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Abstract

Background: Previous studies have indicated that the risk of infectious disease spread is greatest in locations
where a population has massive and convenient access to the epicenter of an outbreak. However, the
spatiotemporal variations and risk determinants of COVID-19 in typical labor export regions of China remain unclear.
Understanding the geographical distribution of the disease and the socio-economic factors affecting its
transmission is critical for disease prevention and control.

Methods: A total of 2152 COVID-19 cases were reported from January 21 to February 24, 2020 across the 34 cities
in Henan and Anhui. A Bayesian spatiotemporal hierarchy model was used to detect the spatiotemporal variations
of the risk posed by COVID-19, and the GeoDetector q statistic was used to evaluate the determinant power of the
potential influence factors.

Results: The risk posed by COVID-19 showed geographical spatiotemporal heterogeneity. Temporally, there was an
outbreak period and control period. Spatially, there were high-risk regions and low-risk regions. The high-risk
regions were mainly in the southwest areas adjacent to Hubei and cities that served as economic and traffic hubs,
while the low-risk regions were mainly in western Henan and eastern Anhui, far away from the epicenter. The
accessibility, local economic conditions, and medical infrastructure of Wuhan in Hubei province all played an
important role in the spatiotemporal heterogeneity of COVID-19 transmission. The results indicated that the q
statistics of the per capita GDP and the proportion of primary industry GDP were 0.47 and 0.47, respectively. The q
statistic of the population flow from Wuhan was 0.33. In particular, the results showed that the q statistics for the
interaction effects between population density and urbanization, population flow from Wuhan, per capita GDP, and
the number of doctors were all greater than 0.8.

Conclusions: COVID-19 showed significant spatiotemporal heterogeneity in the labor export regions of China. The
high-risk regions were mainly located in areas adjacent to the epicenter as well as in big cities that served as traffic
hubs. Population access to the epicenter, as well as local economic and medical conditions, played an important
role in the interactive effects of the disease transmission.
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Background
A novel coronavirus infection (COVID-19) caused by
SARS-CoV-2 was first identified in Wuhan of the Hubei
province in China in December 2019 [1]. As of January
26, 2021, COVID-19 has resulted in a total of 2,124,193
people dead in the world [2]. The COVID-19 pandemic
has caused a massive health crisis worldwide and has
had a huge impact on the global social economy, trans-
portation, politics, diplomacy, and more [3].
Although China launched emergency control measures

early in the outbreak, including a travel quarantine for
Wuhan, movement restrictions, extended holidays, can-
celed crowd gatherings, calls for home isolation, and
more [4, 5], the COVID-19 pandemic had already af-
fected hundreds of thousands of people leaving Wuhan
during the first two weeks of the Spring Festival trans-
port season, many of whom potentially carried and
spread the novel coronavirus to their destination regions,
leading to a countrywide health challenge [6–8].
Accurately identifying epidemic trends in advance can

reveal much about the geographic risks and socio-
economic factors impacting the transmission mechanism
of a new coronavirus, as well as how to respond to it.
Recently, many studies have focused on predicting the
epidemic trend of COVID-19 [8–12]. In the early stages,
Joseph used the SEIR model to forecast the national and
global spread risks of COVID-19 based on human mo-
bility data in 300 prefecture-level cities of China [13]. In
order to make the epidemic forecast more closely fit the
actual situation, some scholars applied a well-mixed
SEIR model and exposed-identified-recovered (EIR)
model to assess the epidemic spreading processes from
the free propagation phase to the extremely controlled
phase [12, 14]. Other scholars used a stochastic trans-
mission model, Bayesian model, or another mathemat-
ical model to assess the effects of intervention policies
on the spread of imported cases [11, 15, 16]. In addition,
the increased spatial stratified heterogeneity of the dis-
ease spread has been studied to clarify the characteristics
of the epidemic [11, 17]. Though attempts have been
made to improve the accuracy and validity of these esti-
mates, the currently available estimates regarding the
domestic and international transmission of COVID-19
are rather inconsistent, because of the spatiotemporal
heterogeneity of the disease spread and a limited under-
standing of its transmission mechanisms.
Since Henan and Anhui provinces have the largest mi-

grant outflows in China and are adjacent to Hubei,
which was the epidemic outbreak center during the
Spring Festival transport season, the return of the home-
town population is making these regions the top-ranked
hot flow area. The aim of the study was to analyze spa-
tiotemporal heterogeneity and reveal its determinants of
COVID-19 transmission in a typical labor export region.

A Bayesian spatiotemporal hierarchy model was used to
reveal the spatiotemporal heterogeneity of the disease
spread. A GeoDetector q statistic method was used to
detect the risk factors of the disease transmission in the
context of its spatial stratified heterogeneity, which can
be used to understand the spatiotemporal variations of
the disease transmission and is critical for improving fu-
ture prevention and control measures.

Materials
Study region
The Henan and Anhui provinces were selected as the
study region. They border the Hubei province where
COVID-19 was first identified and were the center of
the epidemic in China. These two provinces also have
large agricultural populations, from which seasonal or
long-term surplus populations outflow to neighboring
provinces.
Henan province is located in central China, bound to

the south by Hubei, with a total area of 167,000 km2. It
is a populous province with a permanent population of
96.4 million and a floating population of 12.56 million.
Anhui province is bound to the west by the provinces of
Henan and Hubei, with a total area of 140,100 km2. It
has a permanent population of 63.659 million and a
floating population of 8.04 million.

Data
In this study, confirmed COVID-19 cases were collected
from the websites of the Henan and Anhui provincial
and municipal health commissions. A total of 2152
COVID-19 cases were collected in 34 municipal units
from January 21 to February 24, 2020, including 1163
cases in Henan and 989 cases in Anhui (Fig. 1).
The availability of information and the representative-

ness of a time period are necessary conditions for re-
search selection. Information about new coronavirus
cases in Henan were first published on January 21, 2020.
Since then, Henan and Anhui have begun to publish de-
tailed case information. Of note, the number of dead
during the study period was zero for three consecutive
days before February 24, 2020.
There were two distinct stages to the transmission of

COVID-19 in the large labor export provinces: an out-
break period in the first stage and a control period in
the second stage. These two stages were characterized
by obvious increasing and decreasing trends during the
epidemic period (Fig. 2).
The first stage can be divided into early and late pe-

riods. The early period of the first stage covered the
Spring Festival transport season to when the Wuhan epi-
center was placed on lockdown, between January 10 and
January 23. The late period of the first stage spanned the
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Fig. 1 Geographic location of the Henan and Anhui provinces and the spatial distribution of COVID-19 cases
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Lunar New Year’s Eve to the Spring Festival holiday be-
tween January 24 and February 2.
The second stage covered February 2 to February 24.

In this period, Henan and Anhui had passed the climax
of the novel coronavirus outbreak. Daily new cases con-
tinued to run at high levels for more than ten days, but
the epidemic had entered a controllable stage, and an
overall decline was obvious after this peak.
In the study, the socioeconomic risks and protect-

ive factors included the urbanization rate, per capita
GDP, proportion of primary industry GDP, doctors

per 10,000 people, and proportion of the population
that was more than 65 years old. Information regard-
ing these factors was collected from the Henan and
Anhui Statistical Yearbook. The population flow
from Wuhan was a migration index, obtained from
the Baidu map migration big data platform during
the period between January 10 and January 23, 2020.
The number of trains from Wuhan was calculated
from the China Railway website (www.12306.cn).
Table 1 shows the COVID-19 cases and various risk
factors.

Fig. 2 Time series distribution of COVID-19 daily new cases in Henan and Anhui

Table 1 Descriptive characteristics for various factors of COVID-19 cases

Variables Minimum Maximum Mean Median Standard deviation

COVID-19 cases (person) 5 243 63 39 58

Population flow from Wuhan (%) 0.08 1.32 0.31 0.17 0.28

GDP (10,000 yuan) 600 9194 2127 1657 1710

Per Capita GDP (yuan) 1.94 9.31 4.76 4.33 1.93

Doctor per 103 people 50.38 134.16 75.70 74.70 15.13

Population (104 person) 73 1005 465 448 246

Population density (person /km2) 138 1156 582 644 251

Proportion of people older than 65 years old (%) 0.01 0.17 0.05 0.03 0.04

Proportion of primary industry GDP (%) 0.02 0.20 0.11 0.10 0.05

Urbanization (%) 39.77 73.75 52.81 51.94 8.92

Access to transportation (number of trains accessing the city) 0 126 20 4 31
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The COVID-19 cases and all potential socioeconomic
variables were calculated at the municipal level. Figure 3
shows the relationship between the COVID-19 cases and
their proxy variables.

Methods
Bayesian spatiotemporal hierarchy model
A Bayesian spatiotemporal hierarchy model
(BSTHM) in the current study was used to inte-
grate population properties, sample information,
and prior knowledge to assess the spatial and
temporal relative risks and local trends in
COVID-19.
The COVID-19 cases yit in a city i and a day t were as-

sumed to follow a Poisson distribution.

yit � Poisson nit ; ritð Þ;
where the parameters nit and rit represent the suscep-

tible population and the relative risk of COVID-19 in
city i in day t. The Poisson and log link regression func-
tions were applied to assess the spatiotemporal variation
of COVID-19 cases yit. The logarithmic transformation
was expressed as the formula:

log ritð Þ ¼ αþ si þ b0t
� þ vtð Þ þ b1it

� þ εit;

where α is a constant term, the spatial term si represents
the spatial relative risk of COVID-19 in city i relative to
that risk in the whole region, the temporal term b0t* + vt
describes the overall temporal relative risk of the disease
relative to that risk in the whole time length, t* indicates
the centering time in the middle of the observation

Fig. 3 The relationship between the COVID-19 cases and their proxy variables. Note: z represents direct variables, and x characterizes
indirect variables
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period, and the Gaussian noise vt represents a random
time effect. The term b1i is the spatiotemporal inter-
action effect used to measure the deviation from the
common spatiotemporal variation, describing the spatial
heterogeneity of the temporal trend. The term ɛ1i de-
scribes the variation not be interpreted in the model,
which was assumed to be a Gaussian distribution in the
study.
To further quantify the risk factors of COVID-19 that

vary over space, time, or both based on the posterior es-
timated parameters of BSTHM, we used a two-stage
method to identify the spatial relative risk (RR) and local
temporal trends of COVID-19.
In the first stage, there were three classes for the

spatial relative risk of COVID-19, stratified into hot spot,
cold spot, or not hot/cold spot based on the posterior
probability p(exp (si) > 1 | data). A city was defined as a
hot spot if the probability was greater than 0.8. A city
was defined as a cold spot if the probability was less than
0.2. If not, a city was defined as neither a hot nor cold
spot [18].
In the second stage, compared with the overall trend

(b0t* + vt), the local temporal trend of each spot-class re-
gion b1i was further stratified into faster, slower, or
stable classes based on the posterior probability p(b1i >
0|hi, data) in each city. A city was defined as a faster de-
creasing region if the probability was greater than 0.8, a
city was defined as a slower region if the probability was
less than 0.2, and a city was defined as a stable region if
the probability was between 0.2 and 0.8 [18].
All of these processes were implemented into the

WinBUGS software, and the posterior parameters were
estimated through Markov chain Monte Carlo (MCMC)
simulations [19].

GeoDetector q statistic
In order to assess the spatial association between the po-
tential socioeconomic factors and the overall spatial rela-
tive risk of COVID-19 calculated by BSTHM, the
GeoDetector q statistic was used to determine the de-
gree of the determinant power of the selected risk fac-
tors in the spatial stratified heterogeneity of the disease
[20–22]. It was measured using the following formula:

q ¼ 1 −

XL

h¼1

Nhσ2h

Nσ2

σ2 ¼ 1
N

XN

i¼1

Ri − R
� �2

σh
2 ¼ 1

N

XNh

j¼1

Rh; j − Rh
� �2

where σ2 and σh
2 represent the variance of the spatial

relative risk of the disease in the whole region in N cities
and in the h-th stratum in Nh cities, respectively. The
parameters Ri and Rh,j represent the spatial relative risk
in the i-th city and the j-th city in the h-th stratum, re-
spectively. R and Rh refer to the average relative risk of
the disease within the whole study region and a specific
stratum, respectively. The q value ranged from 0 to 1.
Higher values of the q statistic indicated a higher deter-
minant power of the variable [20].

Results
Spatial relative risk of COVID-19
Figure 4 shows the spatial relative risk exp (si) of
COVID-19 infection in the study region from January 21
to February 24, 2020. All of the cities presented different
levels of risk according to their risk value exp (si). This
finding suggests that the infection risk of COVID-19 had
a stable spatial heterogeneity.
The cities with the higher risk values of COVID-19 in-

fection were located in two types of regions. One type in-
cluded the southwest areas adjacent to Hubei, where the
regional economy is relatively declining, there are few em-
ployment opportunities, the cities have large populations
and are the main sources of outflows, and the cities have
frequent and close social, economic, and transportation
exchanges with Wuhan, as is the case in Xinyang. The
other type included regions with big cities of concentrated
populations that serve as economic and traffic hubs, such
as Zhengzhou, Hefei, and Bengbu. Although they are far
away from Hubei, the disease risk is significant due to the
huge flow of returnees during the Spring Festival.
The overall spatial relative risk of COVID-19 had obvious

and distinct temporal trends during the two stages of the
study period. The spatiotemporal heterogeneity of the dis-
ease was analyzed separately for the first and second stages.

Spatiotemporal heterogeneity in the first stage
Figure 5 shows the spatial relative risks in all of the cities
during the first stage. The regions of low COVID-19 risk
were mainly concentrated in the remote cities adjacent
to Hubei province. This finding implied that the spatial
risk of the disease in the first stage was mainly charac-
terized by relocation diffusion.
The temporal relative risk of COVID-19 had an obvi-

ous upward trend in the first stage (Fig. 6). The results
indicate that the relative risk of COVID-19 for all cities
in the study region followed an increasing trend in the
first stage. In January 21, 2020, the temporal RR was
0.06 with a confidence interval (CI) of [0.02, 0.15] at a
significance level of 0.05. In February 3, 2020, the value
was 3.71 with a CI of [2.82, 4.92] at a significance level
of 0.05. Although the overall increasing trend in the first
stage in the region was rapid, the local rising trends of
COVID-19 risk varied in different cities.
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Fig. 4 The posterior means of the overall spatial relative risks (exp(si) of BSTHM)

Fig. 5 The spatial relative risks (exp(si) of BSTHM) of COVID-19 in the (a) first and (b) second stage
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Figure 7 shows that all of the hot spot cities presented a
faster and more stable temporal increase trend in com-
parison to the overall temporal trend. Thus, they may con-
tinue to maintain hot spot status over time. Meanwhile,
25% of the median-risk cities presented a slower or less
stable increasing temporal trend in comparison to the
overall temporal trend. Thus, they may become lower-risk
cities or even convert into cold spots over time.
Table 2 presents the distribution of hot and cold spots

of COVID-19 risk in the first stage. The results indicated
that 14.71% of the cities were classified as both hot spots
and cold spots in the stage, while the other 70.59% of
counties were identified as neither a hot spot nor a cold
spot. The cities in hot spots with a high spatial RR value
were mainly located in the southwest area of the Henan
province and central zone of the Anhui province.

Spatiotemporal heterogeneity in the second stage
Figure 5 shows the spatial relative risks in all of the cities
during the second stage. The regions of low COVID-19
risk were mainly concentrated in the northeast Henan
and southeast Anhui regions, which were far away from
cities in the Hubei provinces. The regions of high
COVID-19 infection risk encompassed all of the neigh-
boring cities around Xinyang and several cities around
Bengbu. This finding indicated that contagious diffusion
occurred in the study region in the second stage.
The temporal relative risk of COVID-19 had a distinct

downward trend in the second stage. The results showed
that the relative risk for all cities in the study region
followed a decreasing trend in the second stage (Fig. 6).
In February 4, 2020, the COVID-19 temporal RR was
5.16 with a CI of [3.40, 6.70] at a significance level of

Fig. 6 The COVID-19 RR temporal trend in the (a) first and (b) second stage (the posterior mean exp.(b0t* + vt) of BSTHM with a 95% CI)

Fig. 7 Hot/cold spot distribution of COVID-19 in the (a) first and (b) second stage
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0.05. In February 24, 2020, the temporal RR was 0.10
with a CI of [0.05, 0.18] at a significance level of 0.05.
Although the overall decreasing trend in the second
stage in the region was rapid, the local downward trends
of COVID-19 risk varied in different cities.
Figure 7 presents the local temporal trends regarding hot

spots of COVID-19 risk in the second stage. Approximately
33% of the hot spot cities presented a slower temporal de-
crease trend in comparison to the overall temporal trend.
Thus, they may remain hot spots and be high-risk. Mean-
while, 80% of the hot spot cities presented a temporal trend
that was consistent with the common overall trend. These
regions will also be high-risk in the future.
Table 2 presents the distribution of hot and cold

spots of COVID-19 risk in the second stage. The re-
sults indicated that 23.53 and 14.71% of cities were
classified as hot spots and cold spots during this
stage, respectively. The other 61.76% of counties were
identified as neither hot spots nor cold spots. Com-
pared with the first stage, the cities in hot spots with
high spatial RR values had spread farther into big cit-
ies, such as Hefei, the capital of Anhui.

Risk factor detection
The q statistic results indicate that local economic and
medical conditions play an important role in COVID-19
transmission (Table 3). The dominant socioeconomic
factors were found to be related to the level of local eco-
nomic development and industry. The risk of the disease
was positively associated with a high proportion of pri-
mary industry, and the q statistic of the factor was 0.47.
The disease risk was negatively associated with per
capita GDP, and the q statistic of the factor was also
0.47. The other factors in the medical condition of a re-
gion, population density and urbanization, were also im-
portant influences on the spatial heterogeneity of the
disease risk, and the q statistics of these factors were
0.45, 0.43, and 0.40, respectively (Fig. s1-s9).
Likewise, the study found that population flow to Wu-

han in Hubei province was an important influence on
disease transmission. The q statistic of the population
flow from Wuhan and the number of trains from Wu-
han were 0.33 and 0.32, respectively.
In addition, the interaction effects on COVID-19 risk

indicated that the coupled impact of population density

Table 2 Cross-classification of COVID-19 risk in the first (I)and second (II) stage

Classification Faster increase trend Slower increase trend Not different from common trend Total

Stage I II I II I II I II

Hot spots 1 0 0 2 4 6 5 (14.71%) 8 (23.53%)

Cold spots 0 0 0 0 5 5 5 (14.71%) 5 (14.71%)

Not hot/cold spots 3 0 3 2 16 19 24 (70.59%) 24 (61.76%)

Table 3 The determinant power of socioeconomic factors and their interactive effects on COVID-19 risk

Factors Population
flow from
Wuhan

Per
capita
GDP

Doctor per
1000
people

Population
size

Proportion of
aging
Population

Primary
industry
proportion

Urbanization Access to
transportation

Population
density

Population
flow from
Wuhan

0.33

Per capita
GDP

0.70 0.47

Doctor per
1000 people

0.73 0.69 0.45

Population
size

0.56 0.67 0.69 0.23

Proportion of
aging
population

0.54 0.64 0.54 0.31 0.08

Primary
industry
proportion

0.56 0.68 0.72 0.62 0.59 0.47

Urbanization 0.64 0.63 0.65 0.57 0.56 0.63 0.40

Access to
transportation

0.51 0.74 0.72 0.68 0.63 0.55 0.6 0.32

Population
density

0.84 0.81 0.8 0.78 0.65 0.77 0.86 0.72 0.43
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and urbanization played an important role in COVID-19
spatial variation. The q statistic of this interaction relation-
ship was 0.86. The interactive effects between population
density and other risk factors were also great influences
on COVID-19 risk. For example, the q statistic was 0.84
for the interaction between population density and popu-
lation flow from Wuhan, 0.81 for the interaction between
population density and per capita GDP, and 0.80 for the
interaction between population density and the number of
doctors per 1000 people (Table 3).

Discussion
As of this time, the spatiotemporal variations and risk
determinants of COVID-19 in typical labor export re-
gions in China remain unclear. We used BSTHM as a
novel two-stage method to explore the spatiotemporal
variations of COVID-19 and applied the GeoDetector q
statistic to quantify the determinant power of the risk
factors and reveal the sources of heterogeneity under-
lying the patterns. The results showed that COVID-19
had significant spatiotemporal heterogeneity and that
local economic and medical conditions, as well as popu-
lation access to Wuhan in the Hubei province, played
important roles in the transmission of COVID-19.
The early period of the first stage before the Lunar

New Year on January 24, 2020 was characterized as an
outbreak period, in which a huge number of people left
Wuhan and returned home in the study region to re-
unite with their families for the New Year. The late
period of the first stage between the Lunar New Year on
January 24 and February 2, 2020, during the Spring Fes-
tival holiday, was characterized as the control period. In
this period, families gathered for family reunion dinners
on the Lunar New Year’s Eve. The duration and inten-
sity of contacts occurring in the households increased
the contagious transmission, which is now recognized as
one important factor in the cluster transmission of the
novel coronavirus [23].
In the second stage, with the epidemic developing, the

spread of COVID-19 gradually shifted from an imported
case pattern to a local case pattern. The greatest trans-
mission risk existed in locations with low-detection cap-
acity, high transportation, or economic connectivity to
the epicenter of the outbreak [8]. This risk was usually
related to the regions having large outflows into the sur-
rounding areas of Hubei province, such as Henan and
Anhui.
In this study, the risk of COVID-19 showed significant

spatial heterogeneity in the study region. Relatively high-
risk regions were mainly found in the areas adjacent to
Hubei, while relatively low-risk regions were mainly lo-
cated in the northeast Henan and southeast Anhui re-
gions, far away from Hubei province. Therefore, the
following three key points for the prevention and control

of the COVID-19 epidemic in typical labor export provinces
of China should be addressed. First, the critical areas were
closely connected to socioeconomic transportation into and
out of the epidemic area and neighboring areas. Second,
transit cities and neighboring areas away from the epidemic
center with big populations and heavy traffic. Third, some
cities and neighboring areas with a large population of mi-
grant workers returning from the epidemic area.
Previous studies have indicated that the transmission

of an infectious disease is influenced by the characteris-
tics of the virus and the susceptibility of the population,
as well as their social and health conditions [6, 24–26].
Besides of these common factors, COVID-19 was also
affected by some peculiar factors [8, 27, 28].
We found that some socioeconomic factors had sig-

nificant associations with COVID-19 transmission. Some
papers also have indicated that the persistence of infec-
tious diseases is influenced by social and economic in-
equality [25]. These implied that imbalanced levels of
regional economic development influenced the spread of
COVID-19 in typical labor export provinces in China.
These results were consistent with the findings from
previous studies on other infectious diseases [29, 30].
The proportions of primary industry and per capita GDP

were found to be strongly associated with the spatiotemporal
variations of COVID-19 in the typical labor export provinces.
These findings were consistent with other studies in the field
of infectious diseases. For example, Li et al. found that rural
areas show an increased risk of TB transmission due to poor
economies and poor medical care [31]. Furthermore, Xu
et al. found that the proportion of primary industry was posi-
tively associated with HBV incidences [32]. Agricultural areas
contain many seasonal or long-term surplus populations
who will seek work in the big cities and become migrant
workers. Therefore, underdeveloped rural areas, as a source
of migrant workers, need to become a focus for preventing
and controlling imported cases.
In the present study, we also found that the number of

doctors was strongly related to the COVID-19 risk in
typical labor export provinces. Similar to our work, stud-
ies by Wang and Du showed that the abundance of med-
ical resources and level of medical accessibility in a
region play a vital role in the prevention of infectious
diseases [33, 34]. Therefore, improving the abundance of
medical resources and level of medical accessibility in a
region is an effective measure to prevent and control the
local spread of infectious diseases.
Population density, urbanization, and access to trans-

portation were also strongly associated with COVID-19
transmission. These findings are consistent with previ-
ous studies [35–37]. A high population density is associ-
ated with a high disease risk. Communal activities in
densely populated areas also increase the possibility of infec-
tious disease outbreaks. Of note, urbanization had a
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nonlinear relationship with the disease outbreak. Rural areas
of low urbanization were the source of migrant workers to
Wuhan and had a high transmission risk. However, in areas
of substantial urbanization, the greater concentration and
connectedness of people and greater access to transportation
also increased the risk of exposure to infectious disease and
the speed of the spread of new infections.
In addition, the risk of COVID-19 infection was also

significantly influenced by the population flow from Wu-
han and the local age structure. These findings were
consistent with those of previous studies [5, 6, 28, 38].
Therefore, effective measures to prevent or reduce dis-
ease transmission in typical labor export provinces
should be implemented and studied in at-risk focus
groups.
There were some limitations to this study. Firstly, the

unique features of a local environment always give special
characteristics to its inhabitants that will reflect on the
spatiotemporal variations of COVID-19 risk. To our
knowledge, COVID-19 risk presents spatial heterogeneity
under socioeconomic conditions within a county or town
area. Secondly, we focused on the COVID-19 risk in two
provinces, which were mainly affected by the cases from
their neighboring Hubei province, and in the study the
train transportation facility was taken into account to de-
termine the accessibility transportation, because train is
the most important transportation for inter-provincial mi-
gration in China. Meanwhile, the short-distance migration
was also affected by personal vehicle and bus transporta-
tion. In future studies, COVID-19 cases and related socio-
economic data at a finer spatial scale as well as the other
transportation data will be collected to detect the relation-
ship between COVID-19 and its risk factors.

Conclusions
The findings of the present study show that COVID-19
had significant spatial heterogeneity in typical labor ex-
port provinces. The high-risk regions were mainly lo-
cated in the big cities with concentrated populations
that served as traffic hubs in areas adjacent to the out-
break epicenter in Hubei province. Local economic and
medical conditions, as well as population access to Wu-
han in Hubei province, played important roles in the
transmission of COVID-19. These findings will be help-
ful for risk assessments of disease transmission and for
implementing effective interventions to reduce the dis-
ease burden in provinces impacted by imported cases.
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