, we did not detect distinct
genetic groups in this population but instead evidence of shared com-
mon alleles as seen by the mixture of colors representing different
breeding lines in the biplot.

Figure 1 Heat map of the G matrix of 215 cotton historical breeding lines genotyped with 13,330 SNP markers.
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Model selection using data From Myall Vale
We tested all the five models using data from each site and they gave
similar results, sowe only present results from one site (Myall Vale) that
had the most number of breeding lines. Table 2 provides five different
commonly used models for GS and their respective residual variance
estimates and the deviance information criterion (DIC) (measures of
goodness of fit and model complexity) for each of the traits tested at
Myall Vale site using 215 breeding lines. The five models gave very
similar estimates and predictions, as the correlation between pheno-
types and GEBVs derived from each of the models were relatively high
(Table 2). However, a smaller DIC is preferable suggesting that BayesB
was the preferred model for both traits. The model with the smallest
DIC also had the minimum residual variance. The phenotypes were
standardized to a unit sample variance and the estimated residual
variances for fiber length was 0.233, thus the model explained �77%
of its phenotypic variance. The preferred model for fiber strength only
explained 29% of the phenotypic variance. Based on residual variance
estimates, all models fitted the data better for fiber length than fiber
strength (Table 2).

Estimates of variance components From Across-site and
M3E models
Table 3 provides phenotypic correlations of fiber length and strength
across four sites that had common breeding lines. Correlations among
sites were all positively correlated. For fiber length, correlations ranged
from 0.51 to 0.68 and were higher for strength, ranging from 0.71 to
0.81.

Estimates of residual and genomic variance components for the
single-site, across-site andM·Emodels are presented in Table 4. For all
traits and sites, the estimated residual variances for the M·E model
were always smaller than those derived from the single-site and across-
site models. These results indicate the M·E model fits the data better
than models that (a) force the marker effects to be constant across sites
and (b) single-site models.

For theM·E interactionmodel (BayesB),marker effects are given in
terms of the probability or proportion of markers with effects different
from zero (nonnull) that are estimated for each of the components of
the marker effects (i.e., main effect and site marker specific effect (see
Table 4). Overall, across-site model had a lower proportion of markers
with nunnull effect than theM·Emodel (Table 4). For example, across-
site model gave proportions of 29.8 and 23.8% of markers with nunnull
effects for fiber length and strength, respectively, whereas the M·E
model gave, for the marker main effect, proportions of 38.2 and
37.6% of the markers with nunnull effects for fiber length and strength,
respectively. On average, the environment-specific proportion of
markers with nunnull effect were greater than main effect, with the
exception of Bourke (Table 4).

Prediction accuracy based on multiple training-testing
partitions at each site
Prediction accuracy based on training-testing partitions (TRN70-
TST30) for fiber length and fiber strength at each of the seven sites
individually are shown in Figure 3. Prediction accuracy for fiber length
ranged from 0.27 at Collarenebri to 0.77 at Myall Vale (with the highest

Figure 2 Plot of principle component (PC) 1 vs.
PC 2 scores for each historical breeding line (N =
215). Principal component analysis performed on
genomic relationship matrix (G) estimated from
single nucleotide polymorphism data for each
breeding line. Green, red, black and blue squares
represent a mix of elite varieties and overseas in-
troduced lines, lines derived from pre-2000, post-
2000 crosses and elite varieties, respectively.

n Table 2 Measures of goodness of fit for different models for two fiber quality traits using data at Myall Vale site

Trait

Models

BRR BayesA BayesB BayesC RKHS

Fiber length Res var (SD) 0.244 (0.05) 0.236 (0.04) 0.233 (0.05) 0.243 (0.05) 0.242 (0.05)
DIC 402.86 398.99 396.88 402.21 401.7
PA 0.96 0.96 0.96 0.95 0.94

Fiber strength Res var (SD) 0.727 (0.09) 0.708 (0.09) 0.706 (0.09) 0.723 (0.10) 0.745 (0.09)
DIC 587.46 587.15 586.27 587.00 592.88
PA 0.78 0.81 0.82 0.79 0.77

Res var = residual variance; BRR = Bayesian Ridge Regression; RKHS = Reproducing Kernel Herbert Spaces Regression; SD = Standard Deviation; DIC = Deviance
Information Criterion; DIC in bold was the best model for the trait; PA = Prediction Accuracy – i.e., correction between phenotypes and genomic estimated breeding
values.
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number of breeding lines). However, at five of seven sites, excluding
Collarenebri, prediction accuracy averaged 0.46. For fiber strength,
accuracies ranged from 0.19 at Bourke to 0.58 at Darling Downs, with
an average of 0.50, excluding Bourke.

Assessment of prediction accuracy in a multi-site
context for fiber length and strength
Prediction accuracies obtained under different models for fiber
length and strength are presented in Table 5 (CV1) and 6 (CV2).
Single-site analysis by either validation approaches yielded mod-
erately low prediction correlations for fiber length, ranging from
as low as 0.19 for to 0.34 (Tables 5 and 6). Similarly, low pre-
diction correlations were observed for fiber strength, ranging
from 0.12 to 0.35 (Tables 5 and 6). Under CV1, across-site model
and the M·E model performed similarly to single-site model. For
an across-site model that analyzed data jointly under CV2, the
model yielded higher prediction accuracies than single-site mod-
els for length and strength, with an average prediction correlation
of 0.41 and 0.39, respectively (Table 6). Prediction accuracies
from the M·E model were higher than those for the across-site
model, with an average prediction accuracy of 0.71 and 0.59 for
fiber length and strength, respectively (Table 6). For all models
and trait combination, the slope coefficients were not significantly
different than 1, i.e., indicating no significant bias in the GEBVs
prediction.

To compare changes in ranking of the breeding lines based on
GEBVs from each of the models, we used the coincidence index, which
estimates the selection efficiency of multi-site relative to single-site
models (e.g., Hamblin and Zimmermann, 1986 – page 253). Briefly,
when the number of breeding lines identified by the multi-site and
M·E interaction models is no more than the number of breeding lines
expected by chance, the selection efficiency is zero (e.g., Hamblin and
Zimmermann 1986). Likewise, when the number of breeding lines
identified in the multi-site and M·E interaction models is the same
as the number selected by the single-site model, the selection efficiency
is 100%. Each site had 116 breeding lines and therefore a selection
intensity of 20% identified 23 breeding lines. Assuming a random re-
lationship of the breeding lines in different models, approximately
5 breeding lines (23 · 20%)would be identified by chance. For example,
under CV1 at Myall Vale, 5 of the breeding lines identified using the
single-site model were also in the top 20% identified by the multi-site
model. The selection efficiency in this case would be estimated as
follows:

Selection efficiency¼½ð10-5Þ=ð23-5Þ� · 100 ¼ 28%

Under CV2, mean selection efficiency of the across-site and M·E
interaction models over single-site model was 40% and 48% for fiber
length and strength, respectively (Table 6).

DISCUSSION
Genomic selection is now taking advantage of the large amount of
phenotypic data collected by breeding programs across years, provided
there is seedavailableDNAextractionuponwhichwegetgenotypicdata.
However, this also raises new challenges to optimally exploit those data.
By nature, historical data can be extremely unbalanced. Historical data
will include trials of varying quality without readily accessible meta-
information on issues affecting trial quality (e.g., Heslot et al. 2013;
Rutkoski et al. 2015). This study demonstrated that historical data on
fiber length and strength when combined with high density SNP data,
can be used to develop predictive models for complex agronomic
traits of cotton. Varying training population sizes ranging from 200 to
500 individuals were used in most initial GS studies in other crops
(e.g., Lorenzana and Bernardo 2009; Crossa et al. 2014; Spindel et al.
2015). Some studies have reported genetic gain to double even when
using merely 500 individuals, compared to phenotypic selection. For
example, Lorenz (2013) and Lin et al. (2016) have found that GS with
optimized breeding designs can enhance genetic gain, while consum-
ing less cost per unit time as compared to traditional breeding.

This study focusedon twoeconomically importantfiberquality traits
– fiber length and strength that have similar and reasonably moderate
genomic heritabilities. We were not able to compare our genomic
heritability estimates from other studies as there are no estimates in
the literature, except for those estimated using the additive relationship
matrix. However, our estimates fell within the range reported by
Campbell and Myers (2015) that showed that the estimates range from
0.23 to 0.57 for both traits, depending on the population sampled and
the environment for which they were evaluated. Because of a high level

n Table 3 Sample phenotypic correlation estimates 6 SE for fiber
length and strength evaluated at four sites

Trait -Length Emerald St George Myall Vale

Bourke 0.68 6 0.07 0.63 6 0.07 0.60 6 0.07
Emerald 0.52 6 0.08 0.68 6 0.06
St George 0.51 6 0.09
Trait -Strength
Bourke 0.71 6 0.07 0.76 6 0.06 0.79 6 0.06
Emerald 0.81 6 0.05 0.80 6 0.06
St George 0.77 6 0.06

n Table 4 Estimated posterior residual variance components (and
their posterior standard deviations, SD) and the estimated
posterior probability of markers with nonnull effects from the
single-site, across-site and the marker 3 environment interaction
models for fiber length (LEN) and strength measured at four sites

Fiber length Fiber strength

Site Estimate SD Estimate SD

Single-site

Residual Myall Vale 0.469 0.13 0.405 0.12
Bourke 0.407 0.13 0.446 0.13
Emerald 0.401 0.13 0.463 0.13
St George 0.465 0.12 0.488 0.12

Probability Myall Vale 0.321 0.15 0.158 0.06
Bourke 0.385 0.18 0.219 0.09
Emerald 0.377 0.21 0.214 0.10
St George 0.301 0.17 0.182 0.07

Across-site
Residual Myall Vale 0.458 0.09 0.298 0.07

Bourke 0.309 0.06 0.310 0.06
Emerald 0.289 0.06 0.260 0.06
St George 0.750 0.13 0.269 0.07

Probability All 0.298 011 0.238 0.06
M3E

Residual Myall Vale 0.341 0.06 0.225 0.05
Bourke 0.243 0.04 0.264 0.05
Emerald 0.254 0.05 0.209 0.04
St George 0.619 0.11 0.213 0.04

Probability Main effect 0.382 0.07 0.376 0.07
environment Myall Vale 0.504 0.08 0.462 0.08
main effect and Bourke 0.216 0.08 0.200 0.07
specific effect Emerald 0.435 0.12 0.444 0.16

St George 0.567 0.09 0.500 0.10

Volume 8 May 2018 | Genomic Selection in Cotton | 1727



of relatedness in the breeding lines, they likely share long chromosome
segments and, under these circumstances, the patterns of allele sharing
at markers and at QTL are very similar. This leads to very small bias in
genomic heritability estimates (e.g., de los Campos et al. 2015b).

Heritabilityofa trait corresponds to theupper limitof thephenotypic
variance explained by a linear genetic prediction model (Clark et al.
2012; Wray et al. 2013). A linear relationship was expected, since traits
with moderate heritability, normally, present phenotypes with expres-
sion of relatively high genetic variance, and are expected to be more
predictable by a genomic approach. This was the case for fiber length at
most sites but uniquely not fiber strength at Myall Vale, where the
residual variance was almost 70%, suggesting that other factors not
accounted for by the model were contributing to phenotypic variance
(Table 2). Incorporating other factors such as environmental covariates
would reduce the amount of residual variance for fiber strength (e.g.,
Jarquín et al. 2014).

Model selection
Complex traits are possibly affected by large numbers of small-effect
QTL and the analysis of such traits requires fitting a large number of
variants concurrently using a GS approach such as the one proposed by
Meuwissen et al. (2001). Since the introduction of genomic selection
models, empirical evidence has demonstrated that no single model
performs best across species and traits and grouping traits based on
their architecture is not always straightforward (Heslot et al. 2012; de
los Campos et al. 2013). All five models performed similarly although,

the deviance information criterion favored BayesB which is based on
specifying all SNP-associated effects to be independent of each other,
allowing a large proportion of SNP markers to be associated with null
effects (Meuwissen et al. 2001; Yang and Tempelman 2012). When
markers and QTL co-segregate, variable selection does not seem to
be needed (de los Campos et al. 2015b). Given that fiber length and
strength are moderately heritable, we would expect both traits to be
associated with many loci, each explaining only a small portion of the
genetic variance. We would expect BayesB to have increased prediction
accuracy over BRR or RR-BLUP because they avoid over-shrinking
those QTL with moderate effects (e.g., de los Campos et al. 2013).
We would also expect prediction accuracies from BayesB to persist in
new populations because they focus more on analyzing QTL-marker
associations rather than on relationships, whereas RR-BLUP rely on
kinship more strongly. The genetic correlation between the two traits is
known to be positive and high �0.80 (e.g., Lacape et al. 2005; Gapare
et al. 2017). Likewise, we would expect the two traits to be controlled by
similar sets of loci, although the influence of other factors on fiber
strength cannot be excluded, given that the residual variance for fiber
strength was much higher than that for fiber length.

Marker density plays an important role in genomic prediction.
ForGS, it is desirable to obtain adequate genome coverage so that all
contributing QTL are in LD with at least one marker. Studies have
shown this optimummarker size to be trait and population specific
(Heffner et al. 2011). The SNPs used in our study were distributed
across all the 26 chromosomes of cotton with a density of �5.3

Figure 3 Estimated prediction accuracy (predic-
tion accuracy between phenotypes and predic-
tions averaged over 50 TRN-TST partitions) for
cotton fiber length and fiber strength at seven
test sites.

n Table 5 Estimated prediction accuracy (correlation coefficient between predicted and observed phenotypes, averaged over 50
TRN-TST partitions) 6 SE for fiber length and strength in cotton by CV1

Trait/Sites Prediction accuracy 6 SE

Fiber length Single site Across-site M·E model Selection efficiency (%)a

Myall Vale 0.19 6 0.02 0.14 6 0.02 0.16 6 0.03 27; 37
Bourke 0.23 6 0.03 0.23 6 0.02 0.23 6 0.02 24; 38
Emerald 0.33 6 0.02 0.26 6 0.03 0.29 6 0.02 23; 37
St George 0.30 6 0.02 0.22 6 0.02 0.28 6 0.02 19; 37
Mean 0.26 0.21 0.24 23; 37
Fiber strength
Myall Vale 0.26 6 0.04 0.19 6 0.04 0.19 6 0.03 35; 52
Bourke 0.14 6 0.02 0.13 6 0.04 0.11 6 0.02 28; 39
Emerald 0.35 6 0.05 0.28 6 0.02 0.29 6 0.02 42; 51
St George 0.26 6 0.02 0.26 6 0.03 0.26 6 0.03 43; 54
Mean 0.25 0.22 0.14 37; 49
a
Selection efficiency across-site model relative to single-site (before semi-colon) and relative to M·E model (after semi-colon).
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SNPs/Mbp. Implementing GS into a breeding program would likely
involve increasing training panel size over time as more phenotypic
data are generated. Thus, as more individuals are added to the model,
there may be a need to reassess the optimum marker number. How-
ever, if the accuracy obtained in this study is due to LD, then it is more
likely to persist across generations and breeding lines than if the ac-
curacy due to relationships (e.g., Habier et al. 2007; Habier et al. 2013).

Relationships and population structure
Naturally and artificially selected/breeding populations usually exhibit
some degree of relatedness and stratification. Pronounced population
structure has to be consideredwhen evaluating the potential of genomic
selection (Isidro et al. 2015). In general, when population structure is
not taken into account, genomic prediction accuracy decreases (Sallam
et al. 2015). As might be expected for breeding lines that have gone
through repeated selection and breeding, leading to relatedness. The
heat map based on Gmatrix suggested that our population was highly
related. In our study, we did not detect any evidence of significant
subpopulation structure although, there was evidence of strong admix-
ture, with 24.1% of the total variation being explained by PC1 and
12.7% by PC2.

Prediction accuracy based on multiple training-testing
partitions at each site
Prediction accuracy for fiber strength atMyall Vale was almost half that
observed for fiber length. However, based on their known heritabilities,
we had expected that prediction accuracy for fiber strength would be in
the same range as fiber length. Possible reasons for such low prediction
accuracy for strength include (i) model inadequacy as evidenced by the
high residual variance (Table 2); (ii) the genomic region affecting the
trait might not have been effectively covered in the current genotyping
data using a SNP chip that does have some gaps in coverage on some
chromosomes (Hulse-Kemp et al. 2015), and (iii) small size of the
training population. There are ongoing efforts to increase the size of
the training population. Accuracy may improve when we can move to
more extensive genotype-by-sequencing approaches to genotyping.
One possibility would be to expand any of the previously presented
models by including an interaction term between environmental cova-
riates and the random effect of the markers. For example, LD between
markers and genes at causal loci or because of model misspecification
(e.g., interactions between alleles that are unaccounted for), the regression

on markers may not fully describe genetic differences among lines (e.g.,
Jarquín et al. 2014).

With the exception of Myall Vale, prediction accuracies for fiber
length at each site were almost the same, averaging 0.43. One possible
reason for differences in prediction accuracy between Myall Vale and
other sitesmaybe thehighgenomicheritability estimate andalso the size
of the training population that was almost double that of any other site
(Table 1). Some of the variation observed in our results could be due to
other unmeasured features (e.g., environmental variables), because ac-
curacies from prediction models depend on a complex network of
different, interrelated factors. The unknown factors may explain some
proportion of the variation in the datasets and increase the power of the
model for prediction.

Variance components From Across-site and
M3E models
Our results agreed with those found by López-Cruz et al. (2015) and
Crossa et al. (2016), where the M·E model fitted the data better than
the single-site and across-site models. In this study, fiber length and
strength had positive and high sample phenotypic correlations among
sites. The across-site model had relatively higher residual variance than
the M·E model, indicating that forcing constant marker effects across
sites, b1 = b2 = b3 = b4, does not produce a better fit of this model (e.g.,
Crossa et al. 2016). The M·E model is based on variance component
estimation of the marker main effects and site-specific marker effects
and, in terms of prediction accuracy, it performed well at all sites since
they were positively correlated (Table 3). Asmight be expected for traits
that have positive correlations between sites, the M·E model will tend
to have higher prediction accuracy for traits that have positive corre-
lations than traits with zero or negative correlations between sites (e.g.,
López-Cruz et al. 2015).

Genomic selection accuracy Across sites
Genomic prediction models have been proposed that take into account
the random effects of markers and their interaction with environments
based on genetic and environmental similarities among individuals
(Jarquín et al. 2014; Perez-Rodriguez et al. 2015; Cuevas et al. 2017).
As might be expected for traits that are moderately influenced by
environment, M·E model outperformed both single- and across-site
models. Overall, the M·E model performed best under CV2 (Table 6).
The low prediction accuracies under CV1 and higher accuracies under

n Table 6 Estimated prediction accuracy (correlation coefficient between predicted and observed phenotypes, averaged over 50 TRN-
TST partitions) 6 SE for studied traits in cotton, CV2

Trait/Sites Prediction accuracy 6 SE

Fiber length Single site Across-site M·E model Selection efficiency (%)a

Myall Vale 0.19 6 0.02 0.38 6 0.02 0.64 6 0.14 31; 39
Bourke 0.21 6 0.02 0.33 6 0.09 0.41 6 0.11 28; 41
Emerald 0.34 6 0.02 0.51 6 0.03 0.65 6 0.13 21; 23
St George 0.33 6 0.02 0.42 6 0.02 0.63 6 0.14 33; 38
Mean 0.27 0.41 0.71 28; 35

Fiber strength
Myall Vale 0.25 6 0.01 0.31 6 0.09 0.52 6 0.11 32; 47
Bourke 0.12 6 0.02 0.28 6 0.11 0.57 6 0.11 29; 36
Emerald 0.34 6 0.02 0.48 6 0.12 0.61 6 0.14 48; 57
St George 0.34 6 0.02 0.49 6 0.15 0.64 6 0.13 49; 52
Mean 0.26 0.39 0.59 40; 48
a
Selection efficiency across-site model relative to single-site (before semi-colon) and relative to M·E model (after semi-colon).
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CV2 are consistent with those of previous studies in cotton (e.g., Perez-
Rodriguez et al. 2015) and in wheat (Burgueño et al. 2012; Lado et al.
2016) that have used similar cross-validation designs. These studies also
found that the inclusion of G·E produced a considerable increase in
prediction accuracy. Predictions in TST data sets are derived using
information from the genotypes included in the TRN data; therefore,
prediction accuracy depends on how much information can be bor-
rowed for genotypes in the TRN set that is relevant to those in the TST
set (López-Cruz et al. 2015; Velu et al. 2016; Sukumaran et al. 2017).

Our results support evidence of increased accuracies by incorporat-
ing G·E terms in prediction models (Table 6). For example Perez-
Rodriguez et al. (2015) demonstrated that prediction accuracies in
cotton yield could increase from 0.45 to 0.51 by using models that
incorporate G·E terms. One advantage of the M·E model is that it
can be usedwith priors that induce differential shrinkage of estimates as
well as priors that produce variable selection (de los Campos et al.
2013). Such treatment would potentially aid in identifying sets of
markers with effects that are stable across environments and others
that are responsible for G·E (López-Cruz et al. 2015). For example,
Crossa et al. (2016) used the M·E GS model to identify genomic
regions in which the effects are stable across environments and other
regions that are specific to certain environments and therefore respon-
sible for G·E in grain yield in durum wheat. We envisage that this
model would be useful for fiber yield components traits that exhibit
considerable amount of G·E (e.g., Perez-Rodriguez et al. 2015) and
have low heritability (Liu et al. 2011).

Using data from one site to predict the performance in independent
sites is crucial for plant breeding. The GS prediction accuracy between
sites for fiber length and strength were moderately high (Table 6). The
M·E model under CV2 is based on variance component estimation of
the marker main effects and environment-specific marker effects and,
in terms of prediction accuracy, it performed well at all sites. This is an
important result for cotton breeding given that all initial selection and
breeding are carried out at the breeding program base location (Myall
Vale site) with the follow-up of elite lines being tested across regions in
breeding target environments. Thus, as for fiber length and strength,
the ability of the data from one environment to predict the other, was
similar, irrespective of which site’s data were used to build the pre-
diction model.

Conclusions
GS is still in its infancy in most plant breeding programs, and one of
the biggest obstacles for implementing GS in practical breeding is the
high start-up costs required. The investment in startingGS is substantial
in both technology and human resources required with regards to the
costs of phenotyping, maintaining a large training population, costs
of genotyping entire breeding populations and model optimization
analysis. However, genotyping costs are continually decreasing and
genotyping of large plant populations is much more manageable today
than it was just a few years ago. We also envisage that further cost
reductions could be made by utilizing historical phenotype data, as it
would reduce the costs of establishing, phenotyping, and maintaining
initial training populations significantly. If historical data can be correctly
adjusted for annual variation of environmental factors, they represent a
substantial resource.Historicaldatacouldbeusedto initiateaGSbreeding
program, allowing breeders to realize the potential and benefits of GS,
before incorporating contemporary data and recalibrating the model.

Further work is required to increase the size of the training pop-
ulation and test the models on cotton fiber yield and other fiber quality
traitsbefore implementationofGS incottonbreeding. In thenear future,

a model that integrates the analysis of multi-traits and multi-environ-
ments and takes into account trait · genotype · environment interac-
tion (T·G·E) in a unifiedwhole genome predictionwould be desirable.
GS could have its greatest potential use at points in the breeding pro-
gram where selection using traditional methods (for example, through
the generation of phenotypes via replicated trials) is too expensive, time
consuming, or not biologically or logistically possible because of the
wide geographical distribution of the industry in Australia (�1,500 km
from hot to cool climates). The most important questions relating to the
applicability of GS in the CSIRO cotton breeding program are whether it
will better help breeders predict: (1) breeding values of individuals for
more rapid selection cycling or (2) genotypic values of advanced lines that
are in the last stages of testing andwe believe that for the traits examined in
this study that it will provide value if adopted as a routine part of Aus-
tralian cotton breeding. This study can contribute to breeding programs
for other crops, like wheat or barley, where a conventional strategy of
selection based on the phenotype is used and much historic phenotype
data are available that has been collected over multiple years by breeders.
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