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Abstract: Ocular ischemic syndrome (OIS) is one of the severe ocular disorders occurring from
stenosis or occlusion of the carotid arteries. As the ophthalmic artery is derived from the branch of the
carotid artery, stenosis or occlusion of the carotid arteries could induce chronic ocular hypoperfusion,
finally leading to the development of OIS. To date, the pathophysiology of OIS is still not clearly
unraveled. To better explore the pathophysiology of OIS, several experimental models have been
developed in rats and mice. Surgical occlusion or stenosis of common carotid arteries or internal
carotid arteries was conducted bilaterally or unilaterally for model development. In this regard,
final ischemic outcomes in the eye varied depending on the surgical procedure, even though similar
findings on ocular hypoperfusion could be observed. In the current review, we provide an overview
of the pathophysiology of OIS from various experimental models, as well as several clinical cases.
Moreover, we cover the status of current therapies for OIS along with promising preclinical treatments
with recent advances. Our review will enable more comprehensive therapeutic approaches to prevent
the development and/or progression of OIS.

Keywords: experimental model; ocular ischemia; ocular ischemic syndrome; carotid artery; oph-
thalmic artery

1. Ocular Ischemic Syndrome (OIS)

Ocular ischemic syndrome (OIS) is one of the ocular disorders caused by severe carotid
artery occlusion or stenosis leading to hypoperfusion [1,2]. OIS occurs when there is a
blockage of the ophthalmic artery, the branch of the internal carotid artery (ICA) (Figure 1).
OIS is particularly common in patients with deficient collateral circulation between the
left and right ICA or between the ICA and the external carotid artery (ECA). Patients
with good collateral circulation who even have occlusion of the ICA may not develop OIS.
However, patients with poor collateral circulation may develop OIS with less than 50% ICA
stenosis [3]. Hedges reported diseases associated with ICA occlusion in 1963, and 20% of
cases were caused by bilateral occlusions [4]. OIS is diagnosed in about 7.5 cases per million
per year [1]. It is commonly caused in aging patients with diabetes, hypertension, and
hyperlipidemia. Atherosclerosis, carotid artery dissection, trauma, and giant cell arteritis
can sometimes cause OIS.

Imaging the carotid artery is a crucial diagnostic test in OIS. As noninvasive tests,
duplex carotid ultrasonography and Doppler ultrasonography are often used. Duplex
carotid ultrasonography provides both flow velocity information and the imaging of
the vessel. Compared with conventional digital subtraction angiography (DSA), Duplex
ultrasound has higher sensitivity and specificity in detecting high-grade symptomatic
carotid artery stenosis. Color Doppler imaging is a helpful adjunct to conventional duplex
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ultrasound [5]. Analyzing hemodynamic changes with Doppler images in the retrobulbar
vessels can provide important information about the circulation [6].
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Figure 1. Ocular ischemic syndrome (OIS) development. OIS is caused by blocking the ophthalmic 
artery, the first branch of the internal carotid artery. CCA, the common carotid artery; ICA, the in-
ternal carotid artery; ECA, the external carotid artery. Image made with graphics from ©BioRen-
der (biorender.com ). 
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giography is performed in advanced cases and before planning carotid surgery [1]. An-
giography with magnetic resonance (MR) or computed tomography (CT) is also helpful 
to diagnose carotid artery stenosis [7]. Fundus fluorescein angiography is also a com-
monly used test for diagnosing OIS (Figure 2). Prolonged circulation time of the arm to 
choroid and the arm to retina is a frequent sign; approximately 60% of patients with OIS 
have irregular and prolonged filling times. This is the specific fluorescein angiographic 
sign of OIS [7,8]. Indocyanine green angiography can also help to confirm the diagnosis 
of OIS. This test can detect abnormalities in the choroidal circulation. Like fluorescein 
angiography, the prolonged circulation time of the arm to choroid can be seen in OIS pa-
tients using this test [7]. Electroretinography (ERG) can also assist in the diagnosis. Be-
cause the lack of both retinal and choroidal circulation in the OIS eyes causes the inner 
and outer retina to be ischemic, the amplitudes of both a- and b-waves are reduced [8]. 

 
Figure 2. Fluorescein angiography (FA) in ocular ischemic syndrome (OIS). Delayed retinal circu-
lation and hypoperfused areas are seen in OIS. There is also diffusion resembling frosted branch 
angiitis along all the retinal vessels. Left: normal, 50 years old, 53 s; Right: OIS, 79 years old, 48 s. 

The typical symptoms are visual loss and orbital pain [8–14]. Acute findings can be 
seen as ischemic transit attacks because of a transient decrease in central retinal artery 

Figure 1. Ocular ischemic syndrome (OIS) development. OIS is caused by blocking the ophthalmic
artery, the first branch of the internal carotid artery. CCA, the common carotid artery; ICA, the
internal carotid artery; ECA, the external carotid artery. Image made with graphics from ©BioRender
(biorender.com).

As an invasive test, carotid angiography is often used for the diagnosis. Carotid
angiography is performed in advanced cases and before planning carotid surgery [1].
Angiography with magnetic resonance (MR) or computed tomography (CT) is also helpful
to diagnose carotid artery stenosis [7]. Fundus fluorescein angiography is also a commonly
used test for diagnosing OIS (Figure 2). Prolonged circulation time of the arm to choroid
and the arm to retina is a frequent sign; approximately 60% of patients with OIS have
irregular and prolonged filling times. This is the specific fluorescein angiographic sign of
OIS [7,8]. Indocyanine green angiography can also help to confirm the diagnosis of OIS.
This test can detect abnormalities in the choroidal circulation. Like fluorescein angiography,
the prolonged circulation time of the arm to choroid can be seen in OIS patients using this
test [7]. Electroretinography (ERG) can also assist in the diagnosis. Because the lack of both
retinal and choroidal circulation in the OIS eyes causes the inner and outer retina to be
ischemic, the amplitudes of both a- and b-waves are reduced [8].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 16 
 

 

 
Figure 1. Ocular ischemic syndrome (OIS) development. OIS is caused by blocking the ophthalmic 
artery, the first branch of the internal carotid artery. CCA, the common carotid artery; ICA, the in-
ternal carotid artery; ECA, the external carotid artery. Image made with graphics from ©BioRen-
der (biorender.com ). 

Imaging the carotid artery is a crucial diagnostic test in OIS. As noninvasive tests, 
duplex carotid ultrasonography and Doppler ultrasonography are often used. Duplex 
carotid ultrasonography provides both flow velocity information and the imaging of the 
vessel. Compared with conventional digital subtraction angiography (DSA), Duplex ul-
trasound has higher sensitivity and specificity in detecting high-grade symptomatic ca-
rotid artery stenosis. Color Doppler imaging is a helpful adjunct to conventional duplex 
ultrasound [5]. Analyzing hemodynamic changes with Doppler images in the retrobulb-
ar vessels can provide important information about the circulation [6].  

As an invasive test, carotid angiography is often used for the diagnosis. Carotid an-
giography is performed in advanced cases and before planning carotid surgery [1]. An-
giography with magnetic resonance (MR) or computed tomography (CT) is also helpful 
to diagnose carotid artery stenosis [7]. Fundus fluorescein angiography is also a com-
monly used test for diagnosing OIS (Figure 2). Prolonged circulation time of the arm to 
choroid and the arm to retina is a frequent sign; approximately 60% of patients with OIS 
have irregular and prolonged filling times. This is the specific fluorescein angiographic 
sign of OIS [7,8]. Indocyanine green angiography can also help to confirm the diagnosis 
of OIS. This test can detect abnormalities in the choroidal circulation. Like fluorescein 
angiography, the prolonged circulation time of the arm to choroid can be seen in OIS pa-
tients using this test [7]. Electroretinography (ERG) can also assist in the diagnosis. Be-
cause the lack of both retinal and choroidal circulation in the OIS eyes causes the inner 
and outer retina to be ischemic, the amplitudes of both a- and b-waves are reduced [8]. 

 
Figure 2. Fluorescein angiography (FA) in ocular ischemic syndrome (OIS). Delayed retinal circu-
lation and hypoperfused areas are seen in OIS. There is also diffusion resembling frosted branch 
angiitis along all the retinal vessels. Left: normal, 50 years old, 53 s; Right: OIS, 79 years old, 48 s. 

The typical symptoms are visual loss and orbital pain [8–14]. Acute findings can be 
seen as ischemic transit attacks because of a transient decrease in central retinal artery 

Figure 2. Fluorescein angiography (FA) in ocular ischemic syndrome (OIS). Delayed retinal circulation
and hypoperfused areas are seen in OIS. There is also diffusion resembling frosted branch angiitis
along all the retinal vessels. (Left): normal, 50 years old, 53 s; (Right): OIS, 79 years old, 48 s.

The typical symptoms are visual loss and orbital pain [8–14]. Acute findings can be
seen as ischemic transit attacks because of a transient decrease in central retinal artery
blood flow. It is essential to review the patient’s history to avoid missing OIS because the
duration of the attack is only a few minutes, after which vision improves. Chronic findings
include capillary aneurysms, cotton-wool spots, cherry-red spots, and neovascularization
at the optic disc. In addition, vitreous hemorrhage has been reported in 4% of patients [8].
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Although 68% of patients develop neovascular glaucoma (NVG), some cases do not show
high intraocular pressure (IOP) because of decreased humor production in the ciliary
body [1,15]. The visual prognosis of OIS is poor, with 58% of corrected visual acuity below
the finger count at 1 year [1]. The mortality rate within 5 years of onset is 40% [8–14]. Since
cardiovascular disease is the leading cause of death, followed by stroke, patients with OIS
should be referred to cardiologists and vascular surgeons, as well as neurologists. However,
the efficacy of the current treatments is limited, and the mechanisms of OIS have not yet
been fully understood.

2. Experimental Models

Even though there are differences between humans and rodents, they share general
physiological and anatomical aspects. In this regard, rodents, especially rats and mice, have
been the leading model organisms used in experimental OIS models. Furthermore, as OIS
commonly occurs when chronic and severe carotid artery obstruction exists [1,2], the use
of in vitro models has limitations for understanding the pathophysiology of OIS. In this
section, we cover pathological outcomes from experimental rodent models of OIS using
occlusions of the cardiovascular system, which have similarities with the development of
OIS in humans (Figure 3 and Table 1).
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Figure 3. Experimental models of OIS suggested in the current review article. There are various
methods of developing experimental models of OIS using unilateral or bilateral sutures, needles,
and microcoils in mice and rats. Occlusion sites also vary depending on the studies, as discussed in
Section 2. CCA, the common carotid artery; ICA, the internal carotid artery; ECA, the external carotid
artery; PPA, the pterygopalatine artery.
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Table 1. Summary of experimental models of OIS.

Publication Strain Method Main Outcome

Leahy et al., 2020 [16] Long–Evans rats BCCAO Abnormal changes in artery/vein diameter, vein velocity, total retinal blood flow,
and oxygen delivery and metabolism

Huang et al., 2014 [17] Clean-grade Wister rats BCCAO Longer artery filling time; decreases in ocular blood flow (the pupil, iris, and
total eye)

Qin et al., 2019 [18] Sprague–Dawley rats BCCAO

Decreases in amplitudes of scotopic a-wave and b-wave; decreases in retinal
thickness; disorder and damage in retinal ganglion cells (especially karyopyknosis,
chromatic agglutination, and decreased or swelling organelles); disorder and
damage in photoreceptor cells

Sivilia et al., 2009 [19] Sprague–Dawley rats BCCAO PLR loss; decreases in the outer plexiform layer and the inner plexiform and
ganglion cell layers without affecting the outer nuclear and inner nuclear layers

Lavinsky et al., 2006 [20] Wistar rats BCCAO PLR loss; more impairment in retinal thickness and ganglion cell density in
BCCAO-operated rats with PLR loss

Davidson et al., 2000 [21] Sprague–Dawley rats BCCAO PLR loss; general retinal damage and visual loss

Yamamoto et al., 2006 [22] Wistar rats BCCAO
Molecular alterations in various pro- and antiapoptotic factors and retinal cell
markers such as cleaved caspase-3, ubiquitin, COX-2, HSP70, calbindin, BRN3,
microtubule-associated protein 2, and synaptophysin

Chidlow et al., 2014 [23] Sprague–Dawley rats BCCAO Increases in HSP27 protein expression in the retina and optic nerve (especially, in
the ganglion cell and inner plexiform layers)

Chidlow et al., 2010 [24] Sprague–Dawley rats BCCAO
Gradual increases in HSP27 and αB-crystallin expressions and gradual decreases in
NFL and β3-tubulin protein expressions found in the proximal optic nerve;
deposition of extracellular matrix components (collagen I, collagen VI, and laminin)

Wang et al., 2016 [25]
Hypertensive and
normotensive
Wistar–Kyoto rats

BCCAO Higher dysfunction rates in the PLR under hypertension; extensive avascular areas
of blood vessels; dramatic decreases in retinal thickness

Holman et al., 2010 [26] Sprague–Dawley rats with
streptozotocin BCCAO

Retinal protection (such as preservation of retinal thickness and survival of BRN3-,
Islet-1-, PGP 9.5-, and calbindin-positive retinal cells); pathological gliosis (such as
activation of astrocytes, Müller cells, and microglia) reduction by short-term
hyperglycemia
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Table 1. Cont.

Publication Strain Method Main Outcome

Crespo-Garcia et al., 2018 [27] C57BL/6J mice BCCAO/BCCAS

Retinal vein dilatation; mobilization and accumulation of mononuclear phagocytes
in surrounding veins; decreases in amplitudes in scotopic a-wave, b-wave, and
oscillatory potentials; synaptic degeneration (vesicular glutamate transporter 1,
C-terminal-binding protein 2, protein kinase C-α, and calbindin-D28k)

Lee et al., 2019 [28] C57BL/6 mice UCCAO Retinal HIF-2α stabilization; increases in Epo mRNA expression; decreases in total
retinal thickness

Lee and Kang et al., 2020 [29] C57BL/6 mice UCCAO Abnormal retinal blood perfusion; eyelid drooping; retinal HIF-1α stabilization;
acute GFAP-positive gliosis; chronic retinal thinning

Lee and Jeong et al., 2021 [30] C57BL/6 mice UCCAO Decreases in amplitudes of scotopic b-wave; chronic retinal gliosis; transient retinal
cell death

Lee et al., 2021 [31] C57BL/6 mice UCCAO No change in PLR or IOP; acute reversible cataract development; visual evoked
potential reduction; NeuN-positive cell loss; chronic retinal inflammation

Ling et al., 2017 [32] C57BL/6 mice BICAO Abnormal ocular blood flow; alterations in retinal thickness

Ogishima et al., 2011 [33] ddY mice Occlusion of the PPA and ECA Decreases in ocular blood flow; functional and histologic damage in the inner retina
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2.1. Bilateral Common Carotid Artery Occlusion/Stenosis (BCCAO/BCCAS)

Bilateral occlusions of common carotid arteries are generally performed in rats to
develop chronic cerebral hypoperfusion-related neurodegenerative disorders and dis-
eases [34]. Rats are a suitable rodent species as they have the complete circle of Willis
(CoW) [35–37], which means that rats may not suddenly die after BCCAO. In contrast,
the inadequate development of posterior communicating arteries in CoW causes dra-
matic cerebral ischemia in mice [38–40], finally leading to sudden death during/after
BCCAO [29,41–43].

There have been various outcomes and aspects regarding ocular ischemia in BCCAO-
operated rats. Leahy et al. demonstrated that artery diameter gradually increased in the
retina of Long–Evans rats after BCCAO [16]. Vein diameter also increased in the retina of
Long–Evans rats after BCCAO. Vein velocity dramatically decreased in 3 h after BCCAO,
and its value gradually returned toward the value of vein velocity in sham-operated rats for
14 days. However, the value in BCCAO-operated rats was still significantly lower than that
in sham-operated rats on day 14 after BCCAO. Total retinal blood flow trend was similar to
the vein velocity trend in BCCAO-operated rats. Vascular oxygen content was measured in
the retina of Long–Evans rats after BCCAO. Arterial oxygen content in BCCAO-operated
rats was lower than that in sham-operated rats. Venous oxygen content was also lower
than that in sham-operated rats. Arterio-venous oxygen content difference in BCCAO-
operated rats was significantly higher than that in sham-operated rats. Lastly, oxygen
delivery and oxygen metabolism in BCCAO-operated rats were significantly lower than
that in sham-operated rats. Huang et al. positioned different sizes of needles (diameters of
needles: 0.4, 0.6, and 0.9 mm) beside the common carotid arteries of Clean-grade Wister
rats to induce effective carotid stenosis [17]. They found that needles with a diameter of 0.4
mm were the most powerful in developing severe stenosis of the carotid arteries [17]. In
this system, they found that artery filling time significantly became longer after BCCAO,
analyzed by fluorescein fundus angiography. Furthermore, blood flow, including the pupil,
iris, and total eye, dramatically decreased in BCCAO-operated rats, analyzed by laser
Doppler flowmetry. On the basis of these studies, the pathophysiology of ocular ischemia
by BCCAO regarding oxygen delivery and the metabolism could be better understood.

Ocular functional and morphologic changes by BCCAO have been studied in various
types of rats. Qin et al. demonstrated that amplitudes of scotopic a-wave and b-wave
significantly decreased after BCCAO in Sprague–Dawley rats [18]. Furthermore, the latency
of scotopic a-wave and b-wave was significantly delayed. Decreases in retinal thickness
(including the total retinal layer from the inner membrane to the outer membrane, the
inner nuclear layer, and the outer nuclear layer) were detected after BCCAO. Under
transmission electron microscopy (TEM), disorder and damage in retinal ganglion cells
(especially karyopyknosis, chromatic agglutination, and decreased or swelling organelles)
were observed after BCCAO. Those retinal ganglion cells were surrounded by proliferating
microglia, implying that microglia may affect retinal ganglion cell loss under the BCCAO-
operated ocular ischemic condition [44,45]. In outer retinal cells, sizes of the nuclei became
varied, the nuclear membranes were shrunken and invaginated, and densities of the
chromatin became uneven. The outer segments of photoreceptor cells were loose, fractured,
and dissolved.

Sivilia et al. demonstrated that BCCAO caused pupillary light reflex (PLR) loss
within 1 day after BCCAO in 62% of the surgery-operated Sprague–Dawley rats [19]. The
loss of the PLR was permanent. Next, they found that the outer plexiform layer almost
disappeared, and the inner plexiform and ganglion cell layers significantly decreased in
BCCAO-operated rats after BCCAO, while the outer nuclear and inner nuclear layers
were not significantly changed. This finding in Sivilia et al. [19] is slightly different from
that in Qin et al. [18]. A significant reduction in the number of retinal ganglion cells was
only found 75 days after BCCAO, not 8 or 30 days after BCCAO. Atrophy of the optic
nerve, as analyzed by the optic nerve diameter, was observed 30 and 75 days after BCCAO,
not 8 days after BCCAO. Lavinsky et al. divided BCCAO-operated Wistar rats into two
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groups (with or without the loss of the PLR by BCCAO) [20], as the PLR is associated
with the severity of optic nerve damage [46]. They found that BCCAO-operated rats with
loss of the PLR had more impairment in retinal thickness and ganglion cell density than
BCCAO-operated rats without the loss of the PLR [20]. A similar study was performed
by Davidson et al. using BCCAO-operated Sprague–Dawley rats [21]. This implies that
the PLR could be a useful parameter for indicating a functional sign of ocular damage,
including optic nerve damage. Furthermore, it suggests that this parameter may need to be
considered for assessing therapeutic success in preclinical OIS studies.

Yamamoto et al. performed immunohistochemistry with various pro- and antiapop-
totic factors and retinal cell markers in BCCAO-operated Wistar rats and examined their
alterations in the ischemic retina [22]. Cleaved caspase-3-positive cells were clearly detected
in the ganglion cell layer after BCCAO. Ubiquitin labeling intensity in the ganglion cell
layer dramatically decreased. Cyclooxygenase-2 (COX-2) expression increased in the retina
after BCCAO. The expression of heat-shock protein 70 (HSP70) transiently increased in 3 h
after BCCAO and returned to the basal level within 24 h. When it comes to loss/damage of
retinal cell types, parvalbumin-positive amacrine cells decreased after BCCAO. Choline
acetyltransferase (ChAT)-positive cells in the ganglion cell layer were not changed for 6
months. Calbindin-positive horizontal cells dramatically decreased 1 week after BCCAO,
and BRN3-positive cells in the ganglion cell layer significantly decreased 1 week after
BCCAO. Furthermore, decreases in microtubule-associated protein 2 (one of the dendritic
markers) and synaptophysin (one of the synaptic markers) were detected. Similar to this
study, Chidlow et al. aimed to unravel molecular changes (especially focusing on HSPs) in
the ischemic retina after BCCAO [23]. They found significant increases in Hsp27 and Hsp70
mRNA expressions in the ischemic retina of Sprague–Dawley rats on days 2 and 7 after
BCCAO. While HSP70 protein expression did not increase in the retina and optic nerve
on day 7 after BCCAO, HSP27 protein expression significantly increased in the retina and
optic nerve on the same day. Its expression was highly detected in the ganglion cell and
inner plexiform layers. Another study from Chidlow et al. showed a series of optic nerve
degeneration using the same model [24]. Gradual increases in HSP27 and αB-crystallin
expression and gradual decreases in NFL and β3-tubulin protein expression were found
in the proximal optic nerve after BCCAO. Furthermore, they found that deposition of
extracellular matrix components (collagen I, collagen VI, and laminin) occurred within
the optic nerve head and proximal optic nerve. Abnormal labeling of extracellular matrix
components was evident on 1 week, pronounced on 2 weeks, and extensive on 3 weeks
after BCCAO. On the basis of these studies, multiple mechanisms of BCCAO-induced
ischemic damage to retinal cells and the optic nerve could be further unraveled at the
molecular level.

Wang et al. examined the feasibility of induction of OIS in spontaneously hyperten-
sive rats [25]. Using hypertensive and normotensive Wistar–Kyoto rats, they found high
dysfunction rates in the PLR in BCCAO-operated spontaneously hypertensive rats. Fur-
thermore, those rats had extensive avascular areas of blood vessels and dramatic decreases
in retinal thickness. This implies that systemic hypertension may enhance BCCAO-induced
ocular ischemic injuries. This could be connected with the clinical record that hypertension
was found in 50% to 73% of OIS patients [14,47]. Holman et al. screened therapeutic
or detrimental effects of hyperglycemia in BCCAO-operated Sprague–Dawley rats [26].
Hyperglycemia was induced by the intraperitoneal injection of streptozotocin 3 days before
BCCAO. Then, the retinal changes were examined on day 7 after BCCAO, representing
a short-term investigation. BCCAO-operated hyperglycemic rats showed a reduction in
retinal protection (such as preservation of retinal thickness and survival of BRN3-, Islet-1-,
PGP 9.5-, and calbindin-positive retinal cells) and pathological gliosis (such as activation of
astrocytes, Müller cells, and microglia) compared with those in BCCAO-operated normo-
glycemic rats. Even though more studies are needed for long-term investigation, short-term
hyperglycemia could have a chance of preventing retinal cell death from BCCAO-induced
retinal hypoperfusion injuries.
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Even though techniques of BCCAO and BCCAS are relatively difficult to be applied to
mice as they die during/after the operation, Crespo-Garcia et al. used the coil implantation
method on male C57BL/6J mice at the age of 10 weeks and developed a mouse model
of BCCAO/BCCAS-induced OIS [27]. BCCAO/BCCAS induced significant retinal vein
dilatation after BCCAO/BCCAS. Inflammatory dynamics was detected in the ischemic
retina, using MacGreen mice to monitor mononuclear phagocytes and a quantitative
PCR method (Ccl2, Cd68, and Il-1β). Mobilization and accumulation of mononuclear
phagocytes were observed in surrounding veins. Furthermore, they found that amplitudes
in scotopic a-wave, b-wave, and oscillatory potentials gradually decreased in the ischemic
retina after BCCAO/BCCAS. Similarly to BCCAO in rats, retinal pathological gliosis
and retinal thinning occurred in mice. Synaptic degeneration (evaluated by vesicular
glutamate transporter 1, C-terminal-binding protein 2, protein kinase C-α, and calbindin-
D28k) was detected in the retina from 1 week to 6 weeks after BCCAO/BCCAS. Taken
together, outcomes and aspects regarding ocular ischemia in murine models of OIS by
BCCAO/BCCAS are stacked.

2.2. Unilateral Common Carotid Artery Occlusion (UCCAO)

As mice are known to be more susceptible to ischemic injuries than rats [40,48,49],
researchers applied the method of unilateral occlusion of the common carotid artery to
mice. Even though only one eye in each mouse is available for the ischemic eye by UCCAO,
researchers have become better able to understand the pathological mechanisms of OIS
using mice in terms of convenient handling [50,51].

Lee et al. found that retinal hypoxia-inducible factor-2α (HIF-2α) protein was sta-
bilized in C57BL/6 mice after UCCAO [28]. The mRNA expression of Epo significantly
increased after UCCAO. Furthermore, they demonstrated that astrocytic cystine/glutamate
antiporter may be an important regulator of EPO expression in the ischemic retina (espe-
cially in the retinal ganglion cell layer). Even though the characterization of the model itself
was not extensively performed, the status of hypoxia-regulated EPO gene expression was
better understood in UCCAO-operated mice.

To solve this issue, Lee and Kang et al. executed the model characterization from
the early stage to the chronic stage after UCCAO in C57BL/6 mice [29]. UCCAO caused
abnormal retinal blood perfusion analyzed by FITC–dextran labeling after UCCAO. Eyelid
drooping was detected after UCCAO, and this finding was chronically observed. The
stabilization in retinal HIF-1α protein was detected after UCCAO, and GFAP-positive
active gliosis was seen at the early stage (1–3 days after UCCAO). While retinal thinning
was not dramatically observed until 10 weeks after UCCAO (analyzed with H&E-stained
retinal sections), reductions in the mRNA and protein expressions of THY1 (one of the inner
retinal cell markers) were detected after UCCAO. The death rate during/after UCCAO was
0% during the study.

However, as retinal functional changes have not been clearly studied in previous stud-
ies above, we (Lee and Jeong et al.) used the same model (UCCAO-operated C57BL/6 mice)
to examine whether UCCAO could induce retinal functional impairments [30]. Using
ERG, we demonstrated that the b-wave amplitude dramatically decreased while that of the
a-wave was slightly changed 7 days after UCCAO. Furthermore, using optical coherence
tomography (OCT), we demonstrated that retinal thickness was not significantly altered by
UCCAO even though there were fluctuations in retinal thickness for 14 days. Other cellular
changes (such as chronic retinal gliosis and transient retinal cell death) were observed for
14 days. On the basis of these studies, pathological outcomes using a mouse model of
UCCAO were better established.

To expand the understanding of the series of ocular degeneration by UCCAO in mice,
we (Lee et al.) aimed to screen unfound parameters in the same model [31]. In UCCAO-
operated mice, the function of the PLR or IOP was not affected. Acute reversible cataract
by anesthesia in UCCAO-operated mice was detected for a shorter time than that in sham-
operated mice. Cerebral blood flow (analyzed by laser speckle flowmetry) and retinal blood
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flow (analyzed by FITC–dextran labeling) were reduced right after UCCAO. The mRNA
expressions of hypoxia-response genes (Vegf and Bnip3) significantly increased in the retina,
and only Bnip3 mRNA expression increased in the choroid/retinal pigment epithelium
(RPE). Along with a decrease in scotopic b-wave, photopic b-wave was also damaged by
UCCAO at 2 and 4 weeks. The amplitudes of visual evoked potential significantly decreased
2 and 4 weeks after UCCAO. NeuN-positive cell loss was detected in the ganglion cell
layer 2 weeks after UCCAO. However, there were no dramatic decreases in thickness
in the choroid/RPE for 4 weeks. When it comes to retinal inflammation, increases in
isolectin-IB4-positive inflammatory cells and Ccl2 mRNA expression were observed. Taken
together, pathological outcomes of ocular ischemia in a mouse model of OIS by UCCAO
are well established.

2.3. Occlusion(s) of the Other Branches of the Carotid Artery

The common carotid artery is one of the most vital blood vessels in organisms in that it
directly determines life and death. Other than gross occlusion of the common carotid artery,
more delicate work from the anatomical point of view aimed to develop murine models
of OIS. Ling et al. used bilateral ICA occlusion (BICAO) on C57BL/6 mice [32]. Even
though there was no specifically different outcome in BICAO-operated mice compared
with that in other BCCAO/BCCAS-operated rats or mice introduced above, they used
various methods including MR angiography, H&E staining, fluorescein angiography, and
OCT to investigate pathophysiologic mechanisms of OIS in this model. Ogishima et al.
occluded the pterygopalatine artery (PPA) and ECA to induce ischemic damage in the retina
of ddY mice [33]. As the PPA supplies blood/oxygen to the eye and the ECA supports
the vascular network between the PPA and the ophthalmic artery [40,52,53], a new model
of OIS could be developed by occlusion of the PPA and ECA. Laser speckle imaging
showed that ocular blood flow decreased 5 min after the occlusion surgery, and its flow
in the occlusion-operated mice was still detected lower than that in sham-operated mice.
Functional (analyzed by ERG) and histologic (analyzed by H&E staining) damage in the
inner retina were similar with general BCCAO/BCCAS-operated rats or mice. According
to FITC–dextran labeling analysis, they found that occlusion of only PPA or ECA did
not efficiently block the retinal blood perfusion, while occlusion of both arteries achieved
complete obstruction. Taken together, several trials have led to the development of new
murine models of OIS using a more sophisticated occlusion method.

3. Therapeutics
3.1. Preclinical Studies

There have not been direct studies to develop promising therapeutics for OIS, as OIS
has a broad spectrum of ocular diseases such as ocular neovascularization, rubeosis iridis,
iris necrosis, and cataracts. Therefore, we cover this section after narrowing down the drug
pool tested in various murine models of carotid artery occlusion-induced ocular ischemia,
discussed in Section 2.

Protective effects of recombinant human EPO (rhEPO) were tested by Zhou et al.
in BCCAO-operated Sprague–Dawley rats [54]. Intranasal injection of rhEPO improved
visual impairments. The amplitudes of visual evoked potential, retinal thickness, and
retinal ganglion cells were preserved against BCCAO-induced ischemic injuries. Even
though the mode of action of rhEPO was not experimentally described in the study, EPO
(a well-known strong neuroprotective molecule in the central nervous system) may directly
exert neuroprotection to the ischemic retina and/or brain.

Du et al. applied osthole for managing the hypoperfused retina in BCCAO-operated
Brown Norway rats [55]. Osthole is a naturally occurring coumarin derivative used as tra-
ditional oriental medicine [56], and its therapeutic effects have been documented in various
ischemic conditions [57–59]. Significant improvements in retinal thickness were noticed in
osthole-administered rats, detected by H&E staining [55]. The number of TUNEL-positive
cells was reduced by osthole administration. According to the immunohistochemistry
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analysis, they demonstrated that levels of Akt and NF-κB were lower while the ratio of
BCL-2/BAX was higher in osthole-administered rats. These results imply that osthole may
protect the retina against ocular ischemic injures by BCCAO via anti-inflammatory and
antiapoptotic pathways.

Sivilia et al. used neurotrophin nerve growth factor (NGF) via a single intravitreal
injection against retinal degeneration by BCCAO in Sprague–Dawley rats [19]. According
to the notion that NGF can improve the survival of neurons, neurite outgrowth, and control
axonal receptivity to myelination [60–63], NGF administration controlled the demyelina-
tion/remyelination status in the optic nerve and protected against optic nerve atrophy and
retinal ganglion cell degeneration by BCCAO in rats.

A short report from Szabadfi et al. demonstrated that urocortin 2, a corticotropin-
releasing factor (CRF) paralog activating CRF2 receptors, had protective effects against
retinal degeneration (preservation of retinal thickness and protection of retinal ganglion
cells) by BCCAO in Wistar rats without the mode of action of urocortin 2, requiring further
investigation [64]. Similarly, Werling et al. only screened therapeutic effects of various
neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) fragments in
BCCAO-operated Wistar rats, and they found that PACAP 1-38 had the greatest efficacy
against the injuries [65].

Previously, we (Lee and Tomita et al.) also screened drug candidates (fenofibrate and
pemafibrate) in UCCAO-operated C57BL/6 mice for developing therapeutics in OIS [66,67].
These drugs are well-known peroxisome proliferator-activated receptor alpha (PPARα) ag-
onists, and they have been increasingly nominated as promising drugs for various ischemic
retinopathies with diabetes or hyperlipidemia [68,69]. Consecutive oral administrations of
pemafibrate (before and after UCCAO) prevented reductions in the amplitudes of a-wave,
b-wave, and oscillatory potentials 10 days after UCCAO [67]. Oral administrations of
pemafibrate reduced pathological gliosis detected by GFAP on days 2 and 5 after UCCAO.
The expressions in hepatic PPARα target genes (Acox1, Fgf21, Fabp4, Vldlr, and Ucp3) rather
than those in ocular PPARα target genes were upregulated by oral administrations of
pemafibrate. Fibroblast growth factor 21 (one of the strong neuroprotective molecules in the
brain and eye [70–74]) was produced by oral administrations of pemafibrate and plausibly
circulated to exert neuroprotection in the ischemic retina. Furthermore, oral administra-
tions of pemafibrate reduced serum levels of triglyceride and upregulated serum levels of
total cholesterol, which may have indirect effects on the protection. Similar findings were
also detected in fenofibrate-administered UCCAO-operated mice [66]. As these two drugs
are already available in the clinic, a future direction in OIS is also positively anticipated.
Taken together, even though drug screening on ocular protection has been performed in
various experimental models of carotid artery occlusion-induced ocular ischemia, further
investigations are needed.

3.2. Current Clinical Treatment

Treatment for OIS is usually limited to treating complications. The treatment can be
divided into two aspects: ocular treatment and systemic treatment.

3.2.1. Ocular Treatment

Pan-retinal photocoagulation could reduce the demand for oxygen consumption
in the ischemic retina to avoid NVG formation [75]. It could lead to regression of iris
vascularization (NVI) in 36% of cases and control of IOP in patients with open-angle
glaucoma [13]. However, there are many cases in which treatment is ineffective because
VEGF is produced in the choroid and anterior segment, as well as the retina. Intravitreal
anti-VEGF may be helpful to control the NV and macular edema associated with the disease.

Elevated IOP in OIS often resists medical treatment; drugs that reduce aqueous se-
cretion, such as β blockers and α agonists, can be used. In some cases, trabeculectomy
(TLE), a shunt procedure, may be necessary for patients with angle occlusion due to NV
and the inability to control IOP. It has been reported that anti-VEGF drugs before TLE can
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suppress postoperative anterior chamber hemorrhage and improve visual function in the
early postoperative period [76].

To treat inflammation in the anterior chamber, topical steroids can be used. In addition,
eye drops of mydriatics are used to reduce inflammation in the anterior segment. However,
these are only symptomatic treatments. Proinflammatory drugs such as prostaglandin and
pilocarpine should be avoided [7].

3.2.2. Systemic Treatment

For radical treatment, neurosurgical improvement in ICA blood flow is necessary, and
carotid endarterectomy (CEA) and carotid artery stenting (CAS) are indicated. CEA is
performed to remove the plaque from inside the artery and is known to reduce the risk of
stroke in symptomatic patients [77]. CEA has been proven to increase blood flow in the
ocular arteries and prevent ischemic changes [5]. Another group found that CEA improved
ophthalmic blood flow with post-CEA values comparable to normative values in healthy
patients [78]. In addition, they showed a correlation between visual symptoms and flow
velocities before the CEA procedure [78]. A clinical trial showed the superiority of the
combination of aspirin and CEA treatment in preventing stroke compared to aspirin only
in patients with carotid artery stenosis [13].

On the other hand, CAS is a procedure in which an expanding stent is inserted into
the carotid artery to increase blood flow to the area blocked by plaque (Figure 4). CAS is
performed on patients for whom CEA may cause complications, such as those who have
had previous radiation, neck surgery, recurrent stenosis, tracheostomy, or complicated
surgery with stenosis above the second cervical (C2) vertebral level. High-risk patients such
as those with unstable angina, congestive heart failure, and recent myocardial infarction are
also indicated for stent [79]. It has been reported that there is no difference in the outcomes
of CAS and CEA in terms of perioperative stroke, myocardial infarction, death, and 4 year
incidence of ipsilateral stroke after the perioperative period [8].
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Extracranial–intracranial (EC-IC) arterial bypass surgery involves the creation of an
anastomosis between the extracranial branch of the superficial temporal artery and the
intracranial branch of the tunica media artery. It is indicated when the ICA or CCA is
completely occluded or when it is difficult to assess at the C2 level or higher because of
stenosis. It can, thus, prevent cerebral ischemia [79]. However, even with surgical treatment,
the prognosis for visual function is poor [14].

These procedures above could restore normal blood flow in the eye, and they are
thought to stabilize visual acuity if performed before NVI formation. However, neurolo-
gists and internists should thoroughly evaluate patients with OIS because of numerous
comorbidities in these patients. Any associated predisposing comorbidities should be
treated, and patients are recommended to adopt an appropriate diet, stop smoking, and
undertake physical activities. Furthermore, a group showed a case of retinal embolization

biorender.com


Int. J. Mol. Sci. 2022, 23, 5249 12 of 15

ischemia following ICA stenting [80]. Thus, ophthalmologists need to monitor any retinal
ischemic changes using fluorescein angiography and OCT, and patients should be informed
about the risk of permanent vision loss even after receiving treatments.

4. Future Directions and Conclusions

In this review article, we covered basic knowledge of human OIS regarding epidemi-
ology, symptoms, diagnosis, and treatment, and we summarized the pathophysiologic
outcomes from experimental models of OIS through various carotid artery occlusion
methods in rats and mice. Even though we combined pathologic outcomes from experi-
mental models of OIS in this study, insights into therapeutic approaches and pathological
mechanisms occurring in the eye under the condition of OIS are still limited. Therefore,
we hope that our current summary contributes to a comprehensive understanding of
pathophysiologic mechanisms of OIS and urges more preclinical and clinical research on
unraveling pathophysiologic mechanisms and finding promising therapeutics for OIS in the
near future.
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