# SCIENTIFIC REPORTS

Received: 27 March 2015 Accepted: 10 August 2015 Published: 09 September 2015

## **OPEN** Manganese powder promoted highly efficient and selective synthesis of fullerene monoand biscycloadducts at room temperature

Weili Si<sup>1</sup>, Xuan Zhang<sup>1</sup>, Shirong Lu<sup>1</sup>, Takeshi Yasuda<sup>2</sup>, Naoki Asao<sup>1</sup>, Liyuan Han<sup>2</sup>, Yoshinori Yamamoto<sup>1,3</sup> & Tienan Jin<sup>1</sup>

Discovery of an efficient, practical, and flexible synthetic method to produce various important electron acceptors for low-cost organic photovoltaics (OPVs) is highly desirable. Although the most commonly used acceptor materials, such as PC<sub>61</sub>BM, PC<sub>71</sub>BM, IC<sub>60</sub>BA, bisPC<sub>61</sub>BM have been proved to be promising for the OPVs, they are still very expensive mainly due to their low production yields and limited synthetic methods. Herein, we report an unprecedented and innovative synthetic method of a variety of fullerene mono- and biscycloadducts by using manganese powder as a promotor. The reaction of fullerenes with various dibromides proceeds efficiently and selectively under very mild conditions to give the corresponding cycloadducts in good to excellent yields. The combination of manganese power with DMSO additive is crucial for the successful implementation of the present cycloaddition. Notably, the standard OPV acceptors, such as PCBMs, have been obtained in extraordinarily high yields, which cannot be achieved under the previously reported methods.

Functional fullerenes have been used broadly as excellent n-type semiconductors in solution processable organic electronics<sup>1-5</sup>, especially as the unique electron acceptors for organic photovoltaics (OPVs) due to their significant increase in solubility while preserving certain electronic and optical properties of pristine fullerenes<sup>6-8</sup>. At present, the state-of-the-art of OPVs have an overall power conversion efficiency approaching  $10\%^{9-11}$  based on newly developed low bandgap electron donors and [6,6]-phenyl-C<sub>61</sub>-butyric acid methyl ester (PC<sub>61</sub>BM) or its C<sub>70</sub> analogue PC<sub>71</sub>BM as an electron acceptor<sup>12-14</sup> which are the most well-demonstrated benchmark acceptors for testing new donor materials in terms of their miscibility, solubility, and high electron mobility<sup>15,16</sup>. Recently, many endeavors on development of new functional fullerenes have been made to improve the efficiencies of OPVs<sup>17-27</sup> and it was found that the bisfunctional fullerenes with up-shifted LUMOs, such as indene- $C_{60}$ -bisadduct ( $IC_{60}BA$ )<sup>19,20</sup>, bisPC<sub>61</sub>BM<sup>21</sup> and bis-*o*-quinodimethane  $C_{60}$  (*o*-QDMC<sub>60</sub>)<sup>22-24</sup> showed higher open circuit voltages and hence improved OPV efficiencies. In this context, it is expected that the efficiency could be further improved that may expedite the practical application of the OPVs in the next few years. To achieve low-cost OPVs, synthesis of OPV materials in a simple, practical process with a high production yield is one of the important strategies<sup>28</sup>. However, the standard acceptors PCBM, ICBA, and their analogues are still very expensive due to low yields, low selectivities, and harsh synthetic conditions. For example, PC<sub>61</sub>BM was prepared by a

<sup>1</sup>WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan. <sup>2</sup>Photovoltaic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047, Japan. <sup>3</sup>State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China. Correspondence and requests for materials should be addressed to T.J. (email: tjin@m.tohoku.ac.jp)

#### (a) Previous synthetic methods of PCBM and ICBA



### (b) Current report: Mn powder-promoted highly efficient cycloaddition of fullerenes



**Figure 1. Synthesis of the most common OPV acceptors.** (a) The previous synthetic methods for PCBM and ICBA under thermal conditions. (b) Our new method of Mn powder-promoted synthetic method for achieving high yields of mono- and biscycloadducts including  $PC_{61}BM$ ,  $PC_{71}BM$ , and  $IC_{60}BA$ .

.....

one-pot reaction over two-steps in 58% yield through the reaction of  $C_{60}$  with methyl 4-benzoylbutyrate *p*-tosylhydrazone at 70 °C followed by isomerization of the resulting [5,6]PC<sub>61</sub>BM to PC<sub>61</sub>BM at 180 °C (Fig. 1a)<sup>13</sup>. IC<sub>60</sub>BA was synthesized in 34% yield along with the formation of the monoadduct IC<sub>60</sub>MA in 25% yield in the reaction of C<sub>60</sub> with indene at 180 °C (Fig. 1a)<sup>19</sup>. Therefore, development of an innovative, practical synthetic method for those important fullerene acceptors under mild conditions with high production yields is highly desirable.

Recently, we have been interested in development of new and efficient fullerene functionalizations under mild conditions toward application in OPVs<sup>29-36</sup>. Various fullerene functionalizations for synthesis of monosubstituted hydrofullerenes, monocycloadducts, single-bonded fullerene dimers, 1,4-disubstituted fullerenes have been developed in the presence of transition metal catalysts or oxidant via the formation of the fullerene monoradical as an active species<sup>37</sup>. These results led us to challenge the innovative, flexible synthetic method for those most common fullerene acceptors in very high yields. Herein, we report an unprecedented, highly efficient, and selective manganese powder-promoted bis- and monocycloaddition of  $C_{60}$  (or  $C_{70}$ ) with various alkyldibromides at room temperature for constructing carbocycle-fused fullerenes with various ring sizes (Fig. 1b). Notably, the present cycloaddition afforded  $PC_{61}BM$  and  $PC_{71}BM$  in excellent yields of >90%, as well as  $IC_{60}BA$  and  $bisPC_{61}BM$  in 75% and 92% yields, respectively, which cannot be achievable under the previously reported methods.



Table 1. Investigation of the reaction conditions for synthesis of biscycloadduct 2a (o-QDMC60).

Reaction conditions (entries 1–7): Reaction conditions (entries 1–7):  $C_{60}$  (0.03 mmol), Mn (9 equiv), **1a** (4 equiv), ODCB (4 mL), cosolvent (0.3 mL) under an argon atmosphere for 12 h at room temperature. Reaction conditions (entries 8–13):  $C_{60}$  (0.03 mmol), metal (3 equiv), **1a** (2.2 equiv), ODCB (4 mL), DMSO (0.3 mL) under an argon atmosphere for 47 h at room temperature. <sup>†</sup>HPLC yields were determined using  $C_{70}$  as an internal standard. Isolated yield is shown in parenthesis. <sup>‡</sup>Reaction time is 44 h. <sup>II</sup>The reaction time is 20 h.

.....

#### Results

**Optimization of the reaction conditions.** As aforementioned, we have reported that the  $CoCl_2dppf$  catalyst combined with a Mn reductant in *o*-dichlorobenzene (ODCB) promoted the monocycloaddition of  $C_{60}$  with active dibromides efficiently at room temperature to form the fullerene monocycloadducts in a high selectivity<sup>30</sup>. It was noted that the efforts to synthesize the biscycloadducts under the Co-catalyzed standard conditions even using an excess amount of dibromides were failed. Further investigations of the reaction conditions for the selective biscycloaddition of  $C_{60}$  with 1,2-bis(bromomethyl)benzene (1a, 4 equiv) are summarized in Table 1.

The reaction with Mn powder (9 equiv) in ODCB did not produce any desired cycloadducts (entry 1). We have previously demonstrated that the use of polar cosolvents with ODCB remarkably enhanced the fullerene monoradical generation and stability<sup>33-36</sup>, which led us to examine various polar cosolvents. To our delight, the reaction proceeded smoothly in a mixture of DMSO/ODCB with Mn powder at room temperature, affording the corresponding biscycloadduct 2a (o-QDMC<sub>60</sub>) in 60% yield together with a 20% yield of the multicycloadduct 3a (entry 2). The reaction did not take place without using Mn powder in this solvent system (entry 3). Other cosolvents were also tested in the presence of Mn powder. It was found that the use of DMF as a cosolvent exhibited a much higher activity, yielding the multiadducts predominantly without formation of both bis- and monocycloadducts (entry 4), while other polar solvents such as CH<sub>3</sub>CN, THF, and EtOH were totally inactive (entries 5-7). Notably, the decrease in amounts of Mn powder (3 equiv) and dibromide 1a (2.2 equiv) in ODCB/DMSO solvent systems hampered the formation of multiadducts under a prolonged reaction time (47h), resulting in 2a in an 85% isolated yield (entry 8). Other metals were also tested instead of Mn powder. In contrast to the high activity of Mn(0), other Mn salts such as MnO<sub>2</sub>, Mn(OAc)<sub>3</sub>•2H<sub>2</sub>O<sup>38</sup>, and MnCl<sub>2</sub>•4H<sub>2</sub>O having a higher oxidation state were totally ineffective (entries 9-11). Zinc and iron powders which have been employed as reductants successfully in our previous cobalt catalysis<sup>29</sup> showed a moderate activity, in which Zn powder could promote the present biscycloaddition to give 2a in 55% yield, while Fe powder showed a relatively lower reactivity to produce the monocycloadduct 3a in 54% yield without formation 2a (entries 12 and 13).



**Figure 2.** Mn-promoted biscycloaddition of  $C_{60}$  with various alkyl dibromides. Reaction conditions:  $C_{60}$  (0.03 mmol), Mn (0.09 mmol, 3 equiv), dibromides (1, 2.2 equiv), DMSO (0.3 ml), ODCB (4 ml), under an argon atmosphere at room temperature. The isolated yields are shown after silica gel chromatography.

The reactions using other zero-valent metals, such as Mg, Cu, Pd/C, and Raney Ni did not show any activity for promoting the present cycloaddition (entries 14–17). Overall, it is concluded that the use of Mn(0) powder in DMSO/ODCB solvent systems is crucial for the selective formation of the fullerene biscycloadduct **2a** in a high chemical yield.

**Synthesis of biscycloadducts.** Under the optimized conditions, various alkyl dibromides have been examined to study the substrate scope and selectivity of the present biscycloaddition (Fig. 2). All the reactions were monitored by HPLC and the corresponding products were isolated by silica gel chromatography. It is noted that very small amounts of the monoadducts and the recovered  $C_{60}$  were observed in every reaction, and the major by-products were multiadducts whose yields did not show due to some overlapping peaks with bisadducts in HPLC chromatogram. The new structures of biscycloadducts containing a mixture of isomers were determined by <sup>1</sup>H and <sup>13</sup>C NMR spectra as well as the high resolution mass.

Firstly, we tested various bis(bromomethyl)arenes to obtain the corresponding bisadducts fused with a 6-membered ring. 1,2-Bis(bromomethyl)benzenes **1b** and **1c** having a ester or a methoxy group on the phenyl ring were tolerated under the present conditions, furnishing the corresponding biscycloadducts **2b** and **2c** in 70% and 71% yields, respectively. The reaction is also compatible with the heteroaryl-incorporated dibromide, 3,4-bis(bromomethyl)-2,5-dimethylthiophene (**1d**), affording the corresponding bisadduct **2d** in 56% yield. The reaction of  $C_{60}$  with 1,3-dibromo-2,3-dihydro-1*H*-indene (**1e**) produced I $C_{60}$ BA (**2e**) in 75% yield which is much higher than that using the previously reported method (34%, Fig. 1a)<sup>19</sup>. It is noted that the scale-up reaction of  $C_{60}$  (108 mg) with **1e** did not show

significant decrease in the efficiency, giving  $IC_{60}BA$  (2e) in a 72% isolated yield after 26 h at room temperature (Figure S3). The reaction is also applicable to the construction of the bisadducts fused with a 5-membered ring, which could not be prepared by the previously reported methods<sup>22-24</sup>. The reactions of  $C_{60}$  with 1,3-dibromo-1,3-diphenylpropane (1f), and its derivatives 1g and 1h having Br and F substituents on the phenyl ring showed a high reactivity, producing the corresponding bisadducts 2f-h in good to high yields in short reaction times. Again, it was confirmed that the scale-up reaction of  $C_{60}$ (108 mg) with 1f produced a 75% yield of 2f under a prolonged reaction time (45 h) (Figure S4). The allylic dibromide such as 3-bromo-2-(bromomethyl)prop-1-ene (1i) is also a suitable substrate for the present cycloaddition, giving the corresponding bisadduct 2i in 61% yield. Interestingly, the reaction of  $C_{60}$  with (dibromomethyl)benzene (1j) gave the 3-membered ring fused bisadduct 2j in 90% yield. This result encouraged us to synthesize bisPCBM which has also been applied as a promising acceptor in OPVs<sup>21</sup>. The corresponding dibromide reactant, methyl 5,5-dibromo-5-phenylpentanoate (1k) was prepared in 90% yield by the dibromination of methyl 5-phenylpentanoate with NBS in the presence of a catalytic amount of AIBN at reflux (Figure S1). Remarkably, the biscycloaddition of  $C_{60}$  with 1k under the standard conditions produced the desired  $bisPC_{61}BM$  (2k) in 92% yield. It is worthy to note that bisPC<sub>61</sub>BM is generally obtained as a by-product during the preparation of PC<sub>61</sub>BM<sup>21</sup>.

**LUMO energy levels of biscycloadducts.** It was reported that  $56\pi$ -biscycloadducts, such as  $IC_{60}BA$  and bisPC<sub>61</sub>BM exhibited a significantly improved open circuit voltage ( $V_{oc}$ ) owing to its much higher LUMO energy than that of PCBM<sup>19–21</sup>. We have measured the LUMO energy levels of the selected new biscycloadducts by cyclic voltammetry (CV). Biscycloadducts **2b** and **2c** having a ester or a methoxy group on the phenyl ring showed high LUMOs of -3.48 and -3.41 eV, respectively, which are higher than that of PC<sub>61</sub>BM (-3.60 eV) and comparable with that of IC<sub>60</sub>BA (**2e**, -3.43 eV). The 5-membered ring-fused bisadduct **2i** shows a slightly higher LUMO energy level (-3.40 eV) compared with IC<sub>60</sub>BA (**2e**). Since the  $V_{oc}$  of bulk heterojunction solar cells has an association with the energy difference between the LUMO of acceptor and the HOMO of donor<sup>39</sup>, it is expected that the new biscycloadducts possessing higher LUMO energies should be potential acceptor candidates for OPVs.

Synthesis of monocycloadducts. Inspired by the successful biscycloaddition of  $C_{60}$  with Mn powder, we further extended the present method to the selective monocycloaddition. To our delight, the monocycloadducts could be obtained at room temperature in good to excellent yields with a wide substrate scope by simply decreasing the amounts of Mn powder (1 equiv) and dibromides (1 equiv) as shown in Fig. 3. The reaction of  $C_{60}$  with bis(bromomethyl)benzenes 1a and 1b in the presence of Mn powder produced the 6-membered ring-fused monocycloadducts 3a and 3b in 72% and 82% yields, respectively, with a small amount of the recovered  $C_{60}$ . The indene-monoadduct 3c can be prepared in 74% yield under the standard conditions using 1,3-dibromo-2,3-dihydro-1H-indene (1e) as a dibromide source. Monocycloaddition of 3-bromo-2-(bromomethyl)prop-1-ene (1i) with  $C_{60}$  furnished the corresponding 5-membered ring fused monocycloadduct (3d) in 60% yield. (Dibromomethyl)benzenes 1j and 1l underwent the selective monocycloaddition with  $C_{60}$  smoothly to afford the corresponding cyclopropyl-fused monoadducts 3e and 3f in 81% and 75% yields, respectively. Surprisingly, when 1k was used as a dibromide reactant,  $PC_{61}BM$  (3g) was obtained in a very high yield of 93% using 2 equiv of Mn powder after 7h at room temperature (Fig. 4a). The large-scale reaction of  $C_{60}$  (200 mg) with 1k under the identical conditions produced  $PC_{61}BM$  (**3g**) in a slightly lower yield of 88% (12 h, Figure S6), demonstrating that the efficiency of the present method stays high at large scale. It is noted that a 38% yield of PC<sub>61</sub>BM could be obtained under our previously reported Co-catalyzed reaction conditions<sup>30</sup> after 24h along with the recovered  $C_{60}$  in 54% yield (Figure S7). However, under the present reaction conditions, the cycloaddition of C<sub>70</sub> with 1k produced a mixture of [6,6]- and [5,6]-isomers after 12 h. Subsequently, the mixture purified by silica gel chromatography was further heated at 180°C in ODCB for 24h to give the corresponding [6,6]-isomers PC71BM (3h) in 90% yield over two steps (Fig. 4b). Noted that the signals for three methoxy groups in the <sup>1</sup>H NMR spectrum indicated that the ratio of three isomers in  $PC_{71}BM$  was 38:46:16, which is different with that observed from the reported method<sup>14</sup>.

#### Discussion

In general, the biscycloadduct *o*-QDMC<sub>60</sub> (**2a**) and the monocycloadduct **3a** can be prepared through the Diels-Alder reaction of C<sub>60</sub> with *o*-quinodimethane generated *in situ* from 1,2-bis(bromomethyl)benzene (**1a**) at high temperatures<sup>22–24,40</sup>. The question should be whether the present cycloaddition proceeds through the formation of *o*-quinodimethane from **1a** by Mn powder, which was ruled out based on the good reactivity of other dibromides **1f–k** which could not form the *o*-quinodimethane-like intermediates. The other possible mechanism is the formation of a fullerene radical anion by metal reductants<sup>41</sup> followed by the reaction with dibromides<sup>42</sup>. However, this pathway seems to be unlikely because we found that the reaction of C<sub>60</sub> and H<sub>2</sub>O in the absence of dibromides under otherwise the standard conditions did not produce any hydrogenated C<sub>60</sub>-adducts including the expected dihydrofullerene (C<sub>60</sub>H<sub>2</sub>), which is different from the Zn-mediated monoalkylation of C<sub>60</sub> with alkylbromides as reported by Meier *et al.*<sup>43</sup> Moreover, we found that the reaction of the dibromide **1a** and benzaldehyde with Mn powder in the absence of C<sub>60</sub> under otherwise the standard conditions did not afford any products and the starting substrates were recovered quantitatively, implying that the formation of the organomanganese reagents<sup>44</sup>



Figure 3. Mn powder-promoted selective monocycloaddition of  $C_{60}$  with alkyl dibromides. Reaction conditions:  $C_{60}$  (0.03 mmol), Mn (1.0 equiv), 1 (1.0 equiv), DMSO (0.4 mL), ODCB (4 mL), under an argon atmosphere at room temperature. The Isolated yields are shown after silica gel chromatography.



**Figure 4.** Synthesis of  $PC_{61}BM$  and  $PC_{71}BM$ . Reaction conditions:  $C_{60}$  or  $C_{70}$  (0.03 mmol), Mn (2.0 equiv), **1k** (1.0 equiv), DMSO (0.4 mL), ODCB (4 mL), under an argon atmosphere at room temperature. The Isolated yields are shown after silica gel chromatography. (a) Synthesis of  $PC_{61}BM$ . (b) Synthesis of  $PC_{71}BM$ . The products obtained from the reaction at rt for 12 h, were further heated at 180 °C for 24 h.

cannot be accounted for the present cycloaddition. It is also noted that the existence of a small amount of air slows the reaction rate and much amounts of Mn powder and dibromides are required with prolonged reaction times. At present, although the present cycloaddition mechanism is yet to be determined, we assume that the reaction should be initiated by the electron transfer among  $C_{60}$ , dibromides, and Mn powder. The detailed mechanistic studies will be reported in due course.

In conclusion, we have described a novel and highly efficient manganese powder-promoted fullerene cycloaddition with various alkyl dibromides. The reaction procedure is flexible, practical, and mild, which produces a variety of new and known fullerene cycloadducts with various carbocycle sizes in high chemical yields and high mono- and biscycloaddition selectivities. Notably, we have succeeded for the first time in synthesis of the most common OPV acceptors, such as  $PC_{61}BM$ ,  $PC_{71}BM$ ,  $IC_{60}BA$ , and  $bisPC_{61}BM$  in good to excellent yields. The combination of manganese powder with the DMSO cosolvent is vital for the implementation of the present cycloaddition sufficiently. Our method not only provides an efficient, low-cost, and general approach for the formation of the important functional fullerenes, but also may boost the realization of the practical application of OPVs.

#### Methods

Scale-up procedure for synthesis of  $IC_{60}BA$  (2e). To a mixture of 1,2-dichlorobenzene (20 mL), DMSO (1.5 mL),  $C_{60}$  (108 mg, 0.15 mmol), and Mn (24.7 mg, 0.45 mmol, 3 equiv.) was added methyl 1,3-dibromo-2,3-dihydro-1H-indene (1e, 91 mg, 0.33 mmol, 2.2 equiv.) under an argon atmosphere. The reaction mixture was stirred at room temperature for 26 h to give a dark brown solution. After monitoring with HPLC, the mixture was purified directly by silica gel chromatography using hexane/CS<sub>2</sub> (1/1) as eluents. The product was washed with methanol and dried to afford the corresponding  $IC_{60}BA$  (2e) in 72% yield (103 mg).

Scale-up procedure for synthesis of  $PC_{61}BM$  (3g). To a mixture of 1,2-dichlorobenzene (40 mL), DMSO (4 mL),  $C_{60}$  (200 mg, 0.277 mmol), and Mn (30.4 mg, 0.554 mmol, 2 equiv) was added methyl 5,5-dibromo-5-phenylpentanoate (1k, 97 mg, 0.277 mmol, 1 equiv) under an argon atmosphere in glove box. The reaction mixture was stirred at room temperature for 12 h to give a dark brown solution. After monitoring with HPLC, the mixture was purified directly by silica gel column chromatography using toluene as an eluent. The isolated product was washed with methanol and dried to afford  $PC_{61}BM$  (3g) in 88% yield (222 mg).

#### References

(2011).

- Anthony, J. E., Facchetti, A., Heeney, M., Marder, S. R. & Zhan, X. n-Type Organic Semiconductors in Organic Electronics. Adv. Mater. 22, 3876–3892 (2010).
- 2. Beaujuge, P. M. & Fréchet, J. M. J. Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications. J. Am. Chem. Soc. 133, 20009–20029 (2011).
- 3. Thompson, B. C. & Fréchet, J. M. J., Polymer-Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 47, 58-77(2008).
- 4. Martín, N. New challenges in fullerene chemistry. Chem. Commun. 2093-2104 (2006).
- Matsuo, Y. & Nakamura, E. Selective Multiaddition of Organocopper Reagents to Fullerenes. *Chem. Rev.* 108, 3016–3028 (2008).
  He, Y. & Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. *Phys. Chem. Chem. Phys.* 13, 1970–1983
- 7. Li, C.-Z., Yip, H.-L. & Jen, A. K.-Y. Functional fullerenes for organic photovoltaics. J. Mater. Chem. 22, 4161–4177 (2012).
- Matsuo, Y. Design Concept for High-LUMO-level Fullerene Electron-acceptors for Organic Solar Cells. Chem. Lett. 41, 754–759 (2012).
- 9. Liu, Y. et al. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci. Rep. 3, 3356 (2013).
- You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013).
  Kan, B. et al. Solution-Processed Organic Solar Cells Based on Dialkylthiol-Substituted Benzodithiophene Unit with Efficiency near 10%. J. Am. Chem. Soc. 136, 15529–15532 (2014).
- Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. *Science* 270, 1789–1791 (1995).
- 13. Hummelen, J. C., Knight, B. W., LePeq, F. & Wudl, F. Preparation and Characterization of Fulleroid and Methanofullerene Derivatives. J. Org. Chem. 60, 532-538 (1995).
- Wienk, M. M. et al. Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells. Angew. Chem. Int. Ed. 42, 3371–3375 (2003).
- 15. Li, C.-Z. et al. Evaluation of structure-property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance. J. Mater. Chem. 22, 14976–14981 (2012).
- Yip, H.-L. & Jen, A. K.-Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5, 5994–6011 (2012).
- Matsuo, Y. *et al.* Columnar Structure in Bulk Heterojunction in Solution-Processable Three-Layered p-i-n Organic Photovoltaic Devices Using Tetrabenzoporphyrin Precursor and Silylmethyl[60]fullerene. J. Am. Chem. Soc. 131, 16048–16050 (2009).
- Zhang, Y., Matsuo, Y., Li, C.-Z., Tanaka, H. & Nakamura, E. A Scalable Synthesis of Methano[60]fullerene and Congeners by the Oxidative Cyclopropanation Reaction of Silylmethylfullerene. J. Am. Chem. Soc. 133, 8086–8089 (2011).
- He, Y., Chen, H.-Y., Hou, J. & Li, Y. Indene-C<sub>60</sub> Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 132, 1377–1382 (2010).
- He, Y., Zhao, G., Peng, B. & Li, Y. High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C<sub>70</sub> Bisadduct. *Adv. Funct. Mater.* 20, 3383–3389 (2010).
- Lenes, M. *et al.* Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells. *Adv. Mater.* 20, 2116–2119 (2008).
- Backer, S. A., Sivula, K., Kavulak, D. F. & Fréchet, J. M. J. High Efficiency Organic Photovoltaics Incorporating a New Family of Soluble Fullerene Derivatives. Chem. Mater. 19, 2927–2929 (2007).

- 23. Voroshazi, E. *et al.* Novel bis-C60 derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells. *J. Mater. Chem.* **21**, 17345–17352 (2011).
- Kim, K.-H. et al. Facile Synthesis of o-Xylenyl Fullerene Multiadducts for High Open Circuit Voltage and Efficient Polymer Solar Cells. Chem. Mater. 23, 5090–5095 (2011).
- 25. Meng, X. et al. Dihydronaphthyl-based [60]fullerene bisadducts for efficient and stable polymer solar cells. Chem. Commun. 48, 425-427 (2012).
- 26. Matsumoto, K. et al. Design of fulleropyrrolidine derivatives as an acceptor molecule in a thin layer organic solar cell. J. Mater. Chem. 20, 9226-9230 (2010).
- Li, C-Z. et al. Facile synthesis of a 56π-electron 1,2-dihydromethano-[60]PCBM and its application for thermally stable polymer solar cells. Chem. Commun. 47, 10082–10084 (2011).
- 28. Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 21, 1323-1338 (2009).
- 29. Lu, S., Jin, T., Bao, M. & Yamamoto, Y. Cobalt-Catalyzed Hydroalkylation of [60]Fullerene with Active Alkyl Bromides: Selective Synthesis of Monoalkylated Fullerenes. J. Am. Chem. Soc. 133, 12842–12848 (2011).
- Lu, S., Si, W., Bao, M., Yamamoto, Y. & Jin, T. Co-Catalyzed Radical Cycloaddition of [60]Fullerene with Active Dibromides: Selective Synthesis of Carbocycle-Fused Fullerene Monoadducts. Org. Lett. 15, 4030–4033 (2013).
- Lu, S. et al. Deuterium Isotope Effect on BHJ Solar Cells. Enhancement of Organic Photovoltaic Performances using Monobenzyl Substituted Deuteriofullerene Acceptors. Org. Lett. 15, 5674–5677 (2013).
- 32. Lu, S. et al. Functional 2-benzyl-1,2-dihydro[60]fullerenes as acceptors for organic photovoltaics: facile synthesis and high photovoltaic performances. Tetrahedron 69, 1302–1306 (2013).
- Lu, S., Jin, T., Kwon, E., Bao, M. & Yamamoto, Y. Highly Efficient Cu(OAc)<sub>2</sub>-Catalyzed Dimerization of Mono-Functionalized Hydrofullerenes Leading to Single Bonded [60]Fullerene Dimers. *Angew. Chem. Int. Ed.* 51, 802–806 (2012).
- Lu, S., Jin, T., Bao, M. & Yamamoto, Y. NaOH-Catalyzed Dimerization of Monofunctionalized Hydrofullerenes: Transition-Metal-Free, General, and Efficient Synthesis of Single-Bonded [60]Fullerene Dimers. Org. Lett. 14, 3466–3469 (2012).
- 35. Si, W. et al. Cu-Catalyzed C-H Amination of Hydrofullerenes Leading to 1,4-Difunctionalized Fullerenes. Org. Lett. 14, 620–623 (2014).
- Si, W. et al. NBS-Promoted oxidation of fullerene monoradicals leading to regioselective 1,4-difunctional fullerenes. Chem. Commun. 50, 15730–15732 (2014).
- 37. Tzirakis, M. D. & Orfanopoulos, M. Radical Reactions of Fullerenes: From Synthetic Organic Chemistry to Materials Science and Biology. *Chem. Rev.* **113**, 5262–5321 (2013).
- Wang, G.-W. & Li, F.-B. Radical Reactions of [60]Fullerene Mediated by Manganese(III) Acetate Dihydrate. J. Nanosci. Nanotechnol. 7, 1162–1175 (2007).
- 39. Brabec, C. J. et al. Origin of the Open Circuit Voltage of Plastic Solar Cells. Adv. Funct. Mater. 11, 374-380 (2001).
- Belik, P., Gügel, A., Spickermann, J. & Müllen, K. Reaction of Buckminsterfullerene with *ortho*-Quinodimethane: a New Access to Stable C<sub>60</sub> Derivatives. *Angew. Chem. Int. Ed. Engl.* **32**, 78–80 (1993).
- 41. Reed, C. A. & Bolskar, R. D. Discrete Fulleride Anions and Fullerenium Cations. Chem. Rev. 100, 1075–1120 (2000).
- 42. Fukuzumi, S., Suenobu, T., Hirasaka, T., Arakawa, R. & Kadish, K. M. Formation of C<sub>60</sub> Adducts with Two Different Alkyl Groups
- via Combination of Electron Transfer and S<sub>N</sub>2 Reactions. J. Am. Chem. Soc. 120, 9220–9227 (1998).
- 43. Wang, Z. & Meier, M. S. Monoalkylation of C60 and C70 with Zn and Active Alkyl Bromides. J. Org. Chem. 68, 3043–3048 (2003).
- 44. Cahiez, G., Duplais, C. & Buendia, J. Chemistry of Organomanganese(II) Compounds. Chem. Rev. 109, 1434–1476 (2009).

#### Acknowledgements

This work was supported by a Scientific Research (B) award from the Japan Society for Promotion of Science (JSPS) (No. 25288043) and a World Premier International Research Center Initiative (WPI), MEXT, Japan. We also thank the support of Showa Denko Group Institute for Advanced and Core Technology. W.S. acknowledges the support of the China Scholarship Council (CSC).

#### **Author Contributions**

T.J. and W.S. conceived the methodology. W.S., X.Z. and S.L. performed the experiments. T.J., W.S., T.Y., N.A. and L.H. analyzed the data. T.J. and Y.Y. wrote the manuscript.

#### Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Si, W. *et al.* Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature. *Sci. Rep.* **5**, 13920; doi: 10.1038/ srep13920 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/