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The impact of late‑career job loss 
and genetic risk on body mass 
index: Evidence from variance 
polygenic scores
Lauren L. Schmitz1*, Julia Goodwin2, Jiacheng Miao3, Qiongshi Lu3,4 & Dalton Conley5 

Unemployment shocks from the COVID‑19 pandemic have reignited concerns over the long‑term 
effects of job loss on population health. Past research has highlighted the corrosive effects of 
unemployment on health and health behaviors. This study examines whether the effects of job loss on 
changes in body mass index (BMI) are moderated by genetic predisposition using data from the U.S. 
Health and Retirement Study (HRS). To improve detection of gene‑by‑environment (G × E) interplay, 
we interacted layoffs from business closures—a plausibly exogenous environmental exposure—with 
whole‑genome polygenic scores (PGSs) that capture genetic contributions to both the population 
mean (mPGS) and variance (vPGS) of BMI. Results show evidence of genetic moderation using a vPGS 
(as opposed to an mPGS) and indicate genome‑wide summary measures of phenotypic plasticity may 
further our understanding of how environmental stimuli modify the distribution of complex traits in a 
population.

Recent unemployment shocks from the COVID-19 pandemic have left millions of older workers unemployed. 
In the U.S. alone, the seasonally adjusted unemployment rate for adults aged 55 and over jumped from 2.6 in 
February 2020 to as high as 13.6 in April  20201. Recent evidence indicates unemployment rates for workers 55 
and older have exceeded those of mid-career workers since the pandemic began—the first time in nearly 50 years 
that older workers have faced higher unemployment than mid-career  workers2. For older workers in particular, 
the scarring effects of unexpected job loss could be severe. Job loss at older ages has been associated with longer 
periods of unemployment than any other age  group3,4, higher rates of depression and  anxiety5–7, and a sharp 
increase in the need for medical care due to heightened stress levels and gaps in health insurance  coverage8,9. 
Further, when reemployed, older workers suffer significant wage penalties and lower levels of employer-offered 
pension and health  insurance10–12. All these factors could trigger chronic stress and adverse changes in health 
and health  behaviors13,14.

This study expands on past work by examining the degree to which underlying genetic predisposition mod-
erates changes in body mass index (BMI) after a job loss. Genotype-by-environment (G × E) interaction is a 
fundamental component of population variance for complex traits like BMI, but there has been limited success in 
identifying G × E effects in human populations due to several challenges, including the complexity of measuring 
environmental exposures, a need for statistical methods that can screen for genetic effects on phenotypic vari-
ability, and inadequate power to detect small G × E effects at loci across the  genome15–17. To overcome the third 
challenge of lower power to detect individual effects in the context of multiple hypothesis testing, researchers 
have used whole-genome polygenic scores (PGSs) constructed from well-powered genome-wide association 
studies (GWAS) that summarize the genomic contribution to a trait or disease across common variants in the 
 genome18. That is, PGSs aggregate thousands of genome-wide genetic influences on a phenotype into a single 
index using results from GWAS that estimate the association between genetic variants and the conditional 
mean of a phenotype, which we refer to herein as mGWAS. However, PGSs constructed from mGWAS may not 
capture the impact of loci that contribute to within-individual variance in an outcome that are more responsive 
to environmental stimuli (i.e., variance quantitative loci or vQTLs). Since estimating genetic contributions to 
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within-person variability is hindered by a lack of large datasets with genotype data and longitudinal phenotypic 
data on participants, researchers have developed methods that can detect population-level variance effects that 
are not driven by mean effects, referred to herein as  vGWAS16,19–23. In this study, we apply summary statistics 
from both mGWAS and vGWAS to construct whole genome PGSs for BMI that capture mean effects (mPGS) and 
variance effects (vPGS)24. Evaluating both measures in a G × E framework is necessary because environmental 
shifts may moderate individuals’ propensity for higher or lower BMI, and/or their propensity towards changes 
in BMI or BMI plasticity21,24.

Our data on older workers aged 50–70 come from the U.S. Health and Retirement Study (HRS). The HRS is 
a nationally representative, longitudinal study with genotype data and over twenty years of sociodemographic 
data on respondents, including individual-level exposures to involuntary job losses from business closures. 
We focus specifically on business closures because they are typically the byproduct of external, firm level deci-
sions to restructure or relocate businesses and are therefore considered more exogenous than layoffs or firings, 
which may be correlated with unobserved health or worker characteristics that could bias G × E  estimates25–27. 
The majority of G × E interaction studies use endogenous measures of the environment that cannot address the 
non-random distribution of genes across environments. This is important because G × E interactions can, in 
that case, be proxying a different, unmeasured E that is interacting with G, G × G interactions (i.e., epistasis), or 
even E × E (if the measured genes proxy other environments). Specifically, if the cause of job loss is endogenous, 
such a measure could be intertwined with a host of unobserved genetic or environmental influences that are 
associated with health and changes in  BMI28–30.

To address this, our empirical strategy interacts business closures with, respectively, an mPGS and vPGS in 
a regression-adjusted semiparametric difference-in-differences (DiD) propensity score matching framework 
that compares the BMI of those before and after an involuntary job loss with a control group that was not laid 
off. Combining propensity score matching with DiD estimation makes the model more robust to selection on 
observables and unobservables with time invariant effects (e.g., ability or worker preferences)31. This is neces-
sary because although business closures are plausibly more exogenous than layoffs or firings, it is still possible 
that workers with unhealthy behaviors or poor health, for example, could select into more vulnerable or volatile 
 industries32. To date, we are aware of only one other study that has leveraged a vPGS and a quasi-natural experi-
ment (education reform in the UK) to detect G × E interaction effects on BMI and educational  attainment24. 
Results from this study found evidence of mPGS and vPGS interaction effects, indicating that both forms of 
moderation need to be tested in G × E interaction studies.

In the context of older workers in the U.S., we focus on changes in BMI for two reasons. First, BMI is an 
inexpensive, non-invasive proxy measure of adiposity that is available for all HRS waves and is predictive of 
metabolic syndrome and other more difficult to measure anthropomorphic measures like abdominal adiposity 
that increase risk for cardiovascular disease and type 2  diabetes33. In older adults, unintentional weight loss or 
frailty can also be harmful and indicative of decreased resistance to stressors, resulting in greater vulnerability to 
disease and  disability34–38. Past studies have found slight increases in BMI from  unemployment31,39, particularly 
in middle-aged workers, but there is no consensus, and some studies that look at the causal impact of job loss on 
BMI or related health outcomes have been unable to locate an average treatment  effect40–42. Using the HRS, Salm 
finds no causal effect of business closures on various measures of physical and mental health, whereas Gallo et al. 
find involuntary job loss is associated with increased depressive symptoms and risk of stroke but not myocardial 
 infarction6,40,43. A few studies have explored the possiblity that the health impacts of job loss vary across the dis-
tribution of health  status39,42. For example, using finite mixture models, Deb et al. found increases in drinking and 
BMI were concentrated among workers who were already pursuing unhealthy behaviors pre-job loss, indicating 
the effects of job loss may be especially problematic for high-risk individuals. However, because genetic data have 
only recently become available in large population studies, past research was not able to explore the possibility 
that the impact of job loss on intra-individual fluctuations in BMI may vary across the spectrum of genetic risk.

Second, we focus on changes in BMI because BMI is currently the most well studied phenotypic trait in 
vGWAS. Previous meta-analyses of mGWAS have identified more than 100 genome-wide significant loci associ-
ated with  BMI44–48. The largest cluster of highly significant genetic variants is located in the FTO (fat mass and 
obesity associated) gene region on chromosome 16. Studies suggest FTO polymorphisms increase obesity risk 
through subtle changes in food intake and preference and affect pathways in the central nervous system that 
regulate  appetite45,49. In particular, the SNP rs1421085 underlies the association between the FTO locus and 
obesity via activation of IRX3 and IRX5, which play a role in the differentiation of adipocyte  subtypes50. Recent 
vGWAS have found evidence for loci with variance effects on BMI located in genes responsible for adipocyte 
differentiation (PPARG ) and genes implicated in the pathology of obesity, diabetes, atherosclerosis, and cancer 
(FTO, PPARG , CCNL1, TCF7L2, ZNF668, GIPR)16. Most BMI-associated loci have their largest impact early in 
life or during  adolescence51, although a few loci, which have also been associated with type 2 diabetes or coronary 
artery disease, exhibit stronger effects in older  adults52. Past studies have also found genetic moderation of social 
aspects of the environment that affect BMI, including lifetime socioeconomic status (SES), social norms, birth 
cohort, and institutional  policies53–55.

In this study, we used a quasi-natural experiment to investigate whether the effect of job loss on BMI—a stress-
ful and often debilitating lifetime event—is moderated by genetic predisposition. To incorporate genetic effects 
associated with the population variance in BMI, we used summary statistics from recently developed GWAS 
methods that can separate SNP mean and variance  effects16 to construct vPGS for  BMI24. Prior to constructing 
the vPGS in the HRS sample, we validated its performance in the UK Biobank (see Fig. 1 for an overview of our 
analytic workflow). Similar to past studies that have used business closures to examine the effects of job loss on 
BMI, we classified workers who have been laid off due to a business closure as being “treated” and compared 
these individuals to a “control” group who reported working for the same employer the entire time they were 
in the HRS sample. Our sample is limited to individuals of European descent because comparable mGWAS and 
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vGWAS in other ancestral populations are currently unavailable. Overall, we hypothesized that a vPGS would 
be better able to capture downstream differences in the genotype–phenotype relationship between treated and 
control groups, and that highly plastic individuals, or those with a higher vPGS, would adapt more quickly to 
changes in their environment, and therefore maintain a more stable weight in the face of job loss.

Results
Matching quality and summary statistics. Table  1 displays the means and matching statistics for 
covariates by treatment group, control group, and matched control group. Detailed variable descriptions can 
be found in Supplementary Table S1, and additional descriptive statistics and matching statistics are reported 
in Supplementary Tables S2 and S3, respectively. After matching, covariates should be balanced with little to no 
significant differences remaining. We included both the standardized bias and two-sample t-tests for equality of 
the means to check for significant differences between covariates for both groups (Methods)56.

Before matching, individuals affected by a business closure have lower socioeconomic standing, were less 
likely to have health insurance, and reported worse mental health and health behaviors than continuously 
employed individuals. Labor statistics show they were more likely to work part time, for smaller firms, in the 
agriculture/fishing/farming, construction/mining, manufacturing, or trade industries, were more likely to be 
blue collar, and have lower job tenure than workers in the control group. Significant differences in the mean or 
variance of BMI between treatment and control groups are not apparent before or after matching.

After matching, covariates are more balanced overall, and the standardized biases for the majority of variables 
are at or below 5% and/or the t-test p value > 0.05, which indicates that mean differences between the treatment 
and control group are small and the balancing procedure was  effective57. Notable exceptions include mean dif-
ferences in education, industry, household income, access to health insurance, and smoking behavior. To mini-
mize any remaining differences between groups and increase the precision of our treatment effect estimates, we 
controlled for all covariates in our empirical  model58. Importantly, we do not see any significant differences in 
the mPGS or vPGS between treatment and control groups before or after matching, indicating the absence of 
gene-environment correlation (rGE), or genetic selection into the treatment group.

Construction and predictive performance of vPGS. Because we are incorporating mPGS and vPGS 
into our G × E interaction model, it is important to use a vPGS that captures variance effects that are distinct 
from mean  effects24. To decorrelate the mean and variance effects, Young et al. proposed a dispersion effects test 
that can identify differences in the variance of the GWAS sample as a whole that are not driven by mean effects at 
the SNP  level16. We used dispersion weights from Young et al. to construct vPGS in the HRS (Methods).

The predictive performance of mPGS for BMI in the HRS and other European ancestry population-based 
samples has been well  studied53–55,59,60, and previous GWAS have reported predicted  R2 values that range between 
5 and 10%47. Consistent with these studies, the mPGS explains 7.2% of the variance in BMI in the HRS European 
ancestry sample (Methods). To evaluate the predictive performance of the vPGS, we fit a Double Generalized 

Figure 1.  Analytic workflow in the UK Biobank and the Health and Retirement Study (HRS).
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Table 1.  Before treatment means of treated workers who lost their job due to a business closure, control 
workers, and matched controls. a Indicates a variable is binary. bIndicates a variable is not balanced after 
matching (p value < 0.05 or standardized bias > 5%). Abbreviations: U, unmatched; M, matched; % bias: percent 
standardized bias; CES-D, Center for Epidemiological Studies-Depression 8 item scale. The t-test p value refers 
to the p value from the difference in means between the treated and control groups before and after matching. 
The V(T)/V(C) column presents the ratio of a continuous variable’s variance for the treatment group over 
the variance for the control group. Additional covariates in the matching procedure: marital status, firm size, 
industry, survey year, regional Census division, additional categories for variables with missing values, and 
the first 10 principal components of the European ancestry genetic data. We used kernel-based propensity 
score matching with a bandwidth of 0.06. Unmatched control observations = 11,629; Unmatched treated 
observations = 399; Matched control observations = 11,559; Matched treated observations = 375.

Match status

Means

% bias t-test p value V(T)/V(C)Treated Control

BMI
U 27.35 27.76 − 7.9 0.137 0.96

M 27.53 − 3.5 0.631 1.01

BMI mPGS
U 0.03 0.00 3.4 0.510 1.06

M 0.05 − 1.2 0.873 1.07

BMI vPGS
U 0.01 0.00 0.9 0.863 1.00

M 0.04 − 3.5 0.640 0.94

Femalea
U 0.54 0.56 − 3.9 0.453

M 0.54 − 0.2 0.974

Age (years)
U 57.43 57.15 6.3 0.212 1.15

M 57.48 − 1.2 0.869 1.15

No  degreea
U 0.11 0.06 18.2  < 0.0001

M 0.11 − 0.2 0.981

High school  degreea,b
U 0.67 0.52 31.3  < 0.0001

M 0.61 12.3 0.088

College  degreea,b
U 0.22 0.42 − 44.3  < 0.0001

M 0.28 − 13.0 0.061

Household income (log)b
U 11.08 11.34 − 26.3  < 0.0001 1.82

M 11.17 − 9.1 0.243 1.30

Household wealth ($100 k)
U 3.10 3.64 − 5.2 0.453 0.12

M 3.33 − 2.2 0.763 0.11

Works part  timea
U 0.19 0.11 21.5  < 0.0001

M 0.18 3.5 0.655

White  Collara
U 0.64 0.71 − 15.7 0.002

M 0.65 − 1.8 0.808

Blue  Collara,b
U 0.24 0.18 15.1 0.002

M 0.22 5.9 0.434

Servicea
U 0.11 0.09 8.3 0.095

M 0.12 − 4.0 0.613

Job tenure (years)b
U 11.36 15.25 − 35.6  < 0.0001 1.03

M 12.54 − 10.7 0.135 1.11

Health excellent/very  gooda
U 0.62 0.64 − 4.1 0.437

M 0.61 0.8 0.914

Health  insurancea,b
U 0.65 0.82 − 38.2  < 0.0001

M 0.69 − 10.0 0.203

Exercise vigorously 3 + times/weeka
U 0.35 0.36 − 1.6 0.759 0.99

M 0.36 − 1.3 0.859 0.99

Ever smoke  cigarettesa
U 0.62 0.53 17.6  < 0.0001

M 0.60 5.0 0.487

Cigarettes per  dayb
U 5.30 2.75 27.4  < 0.0001 1.94

M 4.58 7.8 0.328 1.27

Drinks per week
U 2.24 2.35 − 2.0 0.713 0.78

M 2.10 2.7 0.709 0.78

CES-D
U 0.99 0.75 15.1 0.002 1.33

M 0.95 2.5 0.747 1.00
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Linear Model (DGLM) that allowed us to assess the association between the vPGS and the between-individual 
variance in BMI in a UK Biobank (UKB) test sample that is independent of our HRS testing sample (Methods). 
Table 2 reports associations from the DGLM with and without mPGS adjustment (Models 1 and 2, respectively). 
The dispersion vPGS is significantly associated with the population variance in BMI in the UKB test sample 
(p = 1.01E−04), and this association holds after controlling for the mPGS (p = 1.44E−04). Since DGLM is a log-
linear variance model, the effect size estimate of 0.019 means that a one unit increase in the standardized vPGS 
results in an approximately 1% increase in the standard deviation of BMI on the inverse normal transformed 
scale (i.e., 

√

exp(0.019)− 1 ≈ 1%).

Gene‑by‑environment (G × E) interaction results. We used a propensity score matched DiD model 
to evaluate the effect of job loss from a business closure (Methods). Table 3 shows separate propensity score 
adjusted DiD results from specifications with and without the mPGS and vPGS interactions. To control for mul-
tiple hypothesis testing, we adjusted p values using the Benjamini–Hochberg false discovery rate (FDR), which 
controls for the proportion of falsely rejected null hypotheses among all those  rejected61. Results with FDR < 5% 
are indicated with an asterisks. The results in Column 1 are similar in magnitude and direction to the HRS results 
reported by Deb et al., which find a positive, but insignificant main effect from business closures in the full HRS 
sample on changes in BMI in all ancestry  groups39. Among European ancestry respondents between the ages of 
50 and 70 who reported being in the labor force, the main effect is still positive (Column 2). In the genotyped 
European ancestry sample, the main effect of business closures is insignificant but negative (Column 3). Col-
umns 4–6 show that the inclusion of both the mPGS and vPGS is necessary to uncover a genetic main effect and 
an interaction effect: the mPGS captures a significant main effect of genotype on BMI (p = 0.001), while the vPGS 
captures a significant G × E effect (p = 0.001).

Graphically, this can be seen in Fig. 2, which used the estimated parameters from the DiD regression models 
in Table 3 to predict BMI at different values of the mPGS and vPGS for treated workers in the wave following 
a business closure and for control workers that were matched to treated individuals in the same HRS wave 
(Methods). The regression coefficients that were used to estimate predicted BMI varied depending on treatment 
status and the value of the mPGS and vPGS (Methods). In the mPGS figure, which plots predicted BMI based 
on coefficients from the mPGS interaction model in Column 5, we see differences in predicted BMI by mPGS, 
but no significant differences between groups. Conversely, in the vPGS figure, which plots predicted BMI based 
on coefficients from the vPGS interaction model in Column 6, there are no differences in the predicted level of 
BMI by vPGS, but as indicated by the cross-over shape of the interaction, there is suggestive evidence of a G × E 
interaction, or evidence of environmental moderation by vPGS for the treatment group relative to the control 
group in the post-treatment wave. Significant differences between treatment and control groups can only be seen 
in the lower half of the vPGS distribution; workers below the mean in the treatment group appear more likely to 
lose weight as a result of a business closure relative to control workers with similar vPGS scores.

Event time study. We conducted an event time study (ETS) to assess the validity of our findings and to show 
the evolution in BMI by vPGS for the treatment and control groups up to four years post job loss (Methods). The 
assumption underlying the DiD research design is that in the absence of an involuntary job loss, BMI would have 
evolved similarly for the treatment and control groups (i.e., the “parallel trends” assumption). Figure 3 plots the 
coefficient estimates from the ETS model, which can be interpreted as the difference in BMI between treatment 
and control groups (Supplementary Table S4). The first panel of Fig. 3 indicates the presence of parallel trends in 
BMI prior to a business closure for the full sample—i.e., the difference between treatment and control groups is 
close to zero and not statistically significant. We then estimated separate ETS regressions for respondents in the 
top and bottom 50% of the vPGS distribution to compare trajectories in BMI for treatment and control groups 
by vPGS. Similar to the results in Fig. 2, we found suggestive evidence that individuals in the bottom 50% of the 
vPGS distribution have a lower BMI on average compared to the control group (p = 0.043). These effects did not 
persist in the next HRS interview wave at t + 2, or up to four years post job loss.

Table 2.  Variance polygenic score (vPGS) validation in the UK Biobank. Abbreviations: SE, standard error; 
CI, confidence interval. Results show the association between the vPGS and the between-individual variance 
in BMI in a 20% holdout sample of the UK Biobank. Model 2 adjusts for the effect of the mean PGS (mPGS). 
Unique N = 81,375.

Model 1 Model 2

vPGS

Beta (SE) Beta (SE)

95% CI 95% CI

p value p value

0.019 (0.005) 0.019 (0.005)

[0.009, 0.029] [0.009, 0.029]

1.01E−04 1.44E−04
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Discussion
Gene-environment interplay is a fundamental biological process that influences the diversity of outcomes we 
observe in human  populations62. However, because genetic differences are tightly interwoven with environmental 
differences, it is challenging to identify genomic and environmental factors underlying phenotypic plasticity. The 
search for interaction effects is further complicated by the fact that the majority of GWAS methods are unable to 
separate genetic effects on phenotypic variability from effects on the mean or level of trait  values16. As a result, 
most PGS × E interaction studies cannot detect interaction effects that are driven by loci that affect  plasticity24. 
Research suggests that SNPs associated with the variance of BMI (vQTLs) are highly enriched for G × E interac-
tions, and that these vQTLs play  an important role in cellular response to the external  environment16,22.

Results from this study indicate that an unexpected job loss did not alter the mPGS-BMI relationship; indi-
viduals with higher mPGS had higher levels of BMI regardless of whether they were in the treatment or control 
group. However, we do see suggestive evidence of genetic moderation by vPGS. Genetic moderation is particu-
larly pronounced in the lower half of the vPGS distribution; less-plastic individuals in the bottom 50% appear 
to adjust more slowly to environmental changes, resulting in minor weight loss compared to similarly matched 
individuals in the control group. Results from an ETS analysis show that changes in BMI were detectable in the 
wave immediately preceding job loss but did not persist in subsequent HRS waves. In the context of the job loss 

Table 3.  Effect of job loss from a business closure on BMI with and without mPGS and vPGS interactions for 
workers aged 50–70 in the Health and Retirement Study (HRS). *FDR corrected p value < 0.05. Abbreviations: 
SE, standard error; CI, confidence interval. Robust standard errors in parentheses. Each column in the table 
shows separate propensity score matched models for workers aged 50–70. All specifications adjust for BMI in 
the previous wave, or BMI (t − 2), and for the conditioning variables used in the propensity score matching 
that are reported in Table 1 and defined in detail in Supplementary Table S1. Columns 1–3 do not include 
mPGS or vPGS in the matching procedure. Column 1 includes all workers, regardless of ancestral background 
or the availability of genotype data and includes additional controls for race and Hispanic ethnicity in the 
matching procedure. Column 2 reports results for all European ancestry workers, regardless of the availability 
of genotype data. Column 3 reports results for the European ancestry sample with genotype data prior to 
matching on the mPGS and vPGS. Columns 4–5 include the mPGS in the matching procedure, and Column 
6 includes the mPGS and the vPGS in the matching procedure. Individuals in the control group can have 
multiple observations. In the analytic sample, unique N(control) = 3564; unique N(treated) = 375.

(1) (2) (3) (4) (5) (6)

Full sample
European ancestry 
sample

Genotyped European ancestry sample

No PGS With mPGS
With mPGS 
interaction

With mPGS & 
vPGS interaction

Beta (SE) Beta (SE) Beta (SE) Beta (SE) Beta (SE) Beta (SE)

95% CI 95% CI 95% CI 95% CI 95% CI 95% CI

p value p value p value p value p value p value

Business closure 
(BC)

0.137 (0.088) 0.051 (0.103) − 0.099 (0.105) − 0.091 (0.104) − 0.091 (0.103) − 0.095 (0.102)

[− 0.036, 0.310] [− 0.151, 0.252] [− 0.305, 0.106] [− 0.294, 0.113] [− 0.294, 0.112] [− 0.296, 0.106]

0.121 0.623 0.344 0.383 0.379 0.352

mPGS

0.175* (0.051) 0.170* (0.048) 0.163* (0.047)

[0.075, 0.275] [0.076, 0.263] [0.071, 0.255]

0.001 0.001 0.001

Business clo-
sure × mPGS

0.011 (0.091) 0.013 (0.090)

[− 0.168, 0.189] [− 0.164, 0.191]

0.907 0.882

vPGS

− 0.056 (0.070)

[− 0.193, 0.082]

0.426

Business closure × 
vPGS

0.258* (0.092)

[0.077, 0.439]

0.001

BMI (t − 2)

0.918 (0.014) 0.929 (0.017) 0.932 (0.024) 0.921 (0.026) 0.921 (0.026) 0.923 (0.025)

[0.890, 0.946] [0.896, 0.962] [0.884, 0.979] [0.871, 0.971] [0.871, 0.971] [0.874, 0.973]

 < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001

R-squared 0.82 0.832 0.868 0.869 0.869 0.870

Observations 27,593 18,795 11,941 11,934 11,934 11,934

Treated observa-
tions 895 579 376 375 375 375

Control observa-
tions 26,698 18,216 11,565 11,559 11,559 11,559
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Figure 2.  Predicted BMI for treatment and control groups by mPGS and vPGS. The figure depicts the predicted 
BMI for treatment and control groups using coefficients from the empirical models reported in Table 3 (Column 
5) for the mPGS interaction, and Table 3 (Column 6) for the vPGS interaction. Error bars represent 95% 
confidence intervals.

Figure 3.  Difference in predicted BMI for treatment and control groups by the year relative to job loss for the 
entire analytic sample and stratified at the vPGS median. The figure plots the coefficients from an event time 
study model for the full sample and by samples stratified at the vPGS median (see Methods). The reference 
category is BMI in t − 2, or BMI at baseline before the job loss occurred for treated individuals. The dotted line 
depicts the approximate time point that the job loss occurred—i.e., at some point between t − 2 and the wave a 
job loss was reported, or time t. Error bars represent 95% confidence intervals.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7647  | https://doi.org/10.1038/s41598-021-86716-y

www.nature.com/scientificreports/

literature, this suggests that similar to race, gender, age, or other social moderators that exacerbate the scarring 
effects of job  loss63, genetic predisposition may be another avenue through which health inequalities emerge and 
deepen within a population. As a result, a better understanding of the extent to which biological forces act as a 
mechanism between worker displacement and workers’ health may improve our estimation of the short- and 
long-term effects of job loss.

It is important to note that we deployed, by necessity, a vPGS that was constructed from weights that were 
trained in a discovery sample to predict variation between individuals net of mean effects. However, we used this 
measure in analysis that examined within-subject variation. This is an important distinction that may inform 
the interpretation of our results. Namely, our theory is that highly plastic individuals are better able to adapt to 
changing environmental contexts and thus maintain a more stable weight in the face of job loss over time. We 
classified individuals as plastic or non-plastic based on their score from a genetic model that predicts whether 
an individual scores higher on a cross-individual model of dispersion (independent of mean effects). In a sense, 
this means that someone with a higher vPGS has more “noise” in their prediction than another individual’s score 
does—that is, s/he is less well-predicted from a levels (mean values) regression than someone with a lower score. 
Someone who is low on the plasticity score has a BMI that is better predicted by their levels effects than someone 
who is high on the score. This, in turn, we think is indicative of someone whose phenotype is more affected by 
non-additive genetic effects (i.e., epistasis) as well as by environmental effects. That is, imagine two groups: One 
with a low vPGS and one with a high vPGS. It is the lower-vPGS group that may have a narrow range around a 
population mean BMI of 25 (say, SD = 2 units), while those with a high vPGS may display the same mean BMI 
in their group (25) but have a wider dispersion (SD = 4 units). Thus, high vPGS individuals do a better job of 
buffering differences in environments they encounter and, as a result, their phenotypes vary more widely. In one 
sense of “plasticity” they are higher, as their phenotype varies more.

Turning to our within-person analysis in the HRS, low vPGS-scoring individuals may be more “stable” in 
their weight from year to year, given the smaller “error” term from the levels regression. Indeed, when we simply 
compare the standard deviation of BMI within individuals in our HRS sample across waves by a quartile split 
in the vPGS, irrespective of treatment status, we find that individuals in the lowest quartile of the vPGS score 
display a (non-significantly) lower within-person standard deviation in BMI than individuals in the highest 
quartile (Supplementary Table S5). Thus, in the absence of a specific, measured environmental shock, an indi-
vidual with a low vPGS score derived from the cross-person discovery analysis has more phenotypic stability 
in the within-person analysis (i.e., less plasticity). This may be one reason why we are able to detect significant 
differences between treated and control individuals up to two years post job loss in the lower half of the vPGS 
distribution—i.e., in the presence of an unexpected job loss, it takes less plastic individuals longer to recover to 
their pre-job loss weight. On the other hand, it could be that less plastic individuals display a more stable weight 
trajectory overall—regardless of environmental forces, rendering our ability to see a “specific” environmental 
effect more clearly. Finally, it is also possible that higher vPGS individuals are less affected by environmental 
exposures overall because their BMI is more under polygenic control than those with lower vPGS.

Either way, with only 375 individuals in our treatment group we are likely underpowered to detect precise 
G × E effects between treatment and control groups, particularly in the upper part of the vPGS distribution. 
Specifically, because high vPGS individuals display a higher within-person standard deviation in BMI, it may 
be harder to detect differences between treatment and control groups in smaller samples because their weight 
oscillates more between waves, independent of any particular treatment effect, as mentioned above. Conversely, 
it’s possible that the true shape of the interaction does not display a crossover effect at higher levels of the vPGS—
perhaps because of the larger within- or between-person standard deviation in BMI. Due to a lack of detailed 
job loss data in other population studies that also collect genetic data on participants, we were unable to pursue 
replication of our quasi-experimental approach in other samples. Thus, we caution that our results are suggestive, 
and we cannot draw any definitive conclusions about the short- and long-term dynamics of changes in BMI as 
they relate to job loss from this study.

Strengths and limitations. There are several limitations of the HRS data, all of which may bias our esti-
mates downwards or reduce the precision of our estimates. First, we only observe BMI in the HRS every two 
years, which makes it difficult to assess stress-related changes in BMI that are more proximal to the timing of 
the event, or in the months immediately pre- and post-job loss. It is entirely possible that high vPGS individuals 
gained or lost more weight than low vPGS individuals in the months following a job loss but they bounced back 
quicker to their pre-job loss weight, which would make it more difficult to detect differences between high vPGS 
treatment and control individuals in the subsequent HRS wave. Second, to obtain the largest sample of treated 
individuals, we were limited to using self-reports of BMI, which may induce measurement error in our estimates. 
In 2006, the HRS did start collecting in person, objective measures of BMI; however, these measures are only col-
lected at every other wave, or every four years, and are not available for all participants. Third, because the HRS is 
a sample of older individuals who were genotyped in 2006, 2008, or 2010, our results may be subject to mortality 
selection. To reduce the potential of mortality selection, we limited our analyses to individuals born after  193064.

In addition, there is significant complexity surrounding obesity and aging such that differences in BMI may 
not indicate an actual change in body fat. Higher BMI at midlife is a risk factor for age-related disease and early 
mortality; however, at older ages it might be somewhat protective of mortality because age-related diseases and 
aging itself are wasting conditions that stimulate weight loss. Therefore, while incrementally higher BMI in 
midlife is more likely a measure of risk for disease, later in life it may actually signal the absence of disease. In 
addition, individuals generally lose muscle mass with increasing chronological age, meaning older individuals 
could maintain a constant BMI while simultaneously losing lean body mass and gaining a greater portion of 
 adiposity65. Thus, any increases in BMI from a job loss may be offset by these other countervailing trends that 
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are inherent to the aging process, which may also explain the null findings we report for more plastic individu-
als in the top half of the vPGS distribution. Furthermore, the relatively nominal findings we report may reflect 
a greater culmination of environmental and lifestyle factors on adiposity in older adults that overwhelm any 
genetic effects. The genomic influence on BMI has been shown to both weaken over the life course and increase 
in magnitude since the current obesity epidemic began in the mid-1980s55,59,60,66.

Finally, a significant limitation of this study is we were limited to conducting analyses in individuals of Euro-
pean decent. We focus on individuals of European decent because comparable GWAS in other ancestral popula-
tions are currently unavailable. Estimates from a European ancestry GWAS are not necessarily accurate or valid 
in other ancestral populations, and PGSs constructed from European ancestry GWAS summary statistics will not 
have the same predictive power for individuals from other ancestral  backgrounds67,68. Restricting our analysis to 
one ancestral group is also important because SNPs within regions of interest may tag different causal variants 
if the underlying linkage disequilibrium (LD) structure varies across ancestral  groups68,69. Thus, we caution that 
PGS constructed from European ancestry GWAS cannot be generalized to other ancestral populations. On the 
environmental side, limiting our analysis to white, non-Hispanic HRS respondents restricts the scope of potential 
job loss effects that we can observe. Race powerfully shapes structural- and institutionally-derived differences in 
occupational sorting and occupational opportunities across the life  course70,71. For example, white HRS respond-
ents were more likely to work in higher status jobs with better working conditions than their Black  counterparts72, 
and following a job loss, they were more likely to be reemployed or have additional economic resources to buffer 
stressful declines in  income73–75, all of which may further bias effects from this study downwards.

These limitations are counterbalanced by several strengths of our study. The use of a large, nationally repre-
sentative cohort of individuals from the same ancestry group is an advantage in that it both increases our power 
to detect effects while also minimizing the presence of ascertainment bias and other selection issues. Having 
access to detailed, longitudinal job loss data in the HRS also allowed us to exploit a quasi-experimental research 
design that limited the treatment group to individuals who lost their job due to a business closure while also 
creating a control group that is matched on a rich suite of pre-job loss characteristics. Current G × E interaction 
studies that utilize population data are often unable to separate gene-environment correlation (rGE) from G × E 
effects, which limits our understanding of social-environmental effects on  health27. Finally, to our knowledge, 
this is one of the first studies to integrate genetic measures that can separately capture phenotypic mean and 
variance effects into PGS × E interaction analysis.

Conclusion. Control of phenotypic variability, both within and between individuals, is a fundamental prop-
erty of biological systems that impacts how species adapt to environmental  changes76–78. Incorporating vPGS 
measures into G × E interaction research may further our understanding of how and to what extent environ-
mental stimuli modify the distribution of anthropomorphic traits in a population. In particular, sizable unem-
ployment shocks from the Great Recession and the COVID-19 pandemic have highlighted the importance of 
understanding the short- and long-run health consequences of business cycles. Future studies that are able to 
observe the biology underlying these types of large, social-environmental effects on physiological changes that 
precede disease promises to inform new opportunities for effective  intervention79.

Methods
Standardized bias estimates. The standardized bias compares the distance between the marginal distri-
butions, or the difference in sample means between the treated 

(

XT

)

 and matched control 
(

XC

)

 subsamples as a 
percentage of the square root of the average of the sample variances in both groups for a covariate X56:

Health and Retirement Study (HRS) data. The HRS is a nationally representative, longitudinal panel 
study of individuals over the age of 50 and their spouses that is sponsored by the National Institute on Aging 
(NIA U01AG009740) and conducted by the University of  Michigan80,81. Launched in 1992, the HRS introduces 
a new cohort of participants every six years and interviews around 20,000 participants every two years. To maxi-
mize sample size, we compiled data from 13 waves (1992–2016). Information on job loss and smoking behavior 
was obtained from the 1992–2016 Public Use Core Files; demographic and socioeconomic data came from the 
RAND Data File (version P).

Genotype data on ~ 15,000 participants was collected from a random subset of the ~ 26,000 total participants 
that were selected to participate in enhanced face-to-face interviews and saliva specimen collection for DNA in 
2006, 2008, and 2010. We restricted our sample to individuals of European ancestry who were between the ages 
of 50–70 who reported working part-time or full-time in the previous wave and who were not self-employed. 
The final sample consists of 3939 workers with 11,934 observations.

HRS genotyping and quality control. Genotyping was conducted by the Center for Inherited Disease 
Research (CIDR) in 2011, 2012, and 2015 (RC2 AG0336495, RC4 AG039029). Full quality control details can be 
found in the Quality Control  Report82. Genotype data on over 15,000 participants was obtained using the llumina 
HumanOmni2.5 BeadChips (HumanOmni2.5-4v1, HumanOmni2.5-8v1), which measures ~ 2.4 million SNPs. 
Genotyping quality control was performed by the Genetics Coordinating Center at the University of Washing-
ton, Seattle, WA. Individuals with missing call rates > 2%, SNPs with call rates < 98%, HWE p value < 0.0001, 
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chromosomal anomalies, and first-degree relatives in the HRS were removed. Imputation to 1000G Phase I v3 
(released March 2012) was performed using SHAPEIT2 followed by IMPUTE2. The worldwide reference panel 
of all 1092 samples from the Phase I integrated variant set was used. These imputation analyses were performed 
and documented by the Genetics Coordinating Center at the University of Washington, Seattle, WA. All posi-
tions and names are aligned to build GRCh37/hg19.

Principal component (PC) analysis was performed on a selected set of independent SNPs to identify popula-
tion group outliers and to provide sample eigenvectors as covariates in the statistical model to adjust for possible 
population stratification and were provided by the HRS. The European ancestry sample included all respondents 
that had PC loadings within ± one standard deviations for eigenvectors one and two in the PC analysis of all 
unrelated study subjects and who self-identified as White on survey data. A second set of principal components 
was then calculated within the European ancestry sample to further account for any population stratification 
within the sample. The genotype sample has been defined by the HRS and is available on  dbGaP83.

Mean polygenic score (mPGS) construction and performance. We calculated a linear mPGS for the 
HRS sample based on a GWAS of 457,824 European ancestry individuals in the UK  Biobank48. Imputed HRS 
genotype data were accessed through dbGap (phs000428). The mPGS BMI score was constructed in  PRSice84 by 
taking a weighted sum across the number of SNPs (n) of the number of reference alleles x (zero, one, or two) at 
that SNP multiplied by the effect size for that SNP (β):

GWAS summary statistics were pruned for linkage disequilibrium (LD) using the clumping procedure in 
PLINK  (R2 = 0.1, range = 1000 kb)85,86. Since these GWAS summary statistics were pre-clumped, no LD-clumping 
or p value threshold was implemented in PRSice. After LD clumping was applied, 90,326 SNPs were used to 
construct the BMI mPGS. The mPGS was standardized to have a mean of zero and a standard deviation of one 
for all analyses.

To verify the performance of the mPGS in the HRS European ancestry sample (N = 10,550), we leveraged 
the longitudinal nature of the BMI data in the HRS. We first fitted a multilevel linear growth curve model on 
BMI and age:

where Yit and Ageit denote the BMI and age of respondent i  at time point t  , respectively ( i = 1, . . . , n and 
t = 1, . . . ,Ti ). We included linear and quadratic terms for age to reflect the non-linear age-dependent trajectory 
of BMI. Next, we used linear regression to evaluate predictive performance of mPGS on individual intercepts 
(i.e., β0i ) estimated in the level one model described above. We also adjusted for the effect of sex and the first 10 
genetic principal components. The mPGS has a predictive  R2 of 7.2%.

Construction of the variance polygenic score (vPGS). We calculated BMI vPGS for HRS participants 
of European ancestry. SNP weights in the vPGS were based on dispersion effects estimated in the UKB using the 
heteroskedastic linear mixed model (HLMM)  approach16. Pre-pruned HLMM summary statistics were obtained 
from Young et al.16. We did not perform additional LD-clumping or p value thresholding to filter variants. A 
total of 242,870 SNPs remained in the vPGS model after overlapping the HLMM summary statistics and HRS 
genotype data. The vPGS was constructed in  PRSice84 and standardized to have a mean of zero and a standard 
deviation of one for all analyses.

Validation of the variance polygenic score (vPGS). Performance of the vPGS was assessed using 
European ancestry UKB samples identified from genetic PCs (data field 22,006). To avoid overfitting, HRS 
samples were not used for model validation. Quality control procedures for the UKB genetic data have been 
described  elsewhere87. We excluded participants recommended by UKB (data field 22,010), those with conflict-
ing genetically-inferred (data field 22,001) and self-reported sex (data field 31), and those who withdrew from 
the study. We randomly apportioned UKB participants (N = 406,873) into training (N = 325,498) and testing sets 
(N = 81,375), with an 80–20 split. We applied the HLMM approach to estimate the dispersion effect of each SNP 
on BMI using samples in the training set, controlling for sex, age,  age2,  age3, age × sex,  age2 × sex,  age3 × sex, 
genotyping array, and the first 40 genetic PCs. Following Young et al., we analyzed related and unrelated samples 
in the training set separately and performed fixed-effect meta-analysis to combine the  results16. Related samples 
were inferred from genetic kinship (third-degree relatives or higher; data field 22,021). Random effects were 
included to account for genetic relatedness in the analysis of related samples. We then pruned SNPs following 
Young et al. and used dispersion effect estimates to generate vPGS for samples in the testing set.

We then fitted a Double Generalized Linear Model (DGLM) to associate the vPGS with the between-indi-
vidual BMI variance in testing  samples88. The DGLM takes the form of

where BMIi denotes the inverse normal-transformed BMI of individual i , Gi is the vPGS of individual i , Xi is 
the vector of covariates including sex, age,  age2,  age3, age × sex,  age2 × sex,  age3 × sex, genotyping array, and the 
first 40 genetic principal components. Here, α1 quantifies the effect of vPGS on the variability of BMI and is the 
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parameter of interest in this analysis. The vPGS was standardized to have a mean of zero and a variance of one 
for all analyses. We fitted DGLM using the dglm  package89 in R.

To assess the performance of vPGS after adjusting for the effect of mPGS, we performed a standard, mean-
effect GWAS of BMI on the training set and used the effect estimates to generate mPGS for the testing samples. 
GWAS summary statistics were pruned for LD using the clumping procedure in PRSice (R2 = 0.1, range = 250 kb) 
when calculating the  mPGS84. We then fitted the same DGLM model as above with the mPGS added to the vec-
tor of covariates.

Treatment and control groups. For each observation, we used information from two waves—before 
and after treatment. Before treatment (t − 2), all respondents were working for pay either full- or part-time. At 
the following HRS interview two years later (t), respondents in the treatment group report they were no longer 
working for their previous-wave employer. These respondents were asked why they left their employer. Possible 
answers included ‘business closed’, ‘laid off/let go’, ‘poor health/disabled’, ‘quit’ ‘family care’, ‘better job’, ‘retired’, 
‘family moved’, ‘strike’, ‘divorce/separation’, ‘transportation/distance to work’, and ‘early retirement incentive/
offer’. Respondents could report up to three reasons. Our definition of exogenous job loss includes observations 
that reported being laid off due to a business closure. We excluded workers who also stated that they quit or left 
for health reasons but included workers who stated as a second reason being laid off, retiring, family care, better 
job, or ownership change because these circumstances could have occurred concurrently with a business closure 
(e.g., a worker may have retired because the business closed)40. Of those who experienced a job loss, 347 gave 
business closure as the sole reason for leaving their job. Of the remaining 28 respondents, 13 cited ‘laid off/let go’, 
8 cited ‘retired’, 3 cited ‘family care’, 3 cited ‘better job’, and 1 cited ‘ownership change’ as a second reason.

For the control group, we used individuals who reported working for the same employer the entire time they 
were in the sample—i.e., we did not include individuals in the control group if they ever quit their job or were 
laid off for any reason. Treated individuals are only in the analytic sample for two waves, or pre- and post-job 
loss. For control individuals, we used matching with replacement to increase the average quality of matching, 
which reduces  bias57. As a result, control individuals can be in the analytic sample for multiple HRS waves. The 
control group consisted of 11,559 observations on 3564 workers.

Difference‑in‑differences (DiD) approach. We used DiD estimation combined with nonparametric 
kernel matching to estimate the average treatment effect on the treated (ATT) by genotype, or the change in BMI 
by genotype brought about by the job loss of those who actually lost their  job31,90. This approach compares indi-
viduals who have been laid off due to a business closure with a group of similar individuals who are still working 
for their same employer. To construct a control group with a similar distribution of covariates as the treatment 
group, the kernel-based matching estimator uses a distance-weighted average of all propensity scores in the 
control group to construct a counterfactual outcome for each individual in the treatment group. These weights 
were applied to the DiD regression model to obtain a balanced sample of treated and untreated individuals. The 
coefficients from the DiD regression were then used to estimate the ATT by mPGS and vPGS.

A traditional DiD setting assumes that after conditioning on a vector of observables X , the BMI of individuals 
in the treatment group would have evolved similarly over time to the BMI of individuals in the control group if 
they had never been laid off:

where BMIit − BMIit−2 refers to the change in BMI before and after the treatment, BC denotes the treatment 
group indicator (i.e., whether an individual lost their job due to a business closure), and i′ denotes an individual 
in the control group with the same characteristics as individual i in the treatment group. While conditioning 
on genotype and a rich set of covariates minimizes the possibility of violating this assumption, other systematic 
differences between the treated and control groups may remain even after conditioning on observables.

To minimize potential confounding from unobservable characteristics, we used the weights from propensity 
score matching (W) to reduce unmeasured differences between the treatment and control groups that could 
bias estimates:

Covariates used to estimate the propensity score, or the probability of treatment, were also included in the 
DiD regression model. Thus, coefficients from the regression-adjusted semiparametric DiD matching estimator 
are considered “doubly robust” because the estimator is consistent if the regression model or the propensity score 
model is correctly  specified91,92. As a result, the DiD matching estimator accounts for selection on observable 
and unobservable variables with time invariant effects, or the model allows for systematic differences between 
treatment and control groups even after conditioning on  observables93.

Difference‑in‑differences (DiD) empirical strategy. Our empirical strategy can be broken down into 
three parts. First, we estimated propensity scores using a probit regression that regresses business closures on 
the mPGS and vPGS, as well as a rich set of covariates that are both standard in the job loss literature and satisfy 
the conditional independence assumption—i.e. they influence job loss and/or changes in  BMI90,94. In addition, 
we only conditioned on observables that were unaffected by job loss (or the anticipation of it), or variables that 
were either fixed over time or measured in t − 2 57. A complete list of covariates can be found in Supplementary 
Tables S1 and S2. To avoid losing observations with missing information on a covariate, we set missing values 
equal to zero and included an additional dichotomous variable that is equal to one if the observation is missing. 

E[BMIit − BMIit−2|X,BC = 1] = E[BMIi′t − BMIi′t−2|X,BC = 0]

E[BMIit − BMIit−2|W(X),BC = 1] = E[BMIi′t − BMIi′t−2|W(X),BC = 0]
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As a result, matching is not only on observed values but also on the missing data  pattern31,95. Throughout, we 
restricted our analysis to the region of common support, or the subset of individuals in the control group that 
were comparable to individuals in the treatment  group94. Specifically, we dropped treatment observations whose 
propensity score was greater than the maximum or less than the minimum propensity score of the controls.

We used the estimates from the probit regression to compute the weights for the control group with kernel 
matching, a nonparametric matching estimator that uses the weighted averages of all observations on common 
support to construct the counterfactual  outcome90,93. Specifically, the weight given to a non-treated individual j 
was in proportion to the closeness of their observables to treated individual i:

where P is the propensity score for individual i or j in the treated or control group, respectively, K[·] is the ker-
nel function, and b is the bandwidth parameter. We used the program  psmatch296 in Stata 14 to compute w

(

i, j
)

 
with the Epanechnikov kernel function and a bandwidth of 0.0690. In addition, when computing the weights, 
we performed exact matching on survey year and sex in t − 2. This ensured 1) individuals who were laid off were 
matched with controls from the same time period, and 2) treated individuals were grouped with same-sex non-
treated individuals.

In the final step, we incorporated the weights from propensity score matching into the DiD regression model:

where BC is an indicator for job loss due to a business closing in the years between HRS survey waves, or between 
t − 2 and t for individual i ,  X is a vector of observable time invariant and variant covariates measured at t − 2, 
including the first 10 principal components of the genetic data. We also include BMIt−2 to control for baseline 
BMI, or to estimate deviations in BMI between t − 2 and t. All regressions were estimated with robust standard 
errors.

Estimating average treatment effects by genotype. Estimated parameters from the DiD regression 
model were used to estimate the conditional mean or predicted BMI for treated and untreated individuals at 
various values of the mPGS and vPGS (Fig. 2). For example, the BMI for treated (BC = 1) and untreated (BC = 0) 
individuals with hypothetical mPGS and vPGS values at 0 and 1, respectively, would be estimated as follows:

From here, the ATT can be estimated by taking the difference in E[BMIt |W(X)] between treated and non-
treated individuals with the same mPGS and vPGS values:

Event time study analysis. We estimated an event time study (ETS) model for individuals in the top and 
bottom 50% of the vPGS distribution using the following specification:

This model is similar to the DiD model outlined above except the business closure term is replaced by a series 
of event terms that are the product of indicators for each HRS survey year 

(

y
)

 relative to the survey year the 
respondent reported a job loss t∗i , I

(

t − t∗i = y
)

, and their treatment status (BCi) . The omitted category is the sur-
vey year prior to treatment 

(

y  = −2
)

 . We also present ETS results for the full sample that includes controls for the 
vPGS. Each estimate of �y gives the difference in BMI for treated individuals compared to non-treated individuals 
relative to the excluded year. If outcomes were evolving similarly for treated and untreated individuals prior to 
a business closure, the coefficient estimates for y < 0 should be close to zero and not statistically significant.

Data availability
Health and Retirement Study (HRS) phenotypic data is publicly available on the HRS website: https:// hrs. isr. 
umich. edu/ data- produ cts. HRS genotype data is available through the NCBI Database of Genotypes and Phe-
notypes (dbGaP): https:// www. ncbi. nlm. nih. gov/ gap/. UK Biobank phenotype and genotype data is publicly 
available through their Access Management System (AMS) after applying for access: https:// www. ukbio bank. 
ac. uk/ enable- your- resea rch/ apply- for- access.
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